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Abstract

Cell-free DNA in blood (cfDNA) represents a promising biomarker for cancer diagnosis. Total cfDNA concentration showed a
scarce discriminatory power between patients and controls. A higher specificity in cancer diagnosis can be achieved by
detecting tumor specific alterations in cfDNA, such as DNA integrity, genetic and epigenetic modifications. The aim of the
present study was to identify a sequential multi-marker panel in cfDNA able to increase the predictive capability in the
diagnosis of cutaneous melanoma in comparison with each single marker alone. To this purpose, we tested total cfDNA
concentration, cfDNA integrity, BRAFY*°F mutation and RASSF1A promoter methylation associated to cfDNA in a series of 76
melanoma patients and 63 healthy controls. The chosen biomarkers were assayed in cfDNA samples by gPCR. Comparison
of biomarkers distribution in cases and controls was performed by a logistic regression model in both univariate and
multivariate analysis. The predictive capability of each logistic model was investigated by means of the area under the ROC
curve (AUC). To aid the reader to interpret the value of the AUC, values between 0.6 and 0.7, between 0.71 and 0.8 and
greater than 0.8 were considered as indicating a weak predictive, satisfactory and good predictive capacity, respectively. The
AUC value for each biomarker (univariate logistic model) was weak/satisfactory ranging between 0.64 (BRAF'*°’) to 0.85
(total cfDNA). A good overall predictive capability for the final logistic model was found with an AUC of 0.95. The highest
predictive capability was given by total cfDNA (AUC:0.86) followed by integrity index 180/67 (AUC:0.90) and methylated
RASSF1A (AUC:0.89). An approach based on the simultaneous determination of three biomarkers (total cfDNA, integrity
index 180/67 and methylated RASSF1A) could improve the diagnostic performance in melanoma.
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Introduction studies conducted so far showed a scarce discriminatory power
between patients and controls as well as limited sensitivity and

Molecular features of solid tumours become central in tailoring specificity, not allowing one to reach any final conclusion on the

targeted therapies, but the accessibility to tumour tissue may be diagnostic impact of this parameter. Several studies report a

prognostic value of total cfDNA, while conflicting results have
been obtained in testing this marker for therapy monitoring [3].
The reduced specificity of this quantitative test leads us to
evaluate additional biomarkers reflecting qualitative alterations in
cfDNA. A higher specificity in cancer diagnosis can be achieved by
[1]. detecting tumor specific alterations in cfDNA, such as DNA
The two classes of alterations detectable in ¢fDNA from cancer integrity, genetic and epigenetic modifications [3]. Blood cfDNA
patients include quantitative and qualitative abnormalities. Con- in cancer patients originates from apoptotic or necrotic cells. In

cerning the former aspect, it is now evident that cancer patients solid cancers, necrosis generates a spectrum of DNA fragments
have a higher concentration of cfDNA than healthy individuals with variable size, due to random digestion by DNases. In

(see ref. 2 for a rC.VICW)' T}_IC concentration of ¢fDNA is influenced contrast, cell death in normal blood nucleated cells occurs mostly
by tumor stage, size, location, and other factors [3]. On the other via apoptosis that generates small and uniform DNA fragments. It
han.d, 1‘ncreased plasma DNA lcv.el is not a specific cancer marker, has generally been observed that in patients affected by several
as it is observed also in patients with premalignant states, neoplastic diseases plasma DNA contains longer fragments than in

inflammation or trauma [2]. Total cfDNA concentration has healthy subjects [4-10] reflected by the increase of DNA integrity
been proposed as a marker for early cancer detection, but the ]

sometimes limited due to the size of bioptic samples or the
unavailability of biological material, particularly during patients’
follow up. In this context cancer-derived cell-free DNA in blood
(cfDNA) represents a promising biomarker for cancer diagnosis
and an useful surrogate material for molecular characterization

