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Abstract

Disease gene prioritization aims to suggest potential implications of genes in disease susceptibility. Often accomplished in a
guilt-by-association scheme, promising candidates are sorted according to their relatedness to known disease genes.
Network-based methods have been successfully exploiting this concept by capturing the interaction of genes or proteins
into a score. Nonetheless, most current approaches yield at least some of the following limitations: (1) networks comprise
only curated physical interactions leading to poor genome coverage and density, and bias toward a particular source; (2)
scores focus on adjacencies (direct links) or the most direct paths (shortest paths) within a constrained neighborhood
around the disease genes, ignoring potentially informative indirect paths; (3) global clustering is widely applied to partition
the network in an unsupervised manner, attributing little importance to prior knowledge; (4) confidence weights and their
contribution to edge differentiation and ranking reliability are often disregarded. We hypothesize that network-based
prioritization related to local clustering on graphs and considering full topology of weighted gene association networks
integrating heterogeneous sources should overcome the above challenges. We term such a strategy Interactogeneous. We
conducted cross-validation tests to assess the impact of network sources, alternative path inclusion and confidence weights
on the prioritization of putative genes for 29 diseases. Heat diffusion ranking proved the best prioritization method overall,
increasing the gap to neighborhood and shortest paths scores mostly on single source networks. Heterogeneous
associations consistently delivered superior performance over single source data across the majority of methods. Results on
the contribution of confidence weights were inconclusive. Finally, the best Interactogeneous strategy, heat diffusion
ranking and associations from the STRING database, was used to prioritize genes for Parkinson’s disease. This method
effectively recovered known genes and uncovered interesting candidates which could be linked to pathogenic mechanisms
of the disease.
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Introduction

Biomarkers play a crucial role in modern medicine as a means

to improve accuracy in diagnosis, prognosis and treatment. In

recent years, large-scale studies on the involvement of genes in

disease have been empowered both by advances in high-

throughput techniques and the proliferation of accessible resources

of biological data. Manually inspecting the outstanding amounts of

available ‘omics’ data is infeasible and can only be achieved by

narrowing down the search space, often through a pre-selection of

genes yielding higher potential using automatic recognition

methods. Disease gene prioritization addresses this problem by

generating ordered lists of candidates pertaining a particular gene-

disease relatedness score. Most computational strategies follow a

guilt-by-association approach, where new genes are implicated

based on a measure of relatedness with a set of other genes known

to be involved in the occurrence of a particular phenotype.

Relatedness can be defined based on a number of properties,

including intrinsic and functional [1]. Similarly, some approaches

exploit the topology of biological networks and capture protein

interactions, regulatory links or metabolic pathways into the score.

Within the network-based scheme, candidates are sorted based on

connectivity with the known genes, under the assumption that

genes contained in a particular network substructure, exhibiting

dense linkage, or sharing pathways tend to participate together in

biological processes. Additional effort has been put into comple-

menting the network analysis with information extracted from

expression data [2] or genome-wide association studies [3].

Existing relations with phenotypes and among phenotypes

themselves have also been used to aid in the generation of new

hypothesis (yet undiscovered associations between genes and

diseases) [4–6].

Many studies [2–12] have relied on interaction networks to

unravel novel disease genes. Concerned about the quality of data,

most authors have focused on interactions obtained from ‘trusted’

sources. While curated physical interactions are generally

preferred in this regard [4–6,8,10,12], they often lead to

insufficient coverage of the human genome. In this context, the

integration of complementary knowledge from heterogeneous

sources is essential to achieve an understanding of the system as a
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whole and obtain well populated networks. This assumption has

motivated the design of methods based on multiple sources of

biological data, including co-expression, pathway, function, and

literature. However, many studies devise their own integration

from a limited number of datasets, which is likely to narrow the

sources and network size [3,7,9,12]. A reasonable alternative

would be to analyze the extensive information provided by

heterogeneous networks generated by successful efforts on larger

scale assembly [11,13,14]. Despite the increased risk of false

positives, these networks are denser, less biased toward a particular

evidence, and therefore likely to be more robust to noise. Finding

the tradeoff between the pros and cons of heterogeneity is however

a challenge.

A key feature in network prioritization with known genes is the

set of paths considered when calculating disease-relatedness.

Popular approaches use neighborhood measures based on direct

links between the candidates and the known genes [8,11]. A major

drawback in this setting is to assume that every pair of functionally

related genes pertains a direct link. This is likely to impose a bias

toward established information, hampering the exploitation of new

hypotheses. Some methods overcome the issue by focusing on

reachable genes, namely via shortest paths [7,15]. Nonetheless,

this measure lacks resolution, as the longest shortest path

connecting a gene pair is typically short (small world networks).

It also ignores redundant paths with different configurations,

reportedly characteristic of biological networks [16], and indica-

tive of interaction strength or robustness. Full topology strategies

incorporate all alternative paths between candidates and disease

genes into the score [3,5,6,9,10,17]. This is expected to

compensate for missing linkage and ultimately mitigate sparsity

and small world effects, while promoting a comprehensive

understanding of the system. In this context, can full topology

scores consistently outperform path-restrictive measures in prior-

itization?

Random walk or diffusion kernel methods arise as natural

choices to devise full topology scores and their application to gene

prioritization has been proven effective [3,5,6,9,10,12,17]. Basi-

cally, they propagate a signal expressing the prior knowledge on

the disease through the network and accumulate a gene-disease

score for every gene, later used to sort the candidates. If the

network is represented as a graph, this problem relates to

retrieving the nodes most ‘similar’ to a group of interest and is

known as local clustering. The major advantage of local clustering

is the ability to direct the search toward the relevant areas of the

graph based on the prior knowledge. In contrast, global clustering

partitions the whole network in an unsupervised manner and thus

tends to be more appropriate for problems in which candidates are

to be distributed across multiple clusters, such as protein function

prediction [18,19]. Notably, local methods have been shown to

deliver more functionally coherent clusters when prior knowledge

is available [20]. Additionally, they proved superior to unsuper-

vised or semi-supervised global partitioning also in the context of

disease gene prioritization using physical protein-protein interac-

tions [12]. Diffusion methods are often believed to be computa-

tionally expensive. However, this is not necessarily the case and

depends mostly on the approximation in use. Iterative versions of

these methods are time efficient, accommodating well for

oversized networks [17]. Typical practice also involves performing

a large number of iterations, independently of the actual number

of steps needed to obtain a reasonable solution or the steady-state

probability. According to the literature, limited diffusion should be

sufficient for ranking purposes, as most nodes will be reached in a

few steps (small world effect) [21,22]. Whether focusing on a

limited neighborhood or considering full topology, network-based

approaches should be able to discern the relative importance of

interactions in order to improve score reliability. Incorporating

confidence weights may be a solution for this, but it is sometimes

ignored [9,10,12].

In this work, we advocate for a particular category of network-

based prioritization strategies, which we term Interactogeneous.

These combine full topology scores computed using local

clustering on graphs or diffusion kernels over confidence weighted

gene association networks integrating evidence from heteroge-

neous sources. We formulate the hypothesis that Interactogeneous

strategies should outperform approaches missing at least one of the

described features. We investigate the validity of this statement in

three case studies concerning the prioritization of genes for 29

diseases: (1) gene-disease score - full topology vs neighborhood and

shortest paths; (2) network - heterogeneous associations vs single

source interactions; (3) confidence weights and other parameters.

