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Abstract

In a complex behavioral system, such as an animal society, the dynamics of the system as a whole represent the synergistic
interaction among multiple aspects of the society. We constructed multiple single-behavior social networks for the purpose
of approximating from multiple aspects a single complex behavioral system of interest: rhesus macaque society. Instead of
analyzing these networks individually, we describe a new method for jointly analyzing them in order to gain comprehensive
understanding about the system dynamics as a whole. This method of jointly modeling multiple networks becomes
valuable analytical tool for studying the complex nature of the interaction among multiple aspects of any system. Here we
develop a bottom-up, iterative modeling approach based upon the maximum entropy principle. This principle is applied to
a multi-dimensional link-based distributional framework, which is derived by jointly transforming the multiple directed
behavioral social network data, for extracting patterns of synergistic inter-behavioral relationships. Using a rhesus macaque
group as a model system, we jointly modeled and analyzed four different social behavioral networks at two different time
points (one stable and one unstable) from a rhesus macaque group housed at the California National Primate Research
Center (CNPRC). We report and discuss the inter-behavioral dynamics uncovered by our joint modeling approach with
respect to social stability.
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Introduction

Networks are constructed in a wide variety of sciences, and

these networks are popularly interpreted as an approximation of a

complex system [1]. Network analyses, and computed patterns

based on such networks, often provide valuable information or

even uncover surprising patterns. Typical networks are based

upon a single behavior, and are meant to approximate a single

aspect of the study system. Hence the resultant analyses and

patterns provide information for only one facet of the system of

interest. However, dynamic systems, such as human and animal

societies, usually consist of many facets working synergistically.

Indeed, animal behaviorists construct multiple separate networks

from a single target system [2,3,4]. Ideally, the information from

these separate networks should be combined in order to achieve a

comprehensive understanding of the system dynamics and

processes. Unfortunately, the joint modeling methodologies and

computational algorithms required to achieve a holistic under-

standing are still by and large missing.

In this paper we attempt to fill in this missing gap by proposing

a maximum entropy principle based joint modeling methodology.

The key features of this approach are that it is: 1) data-driven; 2)

iterative; 3) and bottom-up. These features distinguish this

modeling approach from most commonly - used modeling

methods, which have a fixed and rigid model format, where all

potential aspects of information are pre-selected. This old

modeling perspective is particularly limited when our goal is to

extract interaction relationships among multiple complex net-

works.

We illustrate and explain this new joint modeling approach

using the rhesus macaque (Macaca mulatta) as an animal model.

Four different social behaviors are considered: grooming, aggres-

sion, alliance, and status.

These four behaviors cover the major types of social interaction

in rhesus macaques and constitute the main factors in under-

standing the social dynamics of the society as a whole. They are

distinct networks that cover the same set of individual nodes.

Many decades of research indicate that these behaviors are

interrelated (e.g. both aggression and status are largely governed

by dominance rank and are typically unidirectional), but joint

modeling is required to quantify exactly how these behaviors co-

vary. Furthermore, discovering what patterns of covariation are

associated with stability vs. instability will improve our under-

standing of the evolution of sociality and grouping as well as

improve captive management practices of socially-housed prima-

tes. We can use these patterns in developing and understanding
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the constraints over the overall network. The entropy can provide

a measure of the structure compared to the independence among

the four networks. Thus, rhesus macaques are a good model

system in which to test joint modeling. The observed social

behavior data come from observations on a captive group of

rhesus macaques from the California National Primate Research

Center (CNPRC). Our goal was to develop joint modeling

techniques that allow the authentic and characteristic patterns of

the system dynamics across these four social behavioral networks

to be effectively summarized.

We construct four mono-behavioral social networks, including

grooming, aggression, status and alliance derived from a single

group (14B) with a fixed group membership (N = 77 monkeys). For

simplicity of development as well as explanation, we use binary

directed networks such that only the presence (or absence) and

direction of a link between any pair of monkeys is considered. The

frequency (i.e. weight) of an observed link between monkeys is

ignored. In Part I this paper, we introduce this new joint modeling

approach and its applications by focusing on coupling two

behaviors (grooming and aggression). Then, in Part II we apply

this joint modeling approach to all possible pair-wise combinations

of the four behaviors and draw conclusions about its system

dynamics. Joint modeling represents a significant improvement

over standard social network analytical procedures, which are

done in piecemeal fashion, extracting a single association between

a response variable and a network measure from a single network.

Joint modeling of two networks presents a new perspective on the

synthesis of complex information, and sets the stage for extending

this perspective to the synthesis of several interconnected networks.

Methods

Introduction to a maximum entropy based joint
modeling approach

The basic idea of jointly modeling two binary (un-weighted)

networks, corresponding to two types of social behaviors, is to

prescribe the probability of a link in one network being associated

a link in the other network. Each directed link is encoded as either

0 or 1, so a 2-dimensional binary code represents both directions

of the relationship between two nodes. Therefore, the link between

every pair of nodes in a two-behavior network is encoded by a 4-

dimensional binary code. For example, let the two behaviors be

grooming and aggression. A monkey dyad with mutual grooming,

but no aggression can be represented by the 4-dimensional code

vector (1,1,0,0) (see nodes 2, 3 in Figure 1). A pair of monkeys

with opposite directional grooming and aggression is represented

by a linkage vector (1,0,0,1) (see nodes 3,4 in Figure 1). Thus,

there are 16 possible 4-dimensional linkage vectors, although there

are only 10 biologically-distinct vectors. The empirical distribution

of these 10 categories of linkage vectors represents the association

information between these two behaviors of interest.