index.
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The above mentioned parameters can obviously be considered
as non-specific biomarkers, since the increase of cfDNA concen-
tration and integrity is common to the large majority of human
solid cancers. When cfDNA is used to detect genetic and
epigenetic modifications in a specific tumor, it is necessary to
select definite molecular targets that are expected to be altered in
affected patients. In cutaneous melanoma, the oncogene BRAF is
frequently mutated. BRAF is a serine—threonine protein kinase
involved in the RAS-RAF-MEK-ERK pathway [11] which
regulates cell growth, survival, differentiation and senescence [12].
The oncogene BRAF is frequently mutated in other human
cancers constitutively activating the MAPK pathway. The most
common BRAF mutation, which accounts for more than 90% of
cases of cancer mnvolving this gene, is the T1799A transversion,
converting valine to glutamic acid at position 600 (V60OE) [13].
BRAF somatic mutations have been reported in 66% of malignant
melanomas [13] and are likely to be a crucial step in the initiation
of melanocytic neoplasia, as they are found also in melanocytic
nevi [14]. BRAF mutations are an attractive target for therapeutic
interventions, as they represent an early event in melanoma
pathogenesis and are preserved throughout tumor progression
[15]. Specific inhibitors of mutant BRAF, such as PL.X4032, were
developed and tested in clinical trials showing response rates of
more than 50% and improved rates of overall and progression-free
survival in patients with metastatic melanoma with the BRAF"%F
genetic variant [16]. BRAF"*°% mutation has been investigated as
a marker in cfDNA from melanoma patients by Daniotti et al. [17]
and Yancovitz et al. [18].

Finally, it is widely demonstrated that a limited number of genes
1s epigenetically disregulated in cutaneous melanoma. RASSFIA
(Ras association domain family 1 isoform A) is a tumor suppressor
gene, which regulates mitosis, cell cycle and apoptosis [19]. It is
inactivated mostly by inappropriate promoter methylation in
many types of cancers [19]. RASSFIA promoter is methylated in
55% of cutaneous melanomas [20]. Methylation of RASSFIA
increases significantly with advanced clinical stage, suggesting that
inactivation of this gene is associated with tumor progression [21].
RASSFIA promoter hypermethylation has been detected in cfDNA
from melanoma patients [22-23] in association with a worse
response to therapy and reduced overall survival [24-25].

Previous studies [3] assessed the diagnostic performance of each
of the above mentioned biomarkers singularly considered in
selected case-control comparative surveys. The aim of the present
study was to identify a sequential multi-marker panel in cfDNA
able to increase the predictive capability in the diagnosis of
cutaneous melanoma in comparison with each single marker
alone. To this purpose, we tested total cfDNA concentration,
¢fDNA integrity, BRAF"®"’F mutation and RASSFIA promoter
methylation associated to c¢fDNA in a series of 76 melanoma
patients and 63 healthy controls.

Materials and Methods

Patients and samples

Seventy six patients (32 females and 44 males, median age 63,
range 23-94 years) affected by cutaneous melanoma were enrolled
at the Department of Dermatological Sciences of the University of
Florence. The series included: 12 patients with in situ melanoma (4
females and 8 males; age range:39-80 years, median 60 years), 49
patients with local disease (22 females and 27 males; age range:23—
88 years, median 60.9 years), 5 patients with regional metastatic
disease (1 females and 4 males; age range:53-88 years, median
69.4 years) and 10 patients with distant metastatic disease (5
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Table 1. Clinicopathological characteristics of melanoma
cases.
Parameter Number of cases Percent of cases
Total 76 100%
Location
Head and neck 7 9.2%
Limbs 25 32.9%
Chest 40 52.7%
Acral 3 3.9%
Genital 1 1.3%
Thickness
In situ 12 15.8%
=1 mm 33 43.4%
1.01-2.0 mm 12 15.8%
2.01-4.0 mm 8 10.5%
>4 mm 11 14.5%
Clark Level
| 12 15.8%
] " 14.5%
1] 19 25%
[\ 34 44.7%
Ulceration
Absent 58 76.3%
Present 18 23.7%
Sentinel Lymph node
positive 1 1.3%
negative 20 26.3%
not done 55 72.4%
Stage of disease
0 12 15.8%
1A 26 34.2%
1B 16 21.0%
1A 7 9.2%
1] 5 6.6%
\" 10 13.2%
TNM
TisNOMO 12 15.8%
T1aNOMO 26 34.2%
T1bNOMO 7 9.2%
T2aNOMO 9 11.8%
T2bNOMO 3 4%
T3aNOMO 4 5.3%
T3aN1MO0 2 2.6%
T3aNOM1 1 1.3%
T3bN2M1 1 1.3%
TANTMO 3 4%
T4bN1M1 8 10.5%
doi:10.1371/journal.pone.0049843.t001

