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Abstract

Background/Objective: Describing transmissibility parameters of past pandemics from diverse geographic sites remains
critical to planning responses to future outbreaks. We characterize the transmissibility of influenza A(H1N1)pdm09
(hereafter pH1N1) in South Africa during 2009 by estimating the serial interval (SI), the initial effective reproductive number
(initial Rt) and the temporal variation of Rt.

Methods: We make use of data from a central registry of all pH1N1 laboratory-confirmed cases detected throughout South
Africa. Whenever date of symptom onset is missing, we estimate it from the date of specimen collection using a multiple
imputation approach repeated 100 times for each missing value. We apply a likelihood-based method (method 1) for
simultaneous estimation of initial Rt and the SI; estimate initial Rt from SI distributions established from prior field studies
(method 2); and the Wallinga and Teunis method (method 3) to model the temporal variation of Rt.

Results: 12,360 confirmed pH1N1 cases were reported in the central registry. During the period of exponential growth of
the epidemic (June 21 to August 3, 2009), we simultaneously estimate a mean Rt of 1.47 (95% CI: 1.30–1.72) and mean SI of
2.78 days (95% CI: 1.80–3.75) (method 1). Field studies found a mean SI of 2.3 days between primary cases and laboratory-
confirmed secondary cases, and 2.7 days when considering both suspected and confirmed secondary cases. Incorporating
the SI estimate from field studies using laboratory-confirmed cases, we found an initial Rt of 1.43 (95% CI: 1.38–1.49)
(method 2). The mean Rt peaked at 2.91 (95% CI: 0.85–2.91) on June 21, as the epidemic commenced, and Rt.1 was
sustained until August 22 (method 3).

Conclusions: Transmissibility characteristics of pH1N1 in South Africa are similar to estimates reported by countries outside
of Africa. Estimations using the likelihood-based method are in agreement with field findings.
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Introduction

During 2009, the emergence and worldwide spread of influenza

A(H1N1)pdm09 (pH1N1) was observed [1]. While a rapid and

timely estimation of the transmission parameters of this novel virus

played an important role in informing transmission potential and

mitigation interventions during the 2009 pandemic period, the

post-pandemic documentation of these parameters is equally

important as many previous estimates were established from

analyses conducted during the early stages of epidemics and often

from preliminary data [2,3]. Additionally enhancing our knowl-

edge of past pandemics assists in providing greater insight to

prepare and respond in future outbreaks.

Four key measures are typically used to describe the trans-

missibility of an infectious disease. First, the serial interval (SI)

describes the mean time between illness onset of two successive

cases in the chain of transmission. Second, the secondary attack

rate (SAR) describes the proportion of susceptible contacts that

acquire infection from an infectious person. Third, the basic

reproductive number (R0) is defined as the average number of

secondary cases per primary case in an idealised entirely

susceptible population in the absence of control measures. Finally,

the effective reproductive number (Rt) at any given time point

represents the actual average number of secondary cases per

primary case observed in a population. Rt reflects the impact of

control measures and the depletion of susceptible persons over
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time. The initial Rt may approximate R0 in pandemic situations.

[2–5].

Previously published estimates of pH1N1 transmission param-

eters vary by study setting and methods employed. The majority of

studies found the mean SI of pH1N1 to range from 2.5–3.3 days

[2,6–11]; however, Canada and Texas reported a longer SI of 4–5

days, respectively [12,13]. Estimates of the R0 of pandemic

influenza from the USA range from 1.3–2.3 [2,9,11]. Estimates

from Mexico range from 1.4–2.9 [2,14,15]. Outside of North

America, R0 estimates include: Australia (mean 2.4) [16], Canada

(mean 2.62) [12], Thailand (mean 2.07) [17], Peru (range 1.2–1.7)

[18] and New Zealand (mean 1.96) [19]. Finally, Japan revised

their mean R0 estimates from 2.3 to 1.28 after repeating analyses

later in the pandemic [20]; thus demonstrating a need to revisit

revised and more complete datasets. A variation in Rt with

progression of the pandemic was observed in Mexico, averaging at

1.47 (based on a negative binomial model) [14], but peaking

between 2.1–4.0 depending on the generation interval chosen

[21].

In a previous work, we estimated the SAR and SI of pH1N1

among the first 100 cases detected in South Africa by prospectively

examining virus transmission between household contacts [22].

We found a SAR of 10% and a mean SI of 2.3 days (SD 61.3,

range 1–5) between successive laboratory-confirmed cases in the

transmission chain. When additionally including suspected

secondary cases into the analysis, the SAR increased to 17%

and the SI to 2.7 days (SD 61.5, range 1–6). In this work we

incorporate data collected on all laboratory-confirmed cases

detected during the 2009 pH1N1 epidemic in South Africa with

the aim of describing the transmissibility characteristics (initial Rt

and temporal variation of Rt) of the epidemic in the country and

compare its dynamics with those observed in other countries in the

same year.