Finally, we test the effectiveness of the best prioritization strategy

to recover prior knowledge and suggest genes likely to play a role

in Parkinson’s disease (PD).

Methods

In this section, we first outline formal concepts and the

prioritization problem. We then describe the prioritization

methods and networks included in this study. An association or

interaction network can be described as a weighted undirected

graph G~(V ,E), where V is the set of vertices and E is the set of

edges. Each vertex in V and edge in E correspond to a gene and an

association between two genes, respectively. Let A and D denote

the adjacency and diagonal matrices of G, respectively. Auv is the

weight w(u,v) of edge (u,v) between source u and target v. Let also

Duu~d(u), where d(u) is the sum of the weights of the edges for

which u is the source, or d(u)~
P
fv[V ,(u,v)[Eg Auv. Disease gene

prioritization is here formulated as obtaining a ranking on V given

a set S(V of seeds corresponding to known disease-related genes.

Gene-disease Prioritization Score
One of our goals is to evaluate whether a full topology measure

is more informative than a neighborhood or shortest paths score

(Figure 1). In this section, we introduce the specific prioritization

methods analyzed in this study. Presented computational com-

plexities assume that the graph is implemented as a collection of

adjacency lists.

Full topology. Full topology scores were obtained with

PageRank [23] or heat diffusion [21] algorithms, often used to

assess the relevance of Web pages based on linkage. Although

related in formulation and expected to generate similar results

under appropriate parameterization, heat diffusion has been

shown to outperform PageRank [21], which in turn has been

shown equivalent to HITS [24] and K-Step Markov [25] methods

in disease gene prioritization [10]. Recently, Navlakha and

Kingsford [12] showed that the random walk method in the work

of Köhler et al. [9], precisely PageRank, was also superior to

approaches based on direct neighbors, unsupervised and semi-

supervised graph partitioning, and an additional method based on

network flow [5]. Both heat diffusion and PageRank propagate a

signal expressing the relevance of the genes in the context of the

disease through the network to compute a gene-disease score for

every gene in the network. Relevances are represented in the form

of a preference vector, p, containing as many entries as genes in

the network. Distinct schemes can be used to initialize p, whose

instantiation is denoted by p(0). The most common is to attribute

preference 1 or 1=DSD to entries corresponding to genes in the seed

set (known disease genes), and 0 to the remaining entries, DSD being

Interactogeneous: Disease Gene Prioritization
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the size of the seed set. Gene-disease scores are computed

iteratively in N steps and take O(N DED) time.

Heat diffusion is a discrete approximation of the heat kernel [26]

first introduced by [21], in which the rate of diffusion is controlled

by a non-negative parameter t, the diffusion coefficient. The

iterative score update for gene v is given by

p(iz1)
v ~ 1{

t

N

� �
:p(i)

v z
t

N

X
fu[V ,(u,v)[Eg

p(i)
u
:w(u,v)

d(u)
ð1Þ

PageRank with priors is an extension of the original PageRank to

consider a custom initial distribution of the scores [23,25]. A

parameter b, or ‘‘back probability’’, denotes the probability of

jumping to an initial node at each step. In this context, b is also a

factor that indicates the persistence of the initial preference for

such node. The iterative equation is given by

p(iz1)
v ~b:p(0)

v z(1{b):
X

fu[V ,(u,v)[Eg
p(i)

u
:w(u,v)

d(u)
: ð2Þ

Neighborhood. Three neighborhood scores were calculated.

Disease neighbor weighting [11] sums, for each gene v, the weight of

every edge linking v to a disease gene. Disease neighbor counting [8]

counts, for each gene v, the number of direct neighbors known to

be involved in the disease. Computing any of these two scores for

all genes takes O(DSDDV D). Disease neighborhood overlap [27] defines the

score of gene v as the relative overlap between two sets containing:

(i) disease genes and their direct neighbors; and (ii) v and its direct

neighbors. This is the score computed by the Endeavour tool [27]

for network data and is O(DED) with the first set stored as a

hashtable. We refer to it as EndNet.

Shortest paths. Different versions of shortest paths can be

defined [7,15]. In this work, we consider the score of gene v to be

the average of the lengths of the shortest paths between v and the

disease genes. Computation of the shortest paths scores for all

genes takes O(DSDDED) using breadth-first search [28].

Network
Absent genes and missing links affect the neighborhood of

genes, and thus the overall network topology on which network-

based methods rely to compute gene-disease scores, thus

hampering the discovery of novel genes (Figure 1). Essentially,

we assessed two groups of networks: one containing gene

associations integrated from multiple sources of biological

evidence, named heterogeneous (reasonable coverage, denser);

the other holding gene associations derived from a specific type of

data such as physical interactions, here referred to as single source

(poor coverage, sparser).

Heterogeneous associations. The STRING database [14]

gathers information from conserved genomic neighborhood, gene

fusion events and phylogenetic co-occurrence, co-expression,

interaction and pathway databases, literature and large-scale

experiments. It relies on a Bayesian framework to integrate

established knowledge with putative associations returned by

prediction algorithms or transferred from model organisms. We

downloaded STRINGv8.2 (2009-10-18 to 2010-05-26, EnsEMBL

r46), containing evidence from MINT [29], HPRD [30], BIND

[31], DIP [32], BioGRID [33], KEGG [34], Reactome [35],

Figure 1. Impact of score and network properties on the prioritization. Subfigure A) shows the impact of the prioritization score properties.
Subfigure B) shows the impact of network properties. Disease genes are depicted in red, light blue and orange. Edges between a disease gene and its
neighbors have the same color as the disease gene node. Subfigure A) pictures the paths considered when computing the score for a given
candidate (green box) using full topology, shortest paths, direct neighbor overlap (EndNet), and direct neighbor approaches, respectively. Edges in
grey are ignored. Full topology is the most comprehensive strategy, as it considers all paths. In shortest paths, the alternative (shortest) path between
the candidate and the orange gene (dashed line) is not taken into account. Contribution of additional paths of different lengths is also ignored. Using
the direct neighbor overlap, the candidate can still be linked to the disease, but with no contribution from the orange gene. With direct neighbors,
the candidate receives a score of 0. Subfigure B) shows the effect of dense vs sparse interactions and good vs poor genome coverage. Heterogeneous
associations (left) vs single source interactions (right), the latter with absent genes (blue gene) and lack of connectivity (red gene).
doi:10.1371/journal.pone.0049634.g001
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IntAct [36], PID [37] and GO complexes [38]. We converted the

original STRING protein association network into a gene

association network. Protein names were mapped to their

encoding genes using own parsing of EnsEMBL files [39].

Specifically, we addressed the case of genes encoding multiple

proteins as follows. For each pair of interacting genes, we took the

edge of maximum (integrated) weight linking any pair of proteins

encoded by such genes.