females and 5 males; age range: 28-94 years, median 50 years).
For additional baseline and clinical characteristics of invasive
melanomas see Table 1.
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As a control group 63 healthy subjects with less than 50
melanocytic nevi (median age 62, range 25-79 years) were
enrolled in the study upon a dermatological examination to
exclude the presence of melanoma and to provide the number of
nevi. Blood samples (5 ml) were collected in EDTA tubes during
the dermatologic examination and before surgery.

The research protocol was approved by the review board of the
University of Florence and all the patients signed an informed
consent.

Plasma was separated from blood in EDTA tubes, within three
hours from blood draw by two centrifugation steps at 4°C for
10 min: at 1600 rcf and 14000 rcf, respectively. Plasma aliquots
(505 pl) were stored at —80°C. DNA was extracted from 500 pl of
plasma within 3 months from collection, by the QIAamp DSP
Virus Kit (Qiagen, Italy) according to the manufacturer’s
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instructions. RNAse digestion was included in the procedure to
prevent RNA interference during the subsequent qPCR reactions.

Molecular biomarkers in cfDNA

All the cfDNA samples from melanoma patients and healthy
controls were submitted in duplicate to the four qPCR assays
targeting the chosen biomarkers, for a total of about 1000
determinations. All the qPCR reactions were performed using the
7900HT Fast Real-Time PCR instrument (Applied Biosystem:s).

All the methods described in the following section have been
previously developed or optimized for ¢fDNA by our laboratory
using plasma samples from different case studies.

The total amount of cfDNA as well as the DNA integrity index
were determined by two qPCR assays targeting respectively a
67 bp and a 180 bp sequence on the single copy gene APP
(Amyloid Precursor protein, chr. 21q21.2, accession NM_000484),
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Figure 1. Biomarkers distribution in cases and controls. Box plots reflecting the distribution in cases and controls of total cfDNA (Panel A),
integrity index 180/67 (Panel B), methylated RASSF1A (Panel C), and BRAF®%F (Panel D). Each box indicates the 25" and 75 percentiles. The
horizontal line inside the box indicates the median, and the whiskers indicate the extreme measured values.

doi:10.1371/journal.pone.0049843.g001

PLOS ONE | www.plosone.org

November 2012 | Volume 7 | Issue 11 | e49843



Cell-Free DNA Biomarkers in Melanoma

as already reported [26]. The primers and the hydrolysis probe for
the 67 bp amplicon were previously reported [27], while for the
180 bp amplicon a different reverse primer was designed on the
same target sequence [26]. The shorter amplicon (67 bp) was used
to quantify total cfDNA, while the ratio between the absolute
concentration of the longer amplicon (180 bp) and the shorter one
(67 bp) defined the integrity index 180/67, which was used to
assess the fragmentation of cfDNA. An integrity index close to 1
indicates that all the cfDNA molecules are at least 180 bp in length
in the APP gene. An integrity index of less than 1 means that
cfDNA contains fragments below 180 bp in the same target
sequence. CfDNA that is more intact will be closer to a value of 1
for the integrity index.