The application of our maximum entropy based joint modeling

to such an empirical distribution then allows scientists to recreate a

parametric probability distribution that explicitly embeds all key

association information being revealed through the empirical

distribution. The iterative steps are heuristically described as

follows.

We begin with the distribution assuming independence between

the two behaviors of interest (i.e. no association among the links).

First, the four empirical marginal distributions of the vector codes

are calculated and then the expected probabilities (or counts) of

the 10 linkage vector categories are computed by assuming that

each of the links of the two networks are independent. By

comparing the empirical distribution with the expected one

(assuming independence), any significant discrepancy in any

category indicates a missing piece of information regarding the

association between the two behaviors in the null model. It should

be noted, however, that this is also subject to randomness of finite

sampling.

Next, to correct any significant discrepancies we need to choose

a constraint function that captures the missing association, and

incorporate such a chosen constraint function into the revised

version of probability distribution. The latter incorporation is the

work of the maximum entropy principle, which chooses the

maximum entropy one among all distributions fitting the

constraints with empirical values calculated from the data. The

advantage of using maximum entropy is that no extra or artificial

assumptions are taken into the modeling. We now compare this

new computed maximum entropy distribution with the empirical

distribution; ideally the new distribution would include the right

amount of association and improved in fitting the data.

We repeat this cycle of choosing a proper constraint function to

describe the discrepancy and then updating the probability

distribution until the discrepancy between the overall expected

and empirical counts of the 10 categories is below a critical Chi-

squared percentile.

We apply this joint modeling approach to real network data

collected from one group (14B) at two different time points to

perform three separate analyses: (1) using network data collected in

2009, when group 14B was regarded as a stable social group, and

(2) using network data collected during a matched time period in

2011, prior to a social overthrow event in group 14B. (3) We also

Figure 1. A visual example of jointly modeling two social networks: Groom and Aggression.
doi:10.1371/journal.pone.0051903.g001
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applied joint modeling to compare the behavior network in 2009

with 2011. In each analysis, the coupling of two behavioral

networks reveals intrinsic and pertinent behavioral pattern

knowledge in both years of data, respectively. Further the

comparison of these two years analyses manifests critically

important finding that provides a foundation for deriving

monitoring measures for early warning signs of group instability

and potential social overthrow.

Ethics statement
All research reported in this manuscript adhered to the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health, the laws

of the United States government, and the recommendations of the

Weatherall report, ‘‘The use of non-human primates in research.’’

All research subjects were housed in large social groups in half-

acre outdoor enclosures to provide for their psychological

wellbeing. The methodological approach was purely observation-

al. All occurrences of illness or injury among study subjects were

immediately reported to and treated by CNPRC veterinary staff,

and all efforts were made to ameliorate suffering. This project was

approved by the University of California, Davis Institutional

Animal Care and Use Committee, protocol #11843.

Binary behavioral network data
Consider four types of monkey behavioral interactions: groom-

ing, aggression, alliance, and status. Grooming is defined as one

monkey manipulating or picking through the fur of another using

the fingers or lips. Aggression is defined as one monkey

threatening, lunging at, chasing or biting another monkey, who

typically responds with submission, such as moving away, running

away, or screaming. An alliance is defined as a third party joining

an on-going fight to help one of the original participants. Finally,

status signaling is defined as a subordinate monkey giving a

submission signal (silent-bared-teeth display, rump present, or

move away) to a dominant animal in a peaceful context (i.e.

aggression is not used to elicit submission). Each of these four

behaviors is a directed action from one monkey to another. Thus,

each action gives rise to a directed link in the social network.

We constructed four binary directed networks (i.e. ignoring the

frequency/weight of each link) for each of the four behaviors, as

show in Fig. 2, using behavioral data collected on group 14B at the

CNPRC.

For each network, each node represents an individual monkey

and an edge represents the directed relationship with an arrow

going from the initiator to the recipient. The different colors

represent the different matrilineal families in the group. Standard

network analysis techniques focus on each network separately to

try to extract behavioral specific pattern information. However, as

animal behaviorists well know, these four networks are not

independent of each other. For example, two allies may groom

each other to help maintain their alliance relationship, and a

subordinate who gives an unsolicited submission signal to a

dominant is unlikely to also direct aggression towards that

dominant animal [5]. These networks are thus bound together

in multi-faceted and complex ways. In the next section we

investigate how all pairs of the four behaviors are coupled together

in order to discover their behavioral bonds. Through the coupling

mechanisms via joint modeling we uncover informative structural

information about these behavioral bonds.

Maximum Entropy Modeling
The maximum entropy paradigm was introduced by physicist

E.T. Jaynes [6,7]. The ultimate goal of this principle is to

determine the most likely probability distribution to minimize the

number of structural assumptions while maximizing the amount of

authentic information extracted from the observed data. This

method is often used to describe network structures, as it has been

successfully applied in a wide range of scientific fields such as

physics [8,9], neuroscience [10,11], genetics [12], and computa-

tional linguistics [13]. The previous work uses the maximum

entropy principle to model a specific network with one type of

connection, but to our knowledge, we present the first application

of the maximum entropy principle to the joint modeling of

multiple networks over each type of connection. In the method-

ological description below, we lay out the fundamental basis of this

application using rhesus macaque society as a model system.

Before formally developing our joint modeling framework, it is

important to note that subject covariate information, such as

gender, age or matriline membership are not used. Therefore we

implicitly assume that the probability that one monkey interacts

with any other monkey is equal across all pairs of monkeys. This

assumption of equality of action is certainly not realistic, but it is a

mean field approach commonly used in applications of statistical

mechanics [10,14,15]. This mean field approach simplifies the

maximum entropy computations. Additionally, it creates the null

model to compare against the given data. This approximation will

be updated in future work when including information from the

individual covariates.