Methods

Data
During 2009, the National Institute for Communicable Diseases

(NICD), of the National Health Laboratory Service (NHLS),

South Africa, maintained a central registry of all pH1N1

laboratory-confirmed cases detected throughout the country.

The methodology of collating this data has previously been

described in detail [23]. Briefly, we collated individual case-based

data from all laboratories offering pH1N1 testing throughout

South Africa, which included patient age, sex, dates of illness onset

and specimen collection, and the administrative location (province)

of the healthcare facility where the patient presented. Testing was

performed by accredited laboratories, including: the National

Influenza Centre (NICD-NHLS), NHLS public-sector laboratories

or private-sector laboratories. All testing laboratories performed

detection and characterisation of pH1N1 virus by real-time PCR

by either the protocol developed by the WHO Collaborating

Centre for Influenza, U.S. Centers for Disease Control and

Prevention [24], or using commercially available kits.

Imputation of Missing Data
Wherever the date of symptom onset was missing, we estimated

it from the date of specimen collection using a multiple imputation

approach. Firstly, we modelled the lag time from date of symptoms

onset to date of specimens collection from cases with complete

data via a Poisson regression model using predictors significant at

p,0.05. The covariates assessed in the model were patient age,

gender, province, date of specimen collection, and collection of

a specimen on a weekend day (i.e. Saturday or Sunday). Secondly

we obtained an estimated lag-time for each observation with

missing date of symptoms onset using a random sampling process

from a Poisson distribution centred on the predicted value from

the Poisson regression model. A Poisson distribution was selected

to model count data. Thirdly we imputed missing dates of

symptoms onset by subtracting the estimated lag-time from the

date of specimen collection. The imputation process was repeated

100 times for each missing value, creating 100 datasets with

information on the onset date (imputed or observed) for 12,630

laboratory-confirmed cases.

Estimation of Intial Rt and Temporal Variation in Rt
We based the estimation of initial Rt and temporal variation of

Rt on date of symptoms onset (observed and imputed). In all

analyses we modelled the SI via a multinomial distribution. When

estimating initial Rt, we focus our analysis on the exponential

growth phase of the epidemic in South Africa (i.e. the period from

the first occurrence of five consecutive days with confirmed cases

reported to the epidemic peak). The parameters were estimated

using three methods:

Method 1. We make use of the likelihood-based method for

the simultaneous estimation of initial Rt and the SI described by

White and Pagano (2008) [25]. This method is well suited for

estimation of initial Rt and SI in real-time with observed

aggregated daily counts of new cases, denoted by N= (N0,

N1…,NT) where T is the last day of observation and N0 are the

initial number of seed cases that begin the outbreak. The Ni are

assumed to be composed of a mixture of cases that were generated

by the previous k days, where k is the maximal value of the serial

interval. We denote these as Xj, the number of cases that appear

on day i that were infected by individuals with onset of symptoms

on day j. We assume that the number of infectees generated by

infectors with symptoms on day j follows a Poisson distribution

with parameter RtNj. Additionally, Xj= (Xj,j+1, Xj,j+2…,Xj,j+k+1), the

vector of cases infected by the Nj individuals, follows a multinomial

distribution with parameters p, k and Xj. Here p is a vector of

probabilities that denotes the serial interval distribution. Using

these assumptions, the following likelihood is obtained:

L(Rt,pDN)~
aT

i~1

exp (mi)mi
Ni

Ni!
,

where mi~Rt(
Pk

j~1 pjNi{j).

Parameter estimates are obtained using maximum likelihood

methods. For this method we used 6 days as the maximal value of

the SI (k), which is consistent with the length of the SI observed in

field investigations in South Africa [22]. In addition we

implemented a sensitivity analysis to assess the variation of the

initial Rt estimates vis-à-vis k values of 4 days and 8 days,

respectively.

Method 2. We assume a known distribution of the SI in

South Africa and we estimate the initial Rt using the maximum

likelihood estimator for known SI described by White and Pagano

(2008) [9,25]. The estimator of initial Rt in this case is

a modification of Method 1 and is given by:

R
^

t
~

PT

t~1

Nt

PT

t~1

Pmin (k,t)
j~1 pjNt{j
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For this analysis we use the two SI distributions observed from

investigations of the first 100 pH1N1 cases in South Africa [22]: (1)

the SI distribution between primary cases and laboratory-

confirmed secondary cases only (39%, 24%, 14%, 17%, 3% and

3% for day 1 to 6 respectively), and (2) the SI distribution between

primary cases and suspected plus laboratory-confirmed secondary

cases (30%, 17%, 20%, 23%, 7% and 3% for day 1 to 6

respectively). We consider suspected secondary cases, individuals

that developed ILI symptoms within 14 days from the symptom

onset of a confirmed index case within the same household.