HEFalMp is a network of functional gene associations supported

by physical, genetic, sequence, or co-expression evidence [13],

with genes identified by HGNC symbols [40]. Confidence scores

are derived by naive Bayes classifiers trained on a gold standard of

data from KEGG [34], HPRD [30], Reactome [35], PID [37],

GO [38], Pfam [41] and the curated GSEA pathways [42].

Bayesian regularization with mutual information scores is used to

penalize redundancy and prevent overconfident prediction.

HEFalMp is a complete graph, where most interactions (<80%)

pertain scores below 0.16. We pruned less relevant edges based on

a confidence score threshold, as those did not show to provide

performance improvement. Experiments with subsets of HEFalMp

obtained at different confidence cutoffs showed that the best results

were achieved with 0.2 or lower (denser networks), decreasing for

larger cutoff values (sparser networks). We used the pruned

HEFalMp network (cutoff weight 0.2) in all the experiments

described below. As it is clear from context, we may refer to it

simply by HEFalMp throughout the text.

Single source associations. We parsed a network of

physical protein-protein interactions (PPI) from the NCBI Entrez

Gene repository [43], using Entrez Gene names. It yielded data

from BIND [31], BioGRID [33] and HPRD [30]. We also

generated independent networks, one per type of evidence in

STRINGv8.2 (Figure 2), and used the protein to gene network

conversion procedure (see previous subsection: Heterogeneous

associations). We adopt a similar terminology to that used by the

authors in the original STRING publication for each of the

sources, as follows. ST-Co-expression denotes associations derived

from similarity of expression profiles between the pairs of genes

across different expression datasets. ST-Co-occurrence corre-

sponds to associations expressing phylogenetic co-occurrence, that

is, co-occurrence of the pairs of genes across genomes. ST-

Database corresponds to manually curated physical interactions.

ST-Experimental refers to interactions detected in high-through-

put experimental essays such as Y2H. ST-Fusion denotes

associations between genes involved in gene fusion events. ST-

Neighborhood comprises associations between genes exhibiting

conserved genomic neighborhoods.

ST-Text mining and ST-Integrated. An additional network

was extracted from STRING, ST-Text mining, containing

associations based on the co-occurrence of gene pairs in literature

abstracts. We prefer to classify ST-Text mining as a heterogeneous

network, as it implicitly includes information from alternative

sources (results presented in the literature are usually supported on

experimental findings, among others). Upon separation of the

distinct sources from STRING, it was necessary to convert the

resulting protein-protein networks into gene-gene networks.

However, choosing the edge of maximum weight between every

pair of genes before or after the integration (as described for

STRINGv8.2 above) would not yield identical integrated confi-

dence weights. In order to preserve consistency between the

interaction weights in the single source and integrated networks,

eventually perturbed by the protein to gene conversion, we also

built an integrated network from the single source networks, which

we name ST-Integrated. We first performed the protein to gene

network conversion per source, and then integrated all sources for

every edge following the integration approach in the original

STRING. Subfigure B shows the intersection between ST-

Integrated and each of the extracted single source networks.

Experiments with the ST-Integrated network were performed

exclusively for comparison with the individual STRING sources.

Throughout the text we refer to the original STRING network as

STRINGv8.2 and to the custom integrated STRING network as

ST-Integrated, whenever it matters. Additionally, we may use the

term STRING to refer to either or both of these networks

whenever they exhibit similar performances.

Known Disease-related Genes
Prioritization strategies were evaluated using 620 known

disease-related genes automatically selected from OMIM [44] as

in [27], spanning 29 diseases with an average of 21 genes per set.

Seeds were originally denoted by EnsEMBL [39] identifiers. They

were respectively converted to Entrez Gene [43] and HGNC [40]

symbols for the PPI network and HEFalMp networks based on

own parsing of mappings retrieved from the corresponding Entrez

Gene and HGNC FTP repositories.

Evaluation Scheme
Leave-one-out cross-validation tests were conducted (Figure 3).

For each disease and parameter setting, n~DSd D rankings were

generated, where DSd D is the size of set Sd containing genes related

to disease d . Each ranking was obtained by retaining a different

gene from set Sd and using the remaining genes in the set as seeds

in the prioritization task (training set). From the resulting (genome-

wide) scoring, we retrieved an ordered list maintaining the relative

Figure 2. Network sizes and overlap between STRING sources. Subfigure A) shows the network sizes. Subfigure B) shows the overlap
between STRING sources. In B), the color intensity of cell (i, j) denotes the size of the intersection between the sets of edges in networks i (row) and j
(column) relative to the size of i. Darker and lighter indicate larger and smaller. From left to right: co-expression, co-occurrence, database,
experimental, fusion, neighborhood, text mining and integrated.
doi:10.1371/journal.pone.0049634.g002
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positions of the left-out gene and a set of additional candidates

previously selected from the network (test set). We repeated the

cross-validation procedure using 10 distinct sets of candidates.

These were previously generated by selecting genes uniformly at

random, either from the set of genes in a network or the

intersection of the sets of genes in several networks, when

applicable, and excluding those genes in the seed sets. Ideally,

the left-out gene should rank at the top. We assessed the overall

and per disease performance averaged over the 10 distinct runs

based on four measures, which assess the position of the left-out

genes in the ranked test sets: counts of left-out genes in the top 10

and 20 ranks, area under the ROC curve, and mean average

precision.

Area under the ROC curve. Prioritizers return a real-valued

function used to define a strictly ordered ranking. Let positive and

negative classes of a binary classification problem denote

association and non-association with disease, respectively. A

binary outcome can be produced by sweeping an imposed cutoff

over the ranks and plotting the corresponding receiver operating

characteristic curve (ROC) of the true positive rate as a function of

the false positive rate. In this case, the left-out gene ranking higher

than the cutoff implies its association with the disease. AUC

denotes the area under ROC and fits in ½0,1�, where a perfect

prioritizer yields AUC 1 and random guessing achieves approx-

imately 0.5. It estimates the probability that a randomly chosen

positive example ranks higher than a negative one, being

equivalent to the Wilcoxon-Mann-Whitney statistic. We computed

AUC scores based on the procedure outlined by Fawcett [45].

Mean average precision. MAP denotes the mean of the

average precision of the rankings obtained for all left-out genes.

Average precision combines precision, the probability that a

randomly selected gene associated by the prioritizer is in fact

related, and recall, the probability that a randomly selected

gene known to be involved in the disease is associated by the

prioritizer. It averages the precisions computed by truncating

the ranked list after each relevant item is found, where precision

at rank r is the ratio between the number of relevant items and

the total number of items retrieved at r [46]. In our setting, the

only relevant item is the left-out gene and precision at r is thus

0 before it has been found, or 1
r

otherwise. MAP scores vary

between values close to 0 for random guessing, and 1 for an

ideal ranking, respectively.