Let us generically represent an observed social behavior via a

directed weighted network graph Gk(N,Ek,Wk) with k~1,2,3,4
indicating four focal behaviors, where N~f1,2, . . . ,ng is the set of

n nodes (or subjects) of interest, the n-by-n matrix Ek~ ek i,jð Þ½ � is

the adjacency matrix of observed binary directed edges (or wiring),

that is, ek i,jð Þ~1 when there exists a directed link from node i to

node j, otherwise it is 0. The four matrices fE1,E2,E3,E4g are

graphically represented in the four panels of Fig. 1. Wk~½wk(i,j)�
is the matrix of weights linking from node i to node j.

For instance, in the two directed weighted network graphs

[G1(N,E1,W1),G2(N,E2,W2)] (grooming and aggression, respec-

tively), we consider the simplest version of bivariate network

relationship that is specified by the empirical distribution

D12(E1|E2) of the 4-dimensional binary linkage vectors,

(x12
1 ,x12

2 ,x12
3 ,x12

4 ). In the first column of Table 1, grooming is

represented by the first two dimensions (x12
1 ,x12

2 ) and aggression

by the last two dimensions (x12
3 ,x12

4 ). Observed counts of each

linkage vector category are shown in the second column, and

represent the empirical distribution D12(E1|E2), denoted by

d(x12
1 ,x12

2 ,x12
3 ,x12

4 ). There can be a total of sixteen possible four-

dimensional linkage vectors, and each edge could be represented

in two ways: x12
1 ,x12

2 ,x12
3 ,x12

4

� �
is equivalent to x12

2 ,x12
1 ,x12

4 ,x12
3

� �
. In

the tables in this paper, we show only the 10 biologically-distinct 4-

dimensional vectors and omit those that are repeated. The

procedure of applying maximum entropy paradigm for modeling

such an empirical distribution as given as follows:

Maximum entropy Procedure
Step-1. Find the expected counts for each specific link vector,

denoted by E0 d x12
1 ,x12

2 ,x12
3 ,x12

4

� �� �
, under the null model with

independence among the four directed edges (x12
1 ,x12

2 ,x12
3 ,x12

4 ).

Then, compare these expected counts with the empirical count

d(x12
1 ,x12

2 ,x12
3 ,x12

4 ), using the Chi-squared value

d x12
1

,x12
2

,x12
3

,x12
4ð Þ{E0 d x12

1
,x12

2
,x12

3
,x12

4ð Þ½ �f g2

E0 d x12
1

,x12
2

,x12
3

,x12
4ð Þ½ � which is shown in parenthesis

under the expected valueE0½d x12
1 ,x12

2 ,x12
3 ,x12

4

� �
. Look for a

discrepancy to be addressed by step-2.

Joint Modeling of Multiple Social Networks
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Step-2. We construct a function f1 on the domain of

x12
1 ,x12

2 ,x12
3 ,x12

4

� �� �
that is thought to repair the target discrep-

ancy. So it is one important deviating direction of the null model

from the underlying mechanism that generates the empirical

distribution of D12(E1|E2). This function f1 is chosen in such a

way to satisfy the mean zero condition under the null distribution,

that is, ÊE0 f1 x12
1 ,x12

2 ,x12
3 ,x12

4

� �� �
~0, where ÊE0 f1 x12

1 ,x12
2 ,

��
x12

3 ,x12
4 Þ�~

P
x12

1
,x12

2
,x12

3
,x12

4ð Þ
f1 x12

1 ,x12
2 ,x12

3 ,x12
4

� �
p0 x12

1 ,x12
2 ,x12

3 ,x12
4

� �
.

This condition means that this function f1is perpendicular to the

null model, meaning the features of f1 do not currently exist in the

null model.

Step-3. We then accommodate the function f1 by modifying

the null probability p0 x12
1 ,x12

2 ,x12
3 ,x12

4

� �
~p0 x12

1 ,x12
2

� �
p0 x12

3 ,x12
4

� �
into a probability function p1 x12

1 ,x12
2 ,x12

3 ,x12
4

� �
~½Z1(l̂l1)

�{1
p0 x12

1 ,x12
2 ,x12

3 ,x12
4

� �
el̂l1f1 x12

1
,x12

2
,x12

3
,x12

4ð Þ where the partition

function Z1(l1) is the normalizing constant and l1 is chosen such

that p1 x12
1 ,x12

2 ,x12
3 ,x12

4

� �
obtains the maximum entropy subject to

the linear constraint

cE1E1 f1 x12
1 ,x12

2 ,x12
3 ,x12

4

� �� �
~
Pf1 x12

1
,x12

2
,x12

3
,x12

4ð Þd x12
1

,x12
2

,x12
3

,x12
4ð Þ=n12 with

total counts n12~
Pd

(x12
1 ,x12

2 ,x12
3 ,x12

4 ).

Step-4. To compute the l̂l1, we need only to solve the

following equation:

L
Ll

log Z1(l1)~ÊE1 f1 x12
1 ,x12

2 ,x12
3 ,x12

4

� �� �

with the partition function Z1 l1ð Þ~
Pp0 x12

1 ,x12
2 ,x12

3 ,
�

x12
4 Þe

l1f1 x12
1

,x12
2

,x12
3

,x12
4

� 	
. This derivation is shown in more detail

in Appendix S1. Then we check whether the total sum of

Chi-squared values being smaller than the nominal critical

Figure 2. Empirical networks of the four behaviors for the study group (14B) during the stable time period in 2009.
doi:10.1371/journal.pone.0051903.g002
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Chi-squared percentile. If yes, we stop, otherwise we continue to

the next step.