Method 3. We make use of the Wallinga and Teunis’ method

for estimation of Rt from the imputed data [26]. This method uses

the daily case counts of cases and assumes the serial interval is

known. We make the same assumptions for the serial interval as in

method 2. The method calculates the relative probability a case on

day i infects a case on day j as:

Figure 1. Epidemic curve of laboratory-confirmed influenza A(H1N1)pdm09 cases, South Africa, June 12 to September 30, 2009.
Bars show original recorded data applying date of symptom onset where available (n = 758) and substitute by date of specimen collection where
onset was unavailable (total n = 12,526). The line shows imputed data where date of symptom onset for missing case-based data was obtained by
multiple imputations adjusted by provincial location of specimen collection and the occurrence of a case on a weekend day (n = 12,491).
doi:10.1371/journal.pone.0049482.g001

Table 1. Observed lag-time between date of symptom onset and date of specimen collection, incidence rate ratio (IRR) and
significance value of the covariates significant in the Poisson regression model.

Factor Observed Lag-Time Mean (Std. dev.) Model IRR p-value

Province ,0.001a

Eastern Cape 2.1 (2.0) – –

Free State 1.9 (1.7) 0.90 0.620

Gauteng 1.7 (2.0) 0.78 0.140

KwaZulu-Natal 3.7 (3.4) 1.73 0.003

Limpopo 1.4 (1.0) 0.66 0.047

Mpumalanga 1.3 (1.5) 0.59 0.042

Northern Cape 2.1 (1.9) 0.95 0.797

North West 1.6 (1.1) 0.80 0.575

Western Cape 1.0 (1.9) 0.50 ,0.001

Day of specimen collection

Week day 1.7 (2.1) – –

Weekend day 1.1 (1.9) 0.75 0.003

aPooled p-value for province covariate.
doi:10.1371/journal.pone.0049482.t001
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q
ij
~

pj{iP
k=j pkj

,

where pk is the probability of a serial interval of length k.

Then the estimate for the reproductive number for case i, is:

Ri~
X

j

qij :

This method requires that we make use of the entire epidemic

curve. We calculate Rt as the average of the Ri when i is in the

epidemic period, as previously defined.

Estimates are reported as the means across the 100 imputations.

For all estimates, we calculate bootstrap confidence intervals as has

been described previously [9,26]. We combine the results from all

100 imputations to obtain a confidence interval that incorporates

both imputation error, as well as random error [27].

All analyses were performed using R version 2.14.

Results

Data and Imputation
12,630 laboratory-confirmed pH1N1 cases were captured by

the South African central registry during 2009. The overall

demographic, spatial and temporal distribution of these cases has

been previously described [23]. Data on date of symptom onset

was available for 758 (6%) cases and date of specimen collection

for 12,500 (99%) cases. The first case reported illness onset of June

12, 2009 and the epidemic peaked on week 32 (August 3–9, 2009)

(Figure 1). The epidemic growth period (when sustained trans-

mission began) started on June 21 (range in imputations: June 20–

21) and ended on August 11 (range: August 4–25).

The lag-time between symptom onset and specimen collection

was significantly associated with the provincial location of

specimen collection, as well as the collection of a specimen on

a weekend day (Table 1). We used these two covariates in the

multiple-imputation to predict the date of symptom onset where

missing for all cases (Figure 1). Other available variables, including

date of specimen collection (period during the epidemic), patient

age and sex were not significantly associated with the lag-time

between symptom onset and specimen collection and, therefore,

not included in the final model. Analyses to simultaneously

estimate initial Rt and serial interval, and estimate initial Rt given

a known serial interval, were performed over the exponential

growth phase of the epidemic from June 21 to August 3, 2009.

Simultaneous Estimation of Rt and Serial Interval
Using the likelihood-based method to simultaneously estimate

initial Rt and the SI across 100 imputations of the dataset (Method

1), we estimated a R̂Rt of 1.47 (95% CI: 1.30–1.72) and a mean SI

of 2.78 days (95% CI: 1.80–3.75) (Figure 2). R̂Rt estimates ranged

from 1.31 (95% CI: 1.21–1.48) to 1.54 (95% CI: 1.37–2.03) when

the maximal value of the SI ranged from 4 to 8 days.