Results and Discussion

In this section, we investigate the impact of network features

and ranking strategy on the prioritization task. We aim to validate

three claims concerning the performance of Interactogeneous

stategies against alternative approaches: (1) heterogeneous associ-

ations should outperform single source data, as multiple evidence

increases coverage/density and reduces bias toward individual

sources; (2) a full topology score resuming all paths is potentially

more informative than measures based on direct links or shortest

Figure 3. Evaluation scheme. In each leave-one-out cross-validation fold for a given disease, a different gene is retained from the set of known
disease genes (red, blue, orange). The remaining genes known to be associated with that particular disease are mapped onto the network and used
as prior knowledge (training set) to compute gene-disease scores for all the genes in the network. A test set, including the left-out gene and a set of
candidates previously sampled from a pool of genes (the genes in a network or the intersection of the sets of genes in different networks), is sorted
according to the obtained gene-disease scores. The performance is then determined by assessing the position of the left-out gene in the ranked test
set. We average the overall and per disease results obtained in 10 complete leave-one-out cross-validation runs, each using a distinct set of candidate
genes.
doi:10.1371/journal.pone.0049634.g003
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paths, deriving a whole-system perspective and avoiding excessive

focus on well studied genes; (3) incorporating confidence weights

should increase reliability, as it is expected to diminish the effect of

false positives. Finally, we evaluate the effectiveness of the method

to discover genes putatively associated with Parkinson’s disease

(PD).

Case Studies
Leave-one-out cross-validation tests were conducted. For each

disease, in each evaluation run, a different gene was retained from

the set of disease genes (training set). Prioritizers were applied to

compute a score for every gene in the network, taking training

genes as seeds. A test set was formed by adding the retained gene

to a previously generated set of candidates. The genes in the test

set were then ranked according to their gene-disease scores. We

performed leave-one-out cross-validation in order to be able to

evaluate all diseases, even those yielding only a few known genes,

in most networks. Results of 5-fold cross-validation on the larger

disease sets are also discussed below and made available in

Supporting Information S1. Candidates for the test set were

selected uniformly at random from the set of genes in the network

(or the intersection of the sets of genes in a collection of networks,

when applicable), excluding those genes in the seed sets. We

preferred random selection of genes for the test set over collecting

genes in the neighborhood of the known disease genes [5,7], as in

the latter case the genes tend to be disease genes as well, and our

aim is to assess whether the method effectively discerns novel

disease genes from the rest rather than whether a disease gene

stands out among its peers. Given the sampling procedure

involved in the selection of the remaining candidates for the test

set, we generated 10 distinct sets of candidates and averaged the

performances over the 10 complete cross-validation runs for the 29

diseases, each using a particular candidate set. We used a test set

size of 100, which accounts for a good representation of the

population: the genes in a network.

Full topology rankings were obtained with heat diffusion

(HDiffusion) and PageRank (PRank). A measure based on shortest

paths (SPaths) and three neighborhood scores, namely disease

neighbor weighting (NWeight) or counting (NCount) and neigh-

borhood overlap (EndNet), were selected for comparison. Hetero-

geneous association (STRING, including STRINGv8.2 and ST-

Integrated versions; ST-Text mining; HEFalMp) and single source

interaction (other STRING sources and NCBI PPI) networks were

assessed (see Methods). Direct neighbor methods are highly

dependant on the connectedness of the network. In fact, when

using direct neighbor methods on single source networks, more

than half of the genes yield score zero upon prioritization. The

lack of resolution of direct neighbor and SPaths methods

additionally affects the ranking in a negative way, whereby many

genes pertain equal scores (commonly zero and non-zero values,

respectively). In these cases, a strict order can no longer be defined

based on the ranking scores. The solution adopted to mitigate

these issues was to position the left-out gene in the median rank

among those ranks occupied by all the genes yielding the same

ranking score. For HDiffusion and PRank, seed scores were

initialized to 1 and 1=DSD, respectively, where DSD denotes the size of

the seed set. Presented results use the best parameter setting.

Performance is indicated by AUC, MAP, and percentages of left-

out genes ranked in top 10 and top 20.

Gene-disease score: full topology vs neighborhood and

shortest paths. HDiffusion was the best method overall,

consistently performing on top in all networks (Tables 1, 2 and

3, and Figure 4). PRank performed well on the heterogeneous

networks, although it did not achieve outstanding scores compared

with its competitors. Notably, it delivered robust performance

across the different networks and exhibited good results on the

NCBI PPI network. While SPaths seemed to position itself in

second place (together with NCount) when considering the

heterogeneous networks, STRINGv8.2 and HEFalMp, it proved

more sensitive to the absence of knowledge in the single source

NCBI PPI network, where its performance dropped significantly.

The two neighborhood methods NWeight and NCount achieved

reasonably good performance using heterogeneous associations.

NWeight was particularly impressive and basically head-to-head in

terms of evaluation scores with HDiffusion on the heterogeneous

networks, STRINGv8.2 and HEFalMp (Tables 1 and 2).

Nevertheless, NWeight and NCount failed to recover the

knowledge contained in the NCBI PPI network (Table 3). In

such network, only 44.3% of the 526 seed genes present in the

NCBI PPI network (or 84.8% of the total of 620 originally in the

seed sets), were attributed a score larger than zero and thus

deemed to have some relation with the corresponding disease by

NWeight or NCount. The fact that most of those left-out genes

achieved the top 10 and nearly all were placed in the top 20

highlights the binary decision nature of these neighborhood

methods (Tables 1, 2 and 3), whereby left-out genes either rank at

the very top or are otherwise missed. This behavior stems both

from the methods themselves and the way in which the evaluation

Table 1. Leave-one-out cross-validation results of all methods on STRING.

Method AUC MAP TOP 10 TOP 20 SRec DRec SEval

HDiffusion 0.957±0.004 0.731±0.023 90.3±0.9 94.4±0.9 100 100 100

PRank 0.92660.013 0.51660.098 79.465.6 89.562.6 100 100 100

EndNet 0.84860.014 0.24260.049 53.462.8 73.363.7 100 100 100

NWeight 0.950±0.003 0.733±0.022 90.3±0.9 94.2±0.8 96.8 100 100

NCount 0.94460.004 0.67960.027 87.861.6 93.360.8 96.8 100 100

SPaths 0.94360.005 0.67360.027 86.261.6 91.760.9 100 100 100

Results of each tested prioritization method on the STRINGv8.2 network. Mean and standard deviation of four evaluation measures (AUC, MAP, and percentage of left-
out genes ranked in tops 10 and 20), obtained for 10 complete leave-one-out cross-validations on the 29 disease sets using 10 distinct previously generated candidate
sets. ‘SRec’: percentage of left-out genes (from the total number of seeds in the original seed sets: 620) effectively ranked, that is, yielding a ranking score larger than
zero. ‘DRec’: percentage of recovered diseases among the 29 diseases with seeds (a disease is recovered if at least one of its left-out genes obtained a ranking score
larger than zero). ‘SEval’: percentage of left-out genes (from the total number of seeds originally in the seed sets: 620) in the network. All evaluation measures, AUC,
MAP, TOP 10 and TOP 20, were computed taking into account only the left-out genes present in each network (SEval), rather than all the genes originally in the seed
sets. Parameters: HDiffusion (t~0:3, N~5), PRank (b~0:3, N~2).
doi:10.1371/journal.pone.0049634.t001
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was conducted. On one hand, neighborhood measures attribute

scores only to those genes which are direct neighbors of the disease

genes. On the other hand, all candidates except the left-out gene

are randomly selected from the network. Although the association

of the genes with a particular disease will depend on the

connectedness of the disease genes in each particular network,

the direct neighbors are likely to represent in general a limited

proportion of the genes in the network. As a result, the probability

of the majority of the selected candidates yielding score 0 is large

and the left-out gene will likely stand out among the remaining

candidates whenever it is a neighbor of some disease gene(s).