Step-5. We again compute the expected counts for all possible

vector values of (x12
1 ,x12

2 ,x12
3 ,x12

4 ) and find a target discrepancy to

be repaired by the following performing steps 2 through 4

iteratively. Using p1, which we have now obtained, as the null

probability, we repeat previous steps. First, choose a function f2

such that the expectation of f2 under the null p1 must be zero,

ÊE1 f2 x12
1 ,x12

2 ,x12
3 ,x12

4

� �� �
~0. Then include the next function f2 in

the new probability by modifying the null probability into a

probability function p2 x12
1 ,x12

2 ,x12
3 ,x12

4

� �
~½Z2(l̂l2)�{1

p1 x12
1 ,x12

2 ,
�

x12
3 ,x12

4 Þel̂l2f2 x12
1

,x12
2

,x12
3

,x12
4ð Þ where the partition function Z2(l2) is

the normalizing constant and l2 is determined from solving the

maximum entropy with the empirical entropy linear constraint

cE2E2 f2 x12
1 ,x12

2 ,x12
3 ,x12

4

� �� �
~
Pf2 x12

1
,x12

2
,x12

3
,x12

4ð Þd x12
1

,x12
2

,x12
3

,x12
4ð Þ=n12 . l̂l2

can be determined by repeating step 4.

This step is repeated until all observed counts and model-

expected counts are closely matching to each other (not statistically

significantly different). The decision can be made via Chi-squared

testing with a suitable degree of freedom, that is, the total sum of

Chi-squared values is smaller than the critical Chi-squared

percentile.

Given that the 16 different 4-dimensional vectors represent only

10 biologically-distinct types of bivariate interaction, the appro-

priate degrees of freedom is 9 for the overall Chi-squared

calculation, and the 95% and 99%-percentiles are 16.919 and

21.666, respectively. Thus, we stopped at the 4th cycle of the above

procedure when the total chi-squared is within the 99%-percentile

in analysis on Table 1. Below we demonstrate how the maximum

entropy works in an iterative fashion for all possible joint modeling

for all bivariate behavioral networks.

Results

Joint modeling bivariate networks
The four directed binary networks via matrices fE1,E2,E3,E4g

are rather sparse. The density, calculated by dividing the total

number of observed edges by the total number of all possible edges

in the graph) estimates the probability of observing an edge in each

network over the three-month observation period in 2009. The

probabilities of seeing a grooming edge is 187
5929

~

0.0315( = P0 x12
1 ~1

� �
~P0 x12

2 ~1
� �

), an aggression edge is 646
5929

als0.10896 ( = P0 x12
3 ~1

� �
~P0 x12

4 ~1
� �

), an alliance edge is
182

5929
~0.0263, and a status edge is 464

5929
~0.07826. Similar sparsity

of edges is also seen over a corresponding three-month period in

2011.

Further developments for finding function fk

We further illustrate the development of this joint modeling

approach using grooming and aggression networks as an example.

We calculate our initial expected values assuming that aggression

and grooming occur independently of one another. Thus, a high

chi-squared value indicates that the observed frequency of each

grooming-aggression combination is unlikely to be due to chance.

A high chi-squared value also indicates a deviation between the

null model and the underlying data-generating mechanism. Large

discrepancies thus indicate the need to modify the null (indepen-

dent) model.

We choose constraint functions that could modify the null

model in a way such as to also cover the discrepancies between the

expected counts and the observed counts. There are three

considerations used when determining these functions. First, we

use our subject knowledge to understand how the networks may be

related, and then check how this relationship between networks

can be demonstrated by looking at the differences between

expected counts and observed counts. We can use this relationship

to generate a constraint function, but create this function such

that, under the null hypothesis, the expected value of the function

is zero. This guarantees that the constraint model is not contained

in the null model. The model created from the constraint functions

is not necessarily a pre-determined model, rather this model is

created from data observation and prior knowledge.

For example, there are two noticeably large chi-squared values

for combinations (1,1,0,0) (bi-directional grooming) and (0,0,1,1)
(bi-directional aggression). To separately capture these bi-direc-

tional grooming and aggression discrepancies between the

expected and observed counts, we propose employ the two

covariance-type of functions:

f1 x12
1 ,x12

2 ,x12
3 ,x12

4

� �
~(x12

1 {p0(x12
1 ))(x12

2 {p0(x12
2 );

Table 1. Maximum Entropy Calculations for Joint Modeling of Grooming and Aggression Networks.

grooming aggression total indep. f1 f2 f3 f4

1 0 0 0 100 143.84 (13.36) 133.89 (8.58) 134.64 (8.91) 134.41 (8.81) 127.24 (5.83)

1 1 0 0 28 4.68 (116.04) 36.31 (1.90) 36.52 (1.99) 36.46 (1.96) 34.51 (1.23)

0 0 1 0 435 539.14 (20.12) 537.71 (19.62) 477.63 (3.81) 476.81 (3.67) 465.76 (2.03)

0 0 1 1 154 65.81 (118.17) 65.64 (118.96) 161.11 (0.31) 160.83 (0.29) 157.10 (0.06)

1 0 1 0 10 17.56 (3.25) 16.34 (2.46) 14.52 (1.41) 8.06 (0.47) 10.98 (0.09)

1 0 0 1 28 17.56 (6.21) 16.34 (8.31) 14.52 (12.52) 26.06 (0.14) 35.50 (1.59)