The reactions were carried out in a 12.5 pl mix containing 1 X
Quantitect® Probe PCR Master Mix (QIAgen), 300 nM primers,
200 nM probe and 1 pl sample. The thermal profile of the
amplification was the following: 95°C for 10 min and 45 cycles of
PCR at 95°C for 15 s, 60°C for 60 s. For cfDNA quantification we
used an external reference curve ranging from 10 to 10° pg/tube,
obtained by serial dilutions of genomic DNA extracted from a
blood pool of healthy donors and measured spectrophotometri-
cally (Nanodrop ND1000, Nanodrop, USA).

Circulating cell-free DNA bearing the mutation BRAF"*F was
quantified by an allele-specific qPCR assay, as already reported
[28]. The specificity for the mutated allele was conferred by the
forward primer and the LNA probe. cfDNA (0.5 ng) was amplified
in a reaction mixture containing 1x Quantitect® Probe PCR

Table 3. Univariate logistic analysis.

Table 2. Descriptive Statistics.
biomarker min 25" centile median 75" centile max IQR p-valuet
total cfDNA (ng/ml  cases 0.894 11.098 15.641 30.785 208.560 19.687 <0.0001
plasma)

controls 0.990 2.530 5.260 8.740 47.490 6.210
integrity index 180/ cases 0.070 0.560 0.750 0.950 2.568 0.390 <0.0001
67

controls 0.090 0.290 0.460 0.670 1.810 0.380
methylated RASSFIA cases 0.000 0.000 0.000 11.040 208.680 11.040 0.0003
(GE/ml plasma)

controls 0.000 0.000 0.000 0.000 4.010 0.000
BRAF*% (ng/ml  cases 0.000 0.006 0.200 0.610 37.338 0.603 0.0012
plasma)

controls 0.000 0.010 0.080 0.163 5.060 0.153
Abbreviations: IQR, Interquartile range (75th centile — 25th centile).
p-value of the Kolmogorov-Smirnov test by comparing the distribution of cases and controls.
doi:10.1371/journal.pone.0049843.t002

Master Mix (QIAgen), 200 nM primers and 200 nM probe in a
final volume of 20 pl. The thermal profile of the reaction included
a denaturation step at 95°C for 10 min and 50 cycles of PCR at
95°C for 15s, 64°C for 60s. BRAF’F percentage was
calculated by referring to a standard curve obtained by mixing
DNA from mutant (SKMEL28) and wild type (MCF7) cell lines in
the following proportions: 100%, 50%, 20%, 10%, and 1%
mutated alleles. The presence of the BRAF'®”’F mutation was
excluded in the MCF7 human breast adenocarcinoma cell line
and confirmed in the SKMEL28 human melanoma cell line by
High Resolution melting followed by sequencing (data not shown).

Subsequently BRAF'®”’"  concentration was expressed in
nanograms per ml plasma by multipling this percentage for
absolute DNA concentration determined by the qPCR assay for
APP.

The methylated form of RASSFIA promoter was quantified in
plasma after digesting unmethylated DNA by a methylation-
sensitive enzyme: 5 ul of plasma DNA were treated with 10 units
of Bsh12361 (Fermentas, Canada) in a reaction volume of 25 pl at
37°C for 16 hours. Subsequently, 5 ul of enzyme-treated DNA
underwent a qPCR assay for RASSFIA4 promoter, in a final volume
of 25 ul, according to the protocol already described by Chan et
al. [29]. A reference curve obtained by serial dilutions of genomic
DNA was used to quantify the methylated alleles. Results were
expressed as genomic equivalents (GE, each corresponding to
6.6 pg DNA) per ml plasma.

biomarker OR* OR 95%ClI p-valuet AUC AUC 95%ClI p-value
total cfDNA (ng/ml plasma) 5.621 3.102-10.185 <0.0001 0.853 0.788-0.918 <0.0001
integrity index 180/67 4.790 2.356-9.740 <0.0001 0.759 0.677 —0.840 <0.0001
methylated RASSF1A (GE/ml 1413 1.112-1.795 0.005 0.688 0.621 —0.754 <0.0001
plasma)