EndNet was the method with poorest results in both heteroge-

neous networks. Surprisingly it showed up immediately after

HDiffusion in the performance table for the NCBI PPI network

(Tables 1, 2 and 3). EndNet still missed nearly a third of the disease

associations that could potentially be recovered from the NCBI

PPI network, attributing a score larger than zero to 72.1% of the

526 seed genes in the NCBI PPI network (84.8% of the total

number of seeds). EndNet also exhibited a binary effect, although

less pronounced than that of NWeight and NCount, as 48.9% and

60.6% of the genes in the network were placed respectively in the

top 10 and top 20. The relative performances observed overall

were maintained when considering the results per disease

(Figure 4), where the differences between the methods were again

more noticeable in the results for the single source network and

HDiffusion leaded the performance rankings. When using the

NCBI PPI network, neighborhood methods NWeight and NCount

could not rank any of the genes associated with dystonia, epilepsy,

ichtyosis, spastic paraplegia, or spinocerebellar ataxia, in the top

20. Likewise, all the genes known to be related to deafness,

hemolytic anemia and retinis pigmentosa missed the top 20 when

ranking with SPaths. Overall, the results corroborate the reasoning

that full topology methods can compensate for missing links by

exploiting higher order neighborhoods and path redundancies,

proving particularly relevant when analyzing single source

networks. They also provide higher resolution scores, thus more

informative and robust rankings.

Network: heterogeneous vs single source. Heterogeneous

associations in STRING outperformed both HEFalMp and the

NCBI PPI network using every method tested in this study and

every of the 10 candidate sets generated from each pool of genes

(Tables 4 and 5). Considering the results of HDiffusion, the best

method overall in our study, STRING evaluated considerably

higher than curated protein interactions (STRINGv8.2, ST-

Integrated or ST-Text mining against ST-Database or NCBI

PPI network in Tables 3 and 4). Approximately 83–84% of all the

genes in the disease seed sets ranked in the top 10 on STRING,

opposed to 49–55% of 85% of the original seeds on the NCBI PPI

Table 2. Leave-one-out cross-validation results of all methods on HEFalMp.

Method AUC MAP TOP 10 TOP 20 SRec DRec SEval

HDiffusion 0.829±0.020 0.252±0.032 48.1±5.4 68.5±4.9 99.2 100 99.2

PRank 0.76760.027 0.13860.030 33.466.0 53.865.8 99.2 100 99.2

EndNet 0.74360.035 0.11560.030 27.366.2 47.968.3 99.2 100 99.2

NWeight 0.827±0.019 0.261±0.030 49.2±5.6 68.8±4.6 96.1 96.6 99.2

NCount 0.78260.028 0.14760.022 37.566.5 59.365.9 96.1 96.6 99.2

SPaths 0.78360.028 0.14760.022 37.566.5 59.365.9 99.2 100 99.2

Results of each tested prioritization method on the HEFalMp network with edge weight cutoff 0.2. Mean and standard deviation of four evaluation measures (AUC, MAP,
and percentage of left-out genes ranked in tops 10 and 20), obtained for 10 complete leave-one-out cross-validations on the 29 disease sets using 10 distinct previously
generated candidate sets. ‘SRec’: percentage of left-out genes (from the total number of seeds in the original seed sets: 620) effectively ranked, that is, yielding a ranking
score larger than zero. ‘DRec’: percentage of recovered diseases among the 29 diseases with seeds (a disease is recovered if at least one of its left-out genes obtained a
ranking score larger than zero). ‘SEval’: percentage of left-out genes (from the total number of seeds originally in the seed sets: 620) in the network. All evaluation
measures, AUC, MAP, TOP 10 and TOP 20, were computed taking into account only the left-out genes present in each network (SEval), rather than all the genes
originally in the seed sets. Parameters: HDiffusion (t~0:3, N~10), PRank (b~0:3, N~2).
doi:10.1371/journal.pone.0049634.t002

Table 3. Leave-one-out cross-validation results of all methods on the NCBI PPI network.

Method AUC MAP TOP 10 TOP 20 SRec DRec SEval

HDiffusion 0.771±0.012 0.375±0.031 53.9±1.7 63.7±2.2 82.9 100 84.8

PRank 0.73860.018 0.19760.050 44.265.1 57.462.3 82.9 100 84.8

EndNet 0.74860.010 0.29060.031 48.962.4 60.661.3 61.1 100 84.8

NWeight 0.69560.004 0.31760.027 42.461.4 44.260.2 37.6 100 84.8

NCount 0.69460.003 0.29460.023 42.162.2 44.360.0 37.6 100 84.8

SPaths 0.70160.018 0.21460.024 36.662.5 49.462.6 82.9 100 84.8

Results of each tested prioritization method on the NCBI PPI network. Mean and standard deviation of four evaluation measures (AUC, MAP, and percentage of left-out
genes ranked in tops 10 and 20), obtained for 10 complete leave-one-out cross-validations on the 29 disease sets using 10 distinct previously generated candidate sets.
‘SRec’: percentage of left-out genes (from the total number of seeds in the original seed sets: 620) effectively ranked, that is, yielding a ranking score larger than zero.
‘DRec’: percentage of recovered diseases among the 29 diseases with seeds (a disease is recovered if at least one of its left-out genes obtained a ranking score larger
than zero). ‘SEval’: percentage of left-out genes (from the total number of seeds originally in the seed sets: 620) in the network. All evaluation measures, AUC, MAP, TOP
10 and TOP 20, were computed taking into account only the left-out genes present in each network (SEval), rather than all the genes originally in the seed sets.
Parameters: HDiffusion (t~0:7, N~10), PRank (b~0:3, N~5).
doi:10.1371/journal.pone.0049634.t003
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network (42–47%) and 54–55% of the 59% of the original seeds

on ST-Database (<32%). ST-Experimental performed compara-

bly to slightly better than the physical interaction sources, NCBI

PPI and ST-Database. Additionally, STRING proved more

informative than HEFalMp, delivering superior performance in

every evaluation measure (Tables 4 and 5). No relevant knowledge

could be retrieved from ST-Co-occurrence, and poor performance

was achieved using ST-Co-expression or ST-Neighborhood, the

sparsest networks. Text mining data excelled. Not surprisingly, as

literature contributes to 88% of the interactions, whereas the

remaining 12% rely exclusively on other sources (Figure 2). It is

worth to note in this regard that literature generally reports

information latent in (and conclusions derived from) alternative

sources, resulting in a comprehensive network with heterogeneous

information. HEFalMp performed comparably to and worse than

the larger single source networks (NCBI PPI, ST-Database, and

ST-Experimental), considering the results obtained using candi-

dates from the smaller and larger pools, respectively, and

excluding the known disease genes absent from each network in

its evaluation (Tables 4 and 5). Using HEFalMp, only 33–51% of

the 99% of the genes found in the network ranked in the top 10

(33–50%). Additionally, it outperformed the three smaller single

source networks (ST-Co-expression, ST-Co-occurrence and ST-

Neighborhood) using both pools of candidates. The performance

of HEFalMp indicates that, although density and coverage tend to

be important properties, they do not present a guarantee of

outstanding rankings, to which topology will certainly contribute.