1 1 1 0 8 0.57 (96.49) 4.43 (2.87) 3.94 (4.19) 3.93 (4.21) 5.36 (1.31)

1 0 1 1 5 2.14 (3.81) 2.00 (4.53) 4.90 (0.00) 4.89 (0.00) 6.66 (0.41)

1 1 1 1 0 0.07 (0.07) 0.54 (0.54) 1.33 (1.33) 1.33 (1.33) 1.81 (1.81)

0 0 0 0 4575 4416.80 (5.67) 4405.07 (6.56) 4429.76 (4.76) 4422.09 (5.29) 4432.58 (4.58)

total x2 383.2001 174.3299 39.22938 26.16519 18.92789

The total column indicates the count for that type of edge. The numbers in each of the other columns indicate the expected number of edges under the distribution
additionally including each constraint as well as the independent null distribution. The number in parenthesis is the Chi-squared value for that cell.
doi:10.1371/journal.pone.0051903.t001
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f2 x12
1 ,x12

2 ,x12
3 ,x12

4

� �
~(x12

3 {p0(x12
3 ))(x12

4 {p0(x12
4 ):

Via the above maximum entropy procedure for accommodating f1

with the computed l̂l1~2:1886, the expected value of

x12
1 ,x12

2 ,x12
3 ,x12

4

� �
~(1,1,0,0) under first modified model is calcu-

lated as 36.31, which is much closer to the empirically observed

count 28 than that of the null model 4.68. This is because the new

model increases the probability of having bi-directional grooming.

In the same way, whenf2 is also accommodated into the modified

model withl̂l2~1:145, the discrepancy on

x12
1 ,x12

2 ,x12
3 ,x12

4

� �
~(0,0,1,1) is drastically reduced from 118.96

to 0.31.

Even though significant discrepancies are reduced in two of the

linkage vectors x12
1 ,x12

2 ,x12
3 ,x12

4

� �
, the remaining total Chi-squared

values is still too high at 26.17. That is, there is still room for

improving our modeling by accommodating more fk’s. Notice that

under the observed case, there are far more counts for (1,0,0,1)
(28 observations) than for (1,0,1,0) (10 observations). This means

that there are 28 observed instances where monkey A grooms

monkey B, but monkey B directs aggression at monkey A. This

scenario is likely describes lower-ranking monkeys grooming

higher-ranking monkeys as a way to pacify them after receiving

aggression from the higher-ranking monkey or to discourage

future aggression. Conversely, there are 10 instances in which

monkey A both grooms and directs aggression at monkey B. This

scenario likely represents a dominant animal initiating both

grooming and aggression toward a subordinate.

To modify our joint model for accommodating this fact, we

propose a third function f3 as follows:

f3 x12
1 ,x12

2 ,x12
3 ,x12

4

� �
~

1 if x12
1 ~x12

4

� �
and x12

2 ~x12
3

� �
{1 if x12

1 ~x12
3

� �
and x12

2 ~x12
4

� �
0 else

8><
>:

The idea behind this functional construction are the facts that

P0 x12
1 ~1

� �
~P0 x12

2 ~1
� �

and P0 x12
3 ~1

� �
~P0 x12

4 ~1
� �

. By

such a design, this constraint function increases the probability

when the two directions are opposite and decreases the probability

by the same amount when the two directions face the same way.

After applying maximum entropy procedure with calculated

l̂l3~0.586, the total chi-squared value decrease again. However

it is still too high.

To further improve our modeling for fitting the data better, we

identify all vectors values of x12
1 ,x12

2 ,x12
3 ,x12

4

� �
, except the two cases

(1,1,1,1) and for (0,0,0,0), when compared to the expected

number of counts, that tends to have more empirical counts than

expected ones where both some grooming (or the first network

type) and some aggression (or the second network type) occurs

rather than only grooming or only aggression. We quantify this

observation by choosing the following function

f4 x12
1 ,x12

2 ,x12
3 ,x12

4

� �
~ (x12

1 _ x12
2 ){P3 x12

1 _ x12
2 ~1

� �� �
(x12

3 _ x12
4 ){P3 x12

3 _ x12
4 ~1

� �� �
where a _ b~max(a,b). This function indeed helps our modeling

by reducing the overall discrepancy under the critical value of 1%

nominal level with l̂l4~0.39

In Figure 3, we can see the differences between the computed

expected number for each type of link and the observed number.

The expected distribution is under the assumption that each link is

independent for the rest, which is clearly not true. The first

function (f1) adjusts for the covariance association in the first

network (grooming), and this adjustment is most apparent in the

first two linkage vectors (1,0,0,0)and(1,1,0,0), as these bars

approach zero. The second function (f2) adjusts for the covariance

in the second network (aggression), and this is most evident in the

two linkage vectors corresponding to aggression (0,0,1,0)and

(0,0,1,1), as these bars approach zero. These covariance

adjustments generate an expected probability that is closer to

the observed value. The third function (f3) adjusts for the opposite

directions between (1,0,1,0)and(1,0,0,1), in order to pull these

discrepancies toward zero. This can be seen as the fifth and sixth

bars approach zero in f3. Looking at the differences we still see that

the first four bars (where only one of the networks has an

occurrence) have lower observed than expected values, and the last

six bars (where either both or neither networks have an

occurrence) have higher observed than expected value. The

fourth function (f4) aims to adjust for the covariance between the

two networks, which decreases the expected value for the first four

vectors and increases the expected value for the other six vectors.