BRAF %% (ng/ml plasma) 6.061 1.650-22.263 0.007 0.635 0.540-0.730 0.005

?0dds Ratio for any increase of one unit.
p-value of the Wald statistic.
doi:10.1371/journal.pone.0049843.t003
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Abbreviations: OR, Odds Ratio; Cl, Confidence Interval; AUC, area under the ROC curve.
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Table 4. Final multivariate logistic model.
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biomarker OR? OR 95%ClI p-valuef AUC AUC 95%ClI p-value
total cfDNA (ng/ml plasma) 6.592 3.084-14.088 <0.0001 0.945 0.910-0.980 <0.0001
integrity index 180/67 7.783 2.944-20.579 <0.0001

methylated RASSFI1A (GE/ml plasma) 1.450 1.100-1.910 0.008

?0dds Ratio for any increase of one unit.
p-value of the Wald statistic.
doi:10.1371/journal.pone.0049843.t004

Statistical Analysis

All the considered biomarkers were analysed as continuous
variables in their original scale or after an appropriate transfor-
mation. Comparison of biomarkers distribution in cases and
controls overall as well as according to stage of disease was
performed by using the Kolmogorov-Smirnov test [30]. The
relationship between each biomarker and the disease status was
investigated by resorting to a logistic regression model in both
univariate and multivariate fashion [31]. In the logistic regression
model, each regression coefficient is the logarithm of the odds ratio
(OR). Under the null hypothesis of no association, the value of OR
is expected to be 1.00. The hypothesis of OR =1 was tested using
the Wald Statistic. For each model the biomarker that was
statistically significant (alpha =0.05) in univariate analysis was
considered in the initial model of multivariate analysis. A final
more parsimonious model was then obtained using a backward
selection procedure in which only the variables reaching the
conventional significance level of 0.05 were retained (final model).
The relationship between each biomarker and disease status was
investigated by resorting to a regression model based on restricted
cubic splines. The most complex model considered was a four-
nodes cubic spline with nodes located at the quartiles of the

Abbreviations: OR, Odds Ratio; Cl, Confidence Interval; AUC, area under the ROC curve.

distribution of the considered biomarker [32]. The contribution of
non-linear terms was evaluated by the likelihood ratio test.

We investigated also the predictive capability (ie diagnostic
performance) of each logistic model by means of the area under
the ROC curve (AUC) [33].

This curve measures the accuracy of biomarkers when their
expression is detected on a continuous scale, displaying the
relationship between sensitivity (true-positive rate, y-axes) and 1-
specificity (false-positive rate, x-axes) across all possible threshold
values of the considered biomarker. A useful way to summarize the
overall diagnostic accuracy of the biomarker is the area under the
ROC curve (AUC) the value of which is expected to be 0.5 in
absence of predictive capability, whereas it tends to be 1.00 in the
case of high predictive capacity [33]. To aid the reader to interpret
the value of this statistic, we suggest that values between 0.6 and
0.7 be considered as indicating a weak predictive capacity, values
between 0.71 and 0.8 a satisfactory predictive capacity and values
greater than 0.8 a good predictive capacity [34].

Finally the contribution of each variables to the predictive
capability of the final model was investigated by comparing the
AUC value in the model with that of the same model without the
variable itself. All statistical analyses were performed with the SAS

1.0 q
0.8
0.6 4
=
=
:'u;,'
5
L 04+
0.2 1 ——— total cfDNA (ng/ml plasma)
———— integrity index 180/67
—--—-  methylated RASSF1A (GE /ml plasma)
0.0 ———— BRAFVG00E (ng/ml plasma)
T T T T T 1
0.0 0.2 0.4 06 0.8 1.0
1-specificity

Figure 2. ROC Curves deriving from the univariate logistic analysis. ROC curves derived from the univariate logistic analysis corresponding
to total cfDNA (AUC =0.85), integrity index 180/67 (AUC =0.76), methylated RASSF1A (AUC=0.69) and BRAF"°%F (AUC = 0.64).