Network construction features, including the selection of sources

and integration scheme, as well as the ranking approach and its

network search strategy and score definition should also play

relevant roles in this regard. In this study, none of the

prioritization methods seemed to be able to translate the topology

and weighting scheme of HEFalMp into a more effective disease

candidate gene ranking. Overall, we noticed a tendency for

heterogeneous networks (STRINGv8.2, together with ST-Inte-

grated and ST-Text mining, and HEFalMp) to deliver superior

performance relative to single sources (Tables 4 and 5). Although

we excluded absent genes from the evaluation measures, it is also

important to note that using heterogeneous networks we could

assess 99% to 100% of the known disease genes, while single

sources missed 11% to 92% of those seeds.

Confidence weights and other parameters. In general,

methods incorporating edge weights outperformed those ignoring

them, in the networks where weights were available, namely

STRING and HEFalMp (Tables 1, 2 and 3). We further

investigated the contribution of confidence weights to the final

scores by comparing the previous results on STRING and

HEFalMp (using the original weights) with the results obtained

after setting the weights of all interactions to 1. SPaths, EndNet

and NCount methods maintained their performances as expected,

since they ignore edge weights. Using the original edge weights on

STRING promoted an addition of approximately 9 genes (1.5% of

the total number of genes) ranked in the top 10 with HDiffusion.

NWeight lead to around 16 additional genes in the top 10 (2.5%)

and PRank to 24 genes more (3.9%). Original weights on

HEFalMp increased the number of genes in the top 10 by

approximately 46 genes (7.5%) with HDiffusion, and 58 genes

(11.7%) with NWeight, compared to the non weighted version of

HEFalMp. PRank was not able to take advantage of the weights

on HEFalMp. Notably, HDiffusion was able to increase its

Figure 4. Prioritization results per disease. Each pair of charts shows the average of a different evaluation measure (left to right: AUC, MAP, top
10 and top 20) for 10 complete leave-one-out cross-validation runs (see Methods) on STRINGv8.2 (first chart) or the PPI network (second chart). A
distinct, previously generated, candidate set was used in each of the 10 runs. For each disease the top, middle and bottom bars denote the results of
NWeight, SPaths and HDiffusion. The list of disease acronyms, from top to bottom: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; AN,
anemia; BC, breast cancer; CM, cardiomyopathy; CA, cataract; CMT, Charcot-Marie-Tooth disease; CC, colorectal cancer; DE, deafness; DI, diabetes; DY,
dystonia; ED, Ehlers-Danlos syndrome; EP, epilepsy; HA, hemolytic anemia; IC, ichthyosis; LE, leukemia; LY, lymphoma; MR, mental retardation; MD,
muscular dystrophy; MY, myopathy; NE, neuropathy; OB, obesity; PD, Parkinson’s disease; RP, retinis pigmentosa; SP, spastic paraplegia; SA,
spinocerebellar ataxia; US, Usher syndrome; XP, xeroderma pigmentosum; ZS, Zellweger syndrome.
doi:10.1371/journal.pone.0049634.g004
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performance in 13.4% (STRING) and 12.6% (HEFalMp) of the

margin that was still available for improvement by incorporating

edge weights. For NWeight, the increase represented 20.5% and

18.7% of the margin for improvement on STRING and

HEFalMp, respectively. Concerning edge differentiation, the

relative improvement potentiated by the use of differentiated

weights is equivalent in both networks, HEFalMp and STRING.

Additionally, NWeight revealed more sensitive to these weights

than HDiffusion. From these results, we observe that the

contribution of weights is likely to translate into fine adjustments

to the computed ranking scores rather than substantial changes in

performance. In the case of a fully connected network (complete

graph), such as HEFalMp, weights should be key to effectively

differentiate the edges. Typically, a threshold is applied to discard

edges of low confidence, contributing to the definition of a distinct

network topology. In this context, edge weights are therefore

supporting the consistently higher performances obtained on

STRING relative to the remaining networks in this study. Edge

weights thus influence network density and topology. Density is an

important property and denser networks (up to an optimal point)

are more likely to perform better. However, density is not an

assurance of outstanding results, essentially because an increased

number of edges does not necessarily imply an increase in the

number of ‘true’ edges. Moreover, there is no guarantee that the

weights of the edges in the network effectively reflect the ‘true’

order of importance between edges. In particular, a given edge

could yield weight zero due to either its irrelevance or absence of

information. Ultimately, this is influenced by the accuracy of the

weights which also determines the network topology. Both full

topology methods (HDiffusion and PRank) achieved maximum

performance using a limited number of iterations, N, which was

shown to be smaller for STRING and HEFalMp than for the PPI

network. This could be explained by a stronger small world effect

on the denser networks caused by the existence of shorter paths

linking the pairs of nodes. Regarding the propagation rate, values

f0:3,0:5,0:7g were tried for t and b. For different t and equal N,

HDiffusion pertained variations in the orders of 10{3 (AUC) and

10{2 (MAP) on STRING and the PPI. PRank exhibited score

changes for different b with equal N in the orders of 10{2 (AUC)

and 10{2 to 10{1 (MAP) on STRING and 10{2 to 10{1 (AUC,

MAP) on the PPI network. Overall, PRank was more sensitive to

variations in this parameter.
Leave-one-out vs k-fold cross-validation. Leave-one-out

cross-validation is not usually the preferred approach for

performance evaluation, as it can lead to optimistic results.

Nevertheless, its choice is widely accepted in the literature in cases

where the data is scarce. In this work, the size of the seed sets was

reasonably small and would prevent the application of a standard

10-fold cross-validation. Similarly, a 5-fold approach would

immediately exclude 4 networks and 19 diseases due to insufficient

coverage of the seed sets by the networks. On the other hand, our

study focused on relative rather than absolute performances, and

the leave-one-out procedure is not expected to favor per se a

specific method or class of methods, or a particular network or

class of networks, in detriment of others. In this context, we aimed

primarily at promoting a fair comparative evaluation procedure.

For completeness, we conducted 5-fold cross-validation tests on

the larger disease sets, those with 20 or more known disease genes

present in the three major networks (STRING, HEFalMp and the

NCBI PPI network). Such results are presented in Supporting

Information S1. We observed that most performance measures

remained relatively stable, which allowed to maintain the relative

performances of the several methods and the various networks.

Unveiling Genes Associated with Parkinson’s Disease
Parkinson’s disease (PD; OMIM #168600) is the second most

common neurodegenerative disorder, after Alzheimer’s [47,48].

Clinically, it is characterized by resting tremor, muscular rigidity,

Table 4. Leave-one-out cross-validation results of HDiffusion
on ten networks.