This function brings all of the discrepancies closer to zero. There

appear to be more links of (0,0,0,0)than expected over all four

functions. However, the Chi-squared value for (0,0,0,0) is

considerably low, because the difference is low compared to the

relatively high number (4575) of non-connected links.

Application of joint modeling to all pair-wise networks
Through this development of bottom-up maximum entropy

paradigm based joint modeling, we see how this data-driven

procedure helps our understanding of the interaction between

grooming and aggression. In the same way, we can gain an

understanding for all other pair-wise behaviors by deriving their

specific set of fk
0s. Heuristically these sets of functions might be

very similar or very different.

Below we check whether the set of four functions (f1,f2,f3,f4),
derived from exploring the interacting relationship between

grooming and aggression, retain universal effects through all

other pairwise behaviors on 2009 data and across data of different

year 2011. We report the series of tables of our joint modeling

analyses (see Tables 2 and 3, as well as Tables S1, S2, S3, S4, S5,

S6, S7, S8, S9, S10, S11, S12). Figure 4 shows the decreasing Chi-

squared values as the number of constraining functions increase,

also see Tables 4 and 5. This means that as we increase more

functions to describe associations, the expected distribution more

closely approximates the observed distribution. These plots also

show that for the most part, the 2011 data fits better than the 2009

data, so there may be less complex associations in 2011 just before

the social overthrow.

We also performed the joint modeling over the 2009/2011 data

for each behavior. In these cases, we only used the individuals who

appeared in both the 2009 data set and 2011 data set for each

behavior. These results are given in Tables 4 and 5 (and Tables

S13, S14, S15, S16).

Discussion

Joint modeling involves the empirical construction of multiple

social networks to synthesize complex information and reveal

collective behaviors which arise from several interconnected social

realms. Our approach recreates the joint probabilities of two types

of social relationships, such as grooming and aggression, by first

using the raw data to calculate expected probabilities of jointly

observing grooming and aggression for a given dyad, assuming

grooming and aggression relationships are independent. Con-
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straint functions are then iteratively applied to tune these

probabilities to match the observed network data.

We jointly modeled all bivariate behavioral networks, using four

constraint functions (f1,f2,f3,f4), to investigate the inter-behavioral

relationships among four social networks in a rhesus macaque

society at two different time points: 2009 and 2011. The study

system was stable throughout 2009, but became unstable in 2011,

which culminated in a social collapse in Fall 2011. This society,

therefore, represents an ideal system in which to test these new

joint modeling techniques because the inter-behavioral dynamics

of the system changed from 2009 to 2011, which allows the

identification of meaningful inter-behavioral dynamics associated

with system instability. Below we discuss the results of our joint

modeling efforts with respect to the change in social stability of the

study system.

Inter-behavioral patterns: hallmarks of rhesus society
First, we note that our joint modeling approach confirmed

several known behavioral patterns in rhesus macaque society. For

example, aggression and status interactions are governed by

dominance, and as such, the direction of these interactions is

highly predictable [16]. Indeed, rhesus macaques are highly

despotic, showing a high degree of asymmetry in their aggressive

interactions [17]. Conversely, grooming and alliance interactions

occur in multiple contexts, thus the direction of these interactions

is less predictable outside of the context of kinship, sex, age, and

Figure 3. Histograms of the expected frequency of each linkage vector category under the null model of independence and after
the cumulative application of the four constraint functions.
doi:10.1371/journal.pone.0051903.g003

Table 2. Total chi-squared values of iterative joint modeling
on 2009.

2009 indep f1 f2 f3 f4

groom/aggression 383.2001 174.3299 39.22938 26.16519 18.92789

groom/alliance 1746.551 545.8951 120.1105 119.9372 29.34931

groom/status 297.0714 81.04574 49.71641 38.7586 23.72612

aggression/alliance 395.317 279.2095 51.46468 49.42425 16.10065

aggression/status 537.9403 458.3071 383.1573 106.3561 84.88729

alliance/status 238.1352 67.86995 36.82985 27.28788 18.85823

doi:10.1371/journal.pone.0051903.t002

Table 3. Total chi-squared values of iterative joint modeling
on 2011.

2011 indep f1 f2 f3 f4

groom/aggression 1115.901 190.8692 93.95191 78.73596 47.23078

groom/alliance 538.8094 363.3119 103.3141 102.7869 21.09991

groom/status 170.4748 19.56063 16.78067 6.9537 4.810583

aggression/alliance 323.3224 250.005 69.68484 65.91343 13.6323

aggression/status 243.5242 217.1091 210.8734 31.75803 25.63412

alliance/status 142.4655 23.5324 20.59748 4.070777 3.872492

doi:10.1371/journal.pone.0051903.t003
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rank. For instance, a subordinate may groom a dominant to gain

tolerance at a feeding site, or a dominant may groom a

subordinate after a fight to reconcile [18,19]. Both known patterns

emerge in the joint modeling. In the Aggression & Status joint

networks, same direction status and aggression observed more

frequently than expected by chance and were far more common

than opposite direction status and aggression ((1,0,1,0) vs.

(1,0,0,1): 147 vs. 2 in 2009 and 78 vs. 3 in 2011 See Tables S3

and S9). In the Grooming & Alliance joint networks, same

direction groom and alliance were just as common as opposite

direction groom and alliance ((1,0,1,0) vs. (1,0,0,1): 9 vs. 10 in

2009; 13 vs. 11 in 2011; see Tables S2 and S8).