doi:10.1371/journal.pone.0049843.9g002

PLOS ONE | www.plosone.org

November 2012 | Volume 7 | Issue 11 | e49843



Cell-Free DNA Biomarkers in Melanoma

1.0 7

0.8

0.6 A

0.4

sensitivity

0.2

0.0

0.0 0.2 0.4 06 0.8 1.0

1-specificity

Figure 3. ROC Curve deriving from the multivariate final logistic model. ROC curve derived from the final multivariate logistic model
(AUC=0.95).
doi:10.1371/journal.pone.0049843.g003

software (Version 9.2.; SAS Institute Inc. Cary, NC) by adopting a Table 2 reports some descriptive statistics of these distributions.
significance level of alpha =0.05. Using the Kolmogorov—Smirnov test, we found that the difference

of the distributions of each biomarker in cases and controls was
Results statistically significant (p-value <0.05). As reported in supplemen-

tal Table S1, the same results were observed when this comparison
was performed according to the stage of disease for cfDNA and
integrity index 180/67. Conversely these findings were not

The box-plots reported in Figure 1, panel A-D, describe the
distribution of each biomarker in case and controls.

1.0 f———————— — —
=i R ————— e
N s o =
H J
0.8 4 ff[
06 4
=
=
:'u;,'
5
L 04+
0.2 +
—— Without methylated RASSF1A (GE /ml plasma)
———— Without integrity index 180/67
0.0 - — —  Without total cfDNA (ng/ml plasma)
T T T T T 1
0.0 0.2 0.4 06 0.8 1.0

1-specificity

Figure 4. Contribution of each biomarker to the final model - ROC Curves. ROC curves corresponding to the contribution of each biomarker
in the final multivariate logistic model. Without total cfDNA (AUC =0.86), without integrity index 180/67 (AUC =0.90), without methylated RASSF1A
(AUC=0.89).

doi:10.1371/journal.pone.0049843.9g004
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Table 5. Contribution of each biomarker of the final model.

AUC AUC 95%CI p-value

Final model 0.945  0.910-0.980 <0.0001
Without the following variables:

total cfDNA (ng/ml plasma) 0.862 0.801-0.923 <0.0001

integrity index 180/67 0.903  0.854-0.952 <0.0001

methylated RASSF1A (GE/ml plasma) 0.894  0.839-0.950 <0.0001

Abbreviations: AUC, area under the ROC curve; Cl, Confidence Interval.
doi:10.1371/journal.pone.0049843.t005

observed within stage I-II for methylated RASSFIA and within
stage 0 and stage III-1V for BRAF"*"F,

For all the biomarkers considered in the logistic regression
model we found that a linear relationship between the log odds
and their values on the original (methylated RASSFIA) or
logarithm (total cfDNA, integrity index 180/67 and BRAF "%
scale was appropriate. As reported in Table 3, disease status was
significantly associated with all the biomarkers in the logistic
univariate analysis. Consequently the initial model of the logistic
multivariate regression analysis was built by including all four
biomarkers. As reported in Table 4, total cfDNA, integrity index
180/67 and methylated RASSFIA retained a statistically significant
(p-value <<0.05) association with disease status in the multivariate
final logistic model.

The AUC values computed for each biomarker (univariate
logistic model) indicated a weak/satisfactory level of predictive
capability by ranging between 0.64 (BRAF®"’%) to 0.85 (total
cfDNA) (Table 3 and Figure 2). Of note for all the considered
biomarkers the 95% Confidence Interval (95%CI) of the AUC
fails to include the 0.5 value (i.e. absence of predictive capability).

Opverall, a good predictive capability was observed for the final
logistic model with an AUC of 0.95 (95% CI: 0.91-0.98) (Table 4

total cFDNA +
integrity index 180/67 + 4
methylated RASSF1A

total cfONA+

Cell-Free DNA Biomarkers in Melanoma

and Figure 3). The contribution of each variable of the final model
to the diagnostic performance is shown in Table 5 and graphically
described in Figure 4. The highest predictive capability was given
by total cfDNA (AUC:0.86, 95%CI: 0.80-0.92) followed by
integrity index 180/67 (AUC:0.90, 95%CI: 0.85-0.95) and
methylated RASSFIA (AUC:0.89, 95%CI: 0.84-0.95). As shown
in the supplemental figure S1 a comparable predictive capability
was observed for each considered biomarker (univariate analysis)
according to the stage of disease. Only for BRAFYV*F within the
stage 0 and stage III-IV the 95% CI of the AUC includes the 0.5
value.