Network AUC MAP T10 T20 SRec DRec SEval

NCBI PPI network 0.765 0.354 55% 64% 83% 100% 85%

HEFalMp cutoff = 0.2 0.771 0.274 51% 63% 99% 100% 99%

ST-Co-expression 0.665 0.269 37% 44% 13% 52% 13%

ST-Co-occurrence 0.490 0.164 21% 24% 9% 69% 18%

ST-Database 0.753 0.376 55% 65% 58% 93% 59%

ST-Experimental 0.752 0.365 55% 64% 89% 100% 89%

ST-Neighborhood 0.622 0.176 32% 39% 6% 34% 8%

ST-Text mining 0.926 0.683 84% 90% 100% 100% 100%

ST-Integrated 0.918 0.665 84% 89% 100% 100% 100%

STRING v8.2 0.920 0.665 84% 90% 100% 100% 100%

Leave-one-out cross-validation results of HDiffusion on the PPI, HEFalMp
cutoff = 0.2, STRING sources, and integrated STRING networks. Scores averaged
over 10 distinct sets of candidates previously sampled from the pool of 277
genes contained in the intersection of the sets of genes in all the networks
except ST-Fusion (excluding the seeds). Parameters (t,N) from top to bottom
networks: (0:7,10), (0:3,10), (0:3,10), (0:3,10), (0:5,10), (0:7,10), (0:5,5), (0:7,2),
(0:3,5), (0:3,5). ‘SRec’: percentage of left-out genes (from the total number of
seeds in the original seed sets: 620) effectively ranked, that is, yielding a ranking
score larger than zero. ‘DRec’: percentage of recovered diseases among the 29
diseases with seeds (a disease is recovered if at least one of its left-out genes
obtained a ranking score larger than zero). ‘SEval’: percentage of left-out genes
(from the total number of seeds originally in the seed sets: 620) in the network.
All evaluation measures, AUC, MAP, TOP 10 and TOP 20, were computed taking
into account only the left-out genes present in each network (SEval).
doi:10.1371/journal.pone.0049634.t004

Table 5. Leave-one-out cross-validation results of HDiffusion
on the larger networks.

Network AUC MAP T10 T20 SRec DRec SEval

NCBI PPI network 0.726 0.316 49% 58% 83% 100% 85%

HEFalMp
cutoff = 0.2

0.696 0.171 33% 47% 99% 100% 99%

ST-Database 0.749 0.353 54% 63% 58% 93% 59%

ST-Experimental 0.749 0.345 53% 61% 89% 100% 89%

ST-Text mining 0.923 0.657 84% 89% 100% 100% 100%

ST-Integrated 0.919 0.644 83% 89% 100% 100% 100%

STRING v8.2 0.920 0.642 83% 89% 100% 100% 100%

Leave-one-out cross-validation results of HDiffusion on the PPI, HEFalMp
cutoff = 0.2, the larger STRING sources, and integrated STRING networks. Scores
averaged over 10 distinct sets of candidates previously sampled from the pool
of 4092 genes contained in the intersection of the sets of genes in the largest
networks (and excluding the seeds). ‘SRec’: percentage of left-out genes (from
the total number of seeds in the original seed sets: 620) effectively ranked, that
is, yielding a ranking score larger than zero. ‘DRec’: percentage of recovered
diseases among the 29 diseases with seeds (a disease is recovered if at least one
of its left-out genes obtained a ranking score larger than zero). ‘SEval’:
percentage of left-out genes (from the total number of seeds originally in the
seed sets: 620) in the network. All evaluation measures, AUC, MAP, TOP 10 and
TOP 20, were computed taking into account only the left-out genes present in
each network (SEval).
doi:10.1371/journal.pone.0049634.t005
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bradykinesia, and postural instability. Pathological evidence

includes degeneration of midbrain dopaminergic neurons and

formation of abnormal ubiquinated protein aggregates, Lewy

bodies, and filamental structures, Lewy neurites [47]. Eighteen

genetic loci (PARK1-18) have been related to PD [48–50]. Several

genes have been reported to carry mutations affecting susceptibil-

ity to familial and idiopathic PD. Multifactorial genetic and

environmental conditions are under study. Here, we assess the

ability of prioritization to identify promising candidates for PD

based on linkage with known genes.

Prior knowledge for Parkinson’s disease. The list of

known PD related genes excludes recent findings and purposely

lacks some of the well known disease causing factors in an attempt

to assess the ability of the method to unravel novel and recover

established knowledge on the disease. Additional noise was

introduced with the inclusion of protein kinase, AMP-activated, gamma

2 non-catalytic subunit (PRKAG2), a gene involved in Wolf-Parkinson-

White syndrome responsible for heart defects. All remaining genes

have been linked to PD before. Mutations in genes synuclein, alpha

(non A4 component of amyloid precursor) (SNCA) located in PARK1 and

PARK4 and ubiquitin carboxyl-terminal esterase L1 (ubiquitin thiolesterase)

(UCHL1) in PARK5 were identified in autosomal dominant

families, while mutated parkinson protein 2, E3 ubiquitin protein ligase

(parkin) (PARK2) in PARK2 and parkinson disease (autosomal recessive,

early onset) 7 (PARK7) in PARK7 have been implicated in autosomal

recessive forms of monogenic PD [48,51]. Four susceptibility genes

not related with the PARK loci were also included. Nuclear receptor

subfamily 4, group A, member 2 (NR4A2), required for the

development of dopaminergic neurons and associated with both

autosomal dominant and sporadic PD [48]. Also, microtubule-

associated protein tau (MAPT), for which several haplotypes were

indicated to influence age at onset and risk of PD [48]. NADH

dehydrogenase (ubiquinone) flavoprotein 2, 24 kDa (NDUFV2), involved in

electron transfer from NADH to the mitochondrial respiratory

chain where the electron acceptor is believed to be ubiquinone [52].

Finally, cytochrome P450, family 2, subfamily D, polypeptide 6 (CYP2D6),

encoding an enzyme involved in dopamine metabolism, was

included due to its multiple polymorphisms affecting susceptibility

to PD [53].

Involvement of prioritized genes in Parkinson’s

disease. Heat diffusion was applied to STRING using the

Parkinson seeds. PRKAG2 ranked last among the seeds, confirming

non-relatedness to PD. All seeds were filtered from the results. We

investigate the first 20 genes, of which 18 could be associated with

mechanisms of PD (Figure 5). We also refer the number of entries

in PubMed where each gene name and PD words co-occur

(between braces below), as a quantitative indicator of the

knowledge underlying the literature.

In the top three, the PTEN induced putative kinase 1 (PINK1, 269

entries) gene in PARK6 known to cause autosomal recessive early-

Figure 5. Prioritization results for Parkinson’s disease. Rings indicate whether genes are seeds (blue, full line) or top ranked genes (bordeaux,
dashed line). Color intensity (dashed) varies with prioritization score: darker and lighter mean higher and lower in the ranking. Multiple association
evidence is depicted in distinct colors. Only associations with confidence above 0.4 are shown. Figure obtained with STRING tools and adapted to
express the ranking.
doi:10.1371/journal.pone.0049634.g005

Interactogeneous: Disease Gene Prioritization

PLOS ONE | www.plosone.org 10 November 2012 | Volume 7 | Issue 11 | e49634



onset PD and the leucine-rich repeat kinase 2 (LRRK2, 488 entries)

gene in PARK8 often related to autosomal dominant late-onset

variant [48,49,51], followed by the synuclein, alpha interacting protein

(SNCAIP, 62 entries) known to cooperate with SNCA and PARK2 in

the formation of Lewy bodies [54]. Interestingly, the fibroblast

growth factor 20 gene (FGF20, 12 entries) possessing broad mitogenic

and cell survival activities, ranked in the top 10. Variation in

FGF20 has been linked to risk for PD, not confirmed by later

studies [49]. Among the top 10 were also found ubiquitin C (UBC,

67 entries) and glutathione S-transferase omega 1 and 2 (GSTO1 and

GSTO2, 7 entries each), hinted to influence age at onset in PD

[55], followed by the heat shock 70 kDa protein 4 (HSPA4, 74 entries).