Joint modeling over 2009 and 2011 further demonstrate the

above patterns. For both Aggression 2009–2011 and Status 2009–

2011 networks, the third constraint function described the

expected distribution quite well, as the overall chi-squared value

decreased significantly with f3 (see Table 4). The third function

checks for opposite direction links (i.e. change in the direction of

aggression from 2009 to 2011), and the negative values of l̂l3

revealed that very few dyads changed the direction of aggression

or status from 2009 to 2011. l̂l3 For the Groom and Alliance

Figure 4. Plots of the change in total chi-squared value after the cumulative application of the four constraint functions for all
bivariate networks.
doi:10.1371/journal.pone.0051903.g004

Table 4. Total Chi-squared values for iterative joint modeling
between 2009 and 2011.

2009/2011 indep f1 f2 f3 f4

groom 387.589 99.92067 51.10631 50.92136 11.00127

aggression 107.952 93.91709 94.26985 21.58309 21.43661

alliance 156.1359 88.60414 49.01379 48.23746 8.40272

status 93.48194 64.61319 56.21222 12.63886 12.818

doi:10.1371/journal.pone.0051903.t004

Table 5. l̂lk ’s values of iterative joint modeling between 2009
and 2011.

2009/2011 l̂l1 l̂l2 l̂l3 l̂l4

groom 1.743028 1.132691 20.1235996 1.232784

aggression 0.6215508 0.05868105 20.9726387 0.01167172

alliance 1.731542 1.46947 20.2765222 1.396532

status 22.193231 20.9594662 20.9828907 20.06636444

doi:10.1371/journal.pone.0051903.t005
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2009–2011 networks, the fourth constraint function described the

expected distribution well as the overall chi-squared value showed

a large decrease, while the third function had little effect. The

direction of groom and alliance interactions is more variable

because both behaviors can be directed from subordinate to

dominant or vice versa, depending upon the social context.

Therefore, the fourth function, which checked for covariance

between 2009 and 2011 for groom and alliance, revealed that it

was more likely for a link to occur in both 2009 and 2011 than to

occur in only one of the networks (note high l̂l4 values in

Table 5).(1,0,0,1)(1,0,1,0)l̂l4. Among the individuals who ap-

peared in both the 2009 and 2011 networks, the direction of

behavior was not fixed for grooming and alliance behaviors.

Inter-behavioral patterns of instability
Unwilling to show status. The results of several different

bivariate behavioral networks indicate confusion and upheaval in

the social dynamics of dominance. The number of edges stayed

relatively the same from 2009 to 2011 for grooming (187 vs. 168),

alliance (182 vs. 202), and aggression (646 vs. 549), but decreased

by nearly half for status, from 464 to 266. Using a Pearson chi-

squared test for the contingency of the edges for 2009 and 2011,

we find a test-statistic of 31.57, with three degrees of freedom, this

has a p-value of 5.4361027. When comparing the proportions of

the individual types of edges using the Pearson chi-squared test,

grooming and aggression return test statistics 1.21 and 1.76

respectively, which do not indicate a change. The proportion of

alliance edges increased from 0.123 to 0.170 with test-statistic of

11.60 and p-value 6.5861024. The proportion of status edges

decreased from 0.314 to 0.224 with test statistic 25.90 and p-value

3.6061027. We discuss the decrease in status edges. Essentially,

animals were less willing to peacefully communicate their

dominance relationships in 2011 than they had been in 2009.

This finding is consistent with our previous work which indicates

that status signals, especially silent-bared-teeth displays (SBTs),

contribute to group stability. For example, groups require a

sufficient number of policers to mitigate conflicts among group

members [20,21] and these key individuals acquire their role as

policers by receiving peaceful status signals from group members

[22]. A decrease in willingness to communicate status may result in

an insufficient number of individuals with high enough social

power to police the group, thereby allowing outbreaks of

deleterious aggression. The joint modeling reveals additional

details about the trend of unwillingness to show status.

Second, the Aggression & Status bivariate networks (Tables S3

and S9) show a change in the nature of the relationship between

these behaviors from 2009 to 2011, which point to upheaval in the

dominance hierarchy. We found a 50% decrease from 2009 to

2011 in two linkage vectors: one-way status without aggression

(0,0,1,0)aggression and status in the same direction (1,0,1,0) (289

vs. 172 and 147 vs. 78, respectively. The chi-squared test-statistics

for this decrease is 51.17 and 22.77 with degree of freedom one,

thus showing statistical significance). Given that counts of one-way

aggression without status are similar in both years, it appears that

subordinates were less willing to give status signals to dominants in

2011 than in 2009, regardless of their aggressive interactions. We

also saw a change in the ratio of one-way aggression without status

(1,0,0,0) to one-way status without aggression(0,0,1,0) from 1:1.15

in 2009 to 1:2.16 in 2011. (This has statistical significance with a

test-statistic of 26.38 and p-value 3.6161027.) Since status signals

are peaceful expressions of subordination [5] given to avoid

aggression, it is not surprising that the stable time period shows

relatively more one-way status without aggression.

Third, patterns of bi-directional aggression with respect to status

also indicate instability in dominance relationships. The propor-

tion of bi-directional aggression dyads that also include status

decreased by 50% ( 25
57z25

~0:305 in 2009; 7
47

~0:149 in 2011. The

test-statistic of this decrease is 3.10 with p-value of 0.078). This

indicates that in 2009, many dyads with bi-directional aggression

still had well-established dominance relationships, as evidenced by

one-way status. However, fewer such dyads existed in 2011,

suggesting that little bi-directional aggression occurred between

animals with clear, settled ranks. In a stable social system,

subordinates occasionally protest the actions of a dominant animal

(protecting offspring or defending important resources) without

posing a threat to the dominant’s social standing [17]. These data

suggest that during 2011 subordinates may have been unable to

safely protest aggression by dominants without appearing to

threaten the dominant’s social rank and that the bi-directional

aggression observed may have been of a more serious nature,

constituting rank challenges against dominant animals rather than

temporary protests.