Discussion

The analysis of cfDNA may have the potential to complement
or replace the existing cancer tissue and blood biomarkers in the
future [35]. In order to reach this goal, specific and sensitive
analytical procedures must be developed and optimized to
compute proper circulating target molecules showing differences
between patients and healthy subjects. It is now widely accepted
that a single biomarker cannot fully distinguish between controls
and patients and consequently an approach based on different
markers would be preferable in order to achieve a stronger
predictive ability [36].

It has been demonstrated that in prenatal screening, a
combination of multiple markers, each with limited sensitivity
and/or specificity, can lead to a more powerful screening test [37].
Similarly, Schneider and Mizejewski [38] suggest to develop a
multi-marker screening approach for cancer diagnosis. Unfortu-
nately this strategy has been proven unsuccessful, notwithstanding
the high number of new biomarkers reported in the literature,
even if some examples on prostate ovarian and colorectal cancer
clearly showed that multi-marker screening can have its place in
early cancer detection [38-39].

The study presented here tests the diagnostic potential of four
markers associated to cfDNA in identifying melanoma patients.

integrity index 180/67

total cfDNA -

Y — . .

0.75 0.80 0.85

0.90 095 1.00

AUC (95%C1)

Figure 5. Sequential approach. Diagnostic performance increment (in terms of AUC) achieved by moving from cfDNA alone (AUC=0.85;
95%Cl=0.79-0.92) to cfDNA and integrity index 180/67 (AUC=0.89; 95%Cl=0.84-0.95) and to cfDNA, integrity index 180/67 and methylated

RASSF1A (AUC=0.95; 95%Cl=0.91-0.98).
doi:10.1371/journal.pone.0049843.9005
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Particular efforts were dedicated to the technical aspects of the
methods adopted for each single parameter allowing to reach
accurate and reproducible measurements. We evaluated total
cfDNA concentration by a qPCR assay for the single copy gene
APP, as well as DNA fragmentation represented by the integrity
index 180 bp/67 bp (see Materials & Methods). On the other
hand, tumour contribution to cfDNA was assessed by quantifying
BRAF""’ mutated alleles and RASSFIA promoter methylation.
These markers have been used in a panel in all patients, thus
representing a simple model potentially adoptable by any
laboratory. Following the standard approach for the clinical
validation of biomarkers for early detection [40] the next step will
be focused on the assessment of the impact of these biomarkers on
clinical practice including the identification of the most suitable
thresholds to use for the early detection of melanoma by clinicians.

Our preliminary results show that by jointly considering the
panel of biomarkers here investigated the highest predictive
capability is given by total cfDNA followed by integrity index 180/
67 and methylated RASSFIA. According to these results, an
approach based on the simultaneous determination of the three
biomarkers (total cfDNA, integrity index 180/67 and methylated
RASSFIA) could be suggested to improve the diagnostic perfor-
mance in melanoma. Alternatively, as reported in Figure 5, a more
parsimonious sequential approach could be adopted using pre-
selection by cfDNA, followed by further selection using integrity
index 180/67 and/or methylated RASSFIA.

We plan to evaluate the prognostic role of both these
approaches as soon as the follow-up time of our case study will
be adequate (5 years). However preliminary data (not shown),
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obtained in a subgroup of patients submitted to an additional
blood draw 2 weeks after surgery, show a decrease of the four
biomarkers, suggesting the potential role of these test as useful tools
for monitoring patients after initial diagnosis/surgery.

Even though each biomarker investigated in the present work is
not exclusively associated with melanoma, their combination
reveals a high specificity for melanoma detection.
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