These genes are involved in mitochondrial activity, particularly

linked to ubiquitination and chaperone function, whose dysfunc-

tion and impairment in PD leads to the degradation of proteins

and accumulation of Lewy bodies [56]. Mitochondrial HtrA serine

peptidase 2 (HTRA2, 20 entries), located in PARK13 and found

among the best 20, promotes cell death by binding apoptosis

inhibitory proteins. Genetic variability in HTRA2 has been

reported to cause PD, though studies showing no association have

also been published [48,49,51]. Neurotransmitters and ion

channel receptors involved in idiopathic PD such as the sodium-

and chloride-dependent neurotransmitter solute carrier family 6

(neurotransmitter transporter, dopamine), member 3 (SLC6A3, 90 entries)

and potassium inwardly-rectifying channel, subfamily J, member 6 (KCNJ6,

8 entries) [56] ranked in tops 10 and 20, respectively. Enzymes

involved in dopamine metabolism and biosynthesis, tyrosine

hydroxylase (TH, 994 entries) [57,58] and monoamine oxidase B

(MAOB, 221 entries) [59,60], ranked among best 10 and 20,

respectively. Recent findings showed that heterozygous mutations

in the glucosidase, beta, acid gene (GBA, 43 entries), top 20,

significantly alter risk for sporadic and familial PD [49,61].

Several genes pending confirmation ranked in the top 20.

Mitochondrially encoded NADH dehydrogenase 3 (MT-ND3, 1 entry) is

a core subunit of the mitochondrial membrane respiratory chain

NADH dehydrogenase complex I. Although MT-ND3 has not

been specifically linked to PD, dysfunction of complex I is

considered the major mitochondrial defect in PD [62] and

mutations in other subunits (e.g. ND2, ND5) have been filed.

Presenilin 1 (PSEN1, 21 entries) is known to carry mutations causing

Alzheimer’s disease (AD). Impairment of presenilin-mediated

signaling pathways leading to presynaptic dysfunction has been

suggested as a converging event before neurodegeneration in AD

and PD [63]. Contradictory evidence exists on the sema domain,

seven thrombospondin repeats (type 1 and type 1-like), transmembrane domain

and short cytoplasmic domain, (semaphorin) 5A (SEMA5A, 5 entries)

gene, involved in axonal guidance during neural development,

connectivity maintenance and repair [64]. Similarly, synuclein, beta

(SNCB, 43 entries), homologous to SNCA, has been found highly

expressed in the substantia nigra [65] and referred as a potential

inhibitor of SNCA aggregation and fibrillization [66]. SNCB might

also influence age at onset [67].

Overall the ranking reflected the contribution of additional

sources as, in several cases, genes with scarce literature evidence

ranked higher than others with widely spread reference (FGF20

and KCNJ6 against TH and MAOB, for instance).

Conclusion
In this work, we sought for a robust network-based disease gene

prioritization strategy able to address some limitations of current

methods. We advocated a preference for what we termed

Interactogeneous strategies, a synonym for full topology scores

based on weighted gene associations derived from multiple

sources, and claimed that these should exhibit superior perfor-

mance relative to existing approaches missing at least one of such

features.

The impact of network configuration, score definition and

parameters was analyzed in studies involving the prioritization of

genes for 29 diseases. In our study, full topology scores

outperformed neighborhood and shortest paths measures given

their consistent top results across the different types of networks.

The gap between the two kinds of methods was inexistent when

using heterogeneous networks, but rather particularly noticeable

when single source networks (including the popular manually

curated networks of physical protein-protein interactions) were

considered. These results support the reasoning that incorporating

full topology with higher order neighborhoods and alternative

paths (redundancies) potentiates a more comprehensive under-

standing of the interactome and ability to compensate for missing

linkage. They further corroborate the findings in previous studies

giving the lead to full topology scores against other measures based

on direct neighbors, shortest paths and graph partitioning on

protein-protein interaction networks [5,9,12]. Additionally, our

results suggest that the superiority should not be generalized to

every network. Nevertheless, the ability to retrieve knowledge from

an incomplete network, from which a large part of the information

might be missing, is most appealing to the research community.

Our study confirmed that local clustering is suitable for an effective

identification of the information relevant to the disease when prior

knowledge is available, as previously reported in the literature

[12,20]. In addition, heterogeneous associations from the

STRING database revealed advantageous when compared to

the networks of its individual sources, a curated physical protein-

protein interaction source and also an alternative functional

network, HEFalMp. Integration of knowledge retrieved from

complementary biological data proved crucial to achieve a more

comprehensive and informative understanding of the system, given

its ability to generate networks less biased toward a particular

evidence and less prone to suffer the negative effect of false

positives. Our results further suggest that the impact of confidence

weights on the ranking scores is mainly produced by discerning

relevant from irrelevant associations leading to the definition of the

network topology, rather than providing accurate relationships of

importance between the different associations. Nonetheless,

methods performed better when incorporating edge weights in

networks where they were available. We also observed that density

is not likely to present an important property by itself. In network-

based prioritization, it is more important to ensure that the

relevant edges in the network cover most of the ‘true’ associations

between genes, and obviously hold as little of the false associations

as possible. Ultimately, the selection of data sources, integration

scheme, score definition and network search strategy are all likely

to influence the quality of the rankings output by network-based

methods.

Interactogeneous strategies proved successful. We used the best

performing technique, combining heat diffusion ranking with the

STRING network, to prioritize genes potentially involved in

Parkinson’s disease. Known susceptibility genes widely referred in

literature or databases were recovered. Analysis of the top ranked

genes further revealed a number of genes with scarce or

controversial evidence, most of which could be related to

mechanisms of Parkinson’s disease: (1) impairment of mitochon-

drial activity and dopamine metabolism with oxidative stress

leading to apoptotic death of dopaminergic neurons; (2) disruption

of the ubiquitin proteasome system and consequent protein

degradation with formation of Lewy bodies; (3) presynaptic

dysfunction caused by perturbation of developmental signaling
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pathways; (4) compensatory mechanisms for cell survival and

repair upon stress.

Supporting Information

Supporting Information S1 5-fold cross-validation re-
sults. This document contains the results obtained for all methods

(HDiffusion, PRank, EndNet, NWeight, NCount, SPaths) on three

networks (STRINGv8.2, HEFalMp and NCBI PPI network) using

the larger disease sets in a 5-fold cross-validation evaluation

scheme.

(PDF)
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