Finally, unusual bi-directional status interactions were observed

in 2011 that were absent in 2009. Status signals normally

unidirectional and occur in dyads with well-established dominance

relationships, because the subordinate anticipates losing an

impending contest with the dominant, and submits before a fight

ensues [23]. Bi-directional status suggests a switch in dominance

over the course of the observation period. However, four of the six

counts occurred in dyads with one-way aggression with bi-

directional status, suggesting that no (or very little) fighting

occurred in the process of this switch, which further implies a rapid

switch in dominance, rather than a drawn out fight between the

two combatants. Regardless, unusual mutual status is consistent

with the general finding that dominance relationships were in a

state of upheaval in 2011.

Unusual coupled mutual behaviors. In 2009, we observed

coupled mutual behavior (1,1,1,1) in the Grooming & Alliance

bivariate network only – animals groomed and offered alliance

support in both directions (Table S3). However, in 2011, we

observed non-zero (1,1,1,1) counts in two antagonistic behaviors:

(1) Grooming & Aggression, and (2) Aggression & Alliance, while

the mutual cohesive behavior seen in 2009 for Grooming &

Alliance bivariate network is absent (Tables S6, S8, S10). As

mutual grooming and alliance interactions are positive, cohesive

behaviors in which direction can go both ways, their presence is

expected in a stable social system. Absence of mutual grooming

and alliance support in 2011 may suggest a breakdown of the

cohesive elements of the society. However, mutual grooming and

aggression presents a confusing combination, as does mutual

alliance and aggression, because the bi-directionality in these

behaviors is in opposition. Bi-directionality is cohesive in grooming

and alliance networks, but is antagonistic and divisive in

aggression network. These dyads seem to be potential allies who

are struggling between grooming to maintain coalitionary ties and

taking advantage of the social opportunity to challenge one

another’s rank. Two of the six dyads are kin, and this may be an

indicator of instability, as cohesive kin relationships are crucial to

group stability [3]. Mutual aggression and grooming/alliance in

non-kin dyads may also signal instability, especially if those dyads

represent critical alliances for the maintenance of rank.

Loss of social complexity. Finally, the bivariate behavioral

networks from 2011 are fit much better by the four constraint

functions than those from 2009, with the exception of the groom-

aggression network in 2009, from which the four constraint

functions were originally derived, see Table 2 and 3. One of the

key reasons is the observation of mutual status in 2011, but not in
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2009. From a modeling perspective, this non-zero count fits better

to the null model of independence, indicating that the model

structure is much simpler. However, from a biological perspective,

the behavioral dynamics of the group seem to lose important

structural subtlety in 2011 that is normally found in a stable

system.

Joint modeling of both Grooming & Status and Alliance &

Status in 2011 also shows a loss of structural complexity. Both sets

of bivariate networks do not need to go into the stages of

accommodating(f3,f4). These two bivariate behaviors are partic-

ularly well modeled by only accommodating (f1,f2) into the

independence null model, indicating that the association between

behaviors is simpler in structure in 2011 than in 2009. Thus, much

of the covariance between Grooming & Status and Alliance &

Status networks is lost in 2011. We speculate this loss of structural

complexity in behavioral dynamics is associated with the social

instability in the monkey’s society, as implied by the social collapse

observed later that year. The precise nature of this reduced social

complexity will be explored in future papers.

Conclusions

Joint modeling of multiple networks is essential to gain a more

realistic understanding of social dynamics because many global

patterns, such as those in health, social stability, and social

hierarchies, arise from multiple interconnected networks. The

piecemeal approach of standard social network analysis is

insufficient for providing the complex information required to

realistically and holistically assess and extract dynamic and causal

processes involved in the emergence of collective behavior. We

developed a bottom-up, iterative modeling approach based upon

the maximum entropy principle, deriving multiple constraint

functions to approximate the bivariate relationship between two

jointly modeled networks. Our results not only confirm known

patterns of social behavior in rhesus macaques, but also identify

new inter-behavioral dynamics associated with social instability,

including significant changes in the nature of the bivariate

relationship between Aggression & Status which reflect unsettled

dominance, the appearance of unusual (antagonistic) coupled

mutual behaviors (e.g, Groom & Aggression), and decreased inter-

behavioral complexity in Groom & Status and Alliance & Status

networks.

Joint modeling may be done horizontally over multiple networks

at the same scale, as we have shown here, or vertically across

multiple scales, such as the genetic level, the individual level, and the

family or community level. Information from individual character-

istics may also be used to classify and model the structure. Our

future work intends to include the sex and the matriline network

information in the joint modeling. Joint modeling over networks can

have a wide application in multiple fields. We can use joint

modeling to understand the various levels of any social network such

as friendship, work partnership, or location proximity as long as the

networks are defined by similarity in the nodes (the same

individuals, businesses, institutions, species, etc.) in the data set.

For example, to better understand the emergence of health

outcomes such as disease joint modeling can determine how

direction of disease transfer overlaps with family relations.

In economics, joint modeling may be used to combine

information from import/export of various commodities where

each commodity may be a different level. Airline and road

networks may be compared over individual cities. The joint

modeling approach using maximum entropy can determine which

type of connection and correlation may exist across networks. In

sum, the joint modeling approach described here will facilitate the

detection of emergent global patterns in a wide variety of

disciplines, ranging from behavior biology, ecology, genetics, and

epidemiology to economics and transportation.
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