Estimation of Rt Assuming Known Serial Intervals
We first utilised the SI established from the aforementioned field

investigations of the initial 100 cases in estimating Rt, as described

in method 2. When performing the analysis using the SI

distribution observed for laboratory-confirmed pH1N1 secondary

cases only (mean 2.3 days, SD 61.3, range 1–5) [22], we found an

initial R̂Rt of 1.43 (95% CI: 1.38–1.49) (Figure 3A). When

performing the analysis using the SI distribution observed for

both confirmed and suspected secondary cases (mean 2.7 days, SD

61.5, range 1–6) [22], we found an initial R̂Rt of 1.49 (95% CI:

1.44–1.55) (Figure 3B).

Estimation of Rt
Figure 4 shows the variation in R̂Rt with the progression of the

outbreak over time. We observed relatively high R̂Rt values

following the introduction of pH1N1 virus into South Africa,

corresponding to high rates of transmission and exponential

growth of the local epidemic during this period. R̂Rt peaked on the

first day of the epidemic growth period (June 21) at 2.91 (95% CI:

0.85–3.99). R̂Rt began to drop from July 27 onward and remained

consistently below one after August 22. This corresponds with the

decline in the daily incidence of new cases detected. Averaging the

Rt values obtained during the epidemic growth period (June 21 to

August 3, 2009), we estimate initial Rt to be 1.42 (95% CI: 1.20–

1.71).

Figure 2. Distribution of serial interval and initial effective reproductive number (Rt) across 100 simulations for the influenza
A(H1N1)pdm09 epidemic in South Africa using the likelihood-based simultaneous estimation method (method 1).
doi:10.1371/journal.pone.0049482.g002
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Discussion

Utilising temporal data on illness onset and specimen collection,

and the epidemic curve derived from these data, we provide

estimates of the transmissibility parameters of pH1N1 during the

first wave experienced in South Africa. Our results focus primarily

on the use of analytical techniques to estimate initial Rt and SI

without incorporating contact tracing or household transmission

studies. However, when parameters from field studies are avail-

able, we show that these can be incorporated to provide robust

estimates of transmission parameters. We found that initial Rt

estimates established using the likelihood-based method for the

simultaneous estimation of Rt and SI (method 1: initial R̂Rt: 1.47,

SI: 2.78 days) are in agreement with those obtained using SI

observed in field investigations [22] (method 2: initial R̂Rt: 1.43 and

1.49 using observed SI for laboratory confirmed or laboratory

confirmed and suspected cases respectively). In addition, the mean

SI estimate obtained with method 1 (2.78 days) is in agreement

with field findings (SI: 2.3–2.7 days using observed SI for

laboratory confirmed or laboratory confirmed and suspected cases

respectively). Previous estimates of initial Rt and the mean SI for

pH1N1 have ranged between 1.3–2.9 and 2.5–3.3 days, re-

spectively [2,6–11,14–19]. Our estimates are consistent with these

findings, regardless of the method used for the analysis and despite

difference in climate, demography and health systems across these

countries. It appears that once established, the transmission

characteristics of pH1N1 are very consistent. Differences in

transmission rates may occur within smaller subgroups of the

overall population; however, this has not been well-studied.

Previous estimates of the epidemiological parameters of seasonal

influenza epidemics found a SI = 2–4 days [28–30], and a Rt a little

over 1 with slight variation between climates; Rt=1.03 in Brazil

[31] versus Rt=1.1–1.3 in more temperate climates [32]. A

number of studies have retrospectively estimated the transmissi-

bility of influenza pandemics. During the 1918 Spanish influenza

A(H1N1) pandemic, when assuming a SI = 4 days, R0 estimates

range from 2.0–4.3 in community settings [33,34], and even

higher values (R0=2.6–10.6) in confined settings such as ships and

prisons [34]. A separate analysis predicted a slightly lower SI of 3.3

in community settings and a SI of 3.81 in confined settings during

the 1918 pandemic, and subsequently estimated R0 values of 1.34–

3.21 and 4.97 in these respective settings [35]. R0 estimates from

the 1957 Asian influenza A(H2N2) pandemic range from 1.65–

1.68 [36,37]. During the first wave of the 1968–1969 Hong Kong

influenza A(H3N2) pandemic, estimates of R0 range from 1.06–

2.06 and increased to 1.21–3.58 during the second wave [38].

Given our findings, the overall transmissibility of pH1N1 in

South African during 2009 was more similar to that of seasonal

influenza strains than the 1918 pandemic, and comparable to

lower end estimates of the latter pandemics. However, by showing

variation in transmissibility with time, we demonstrate that shortly

after introduction of pH1N1 into the country, transmission of the

virus reached an R̂Rt of 2.9, resulting in exponential growth of the

local epidemic and widespread illness. Nonetheless, we show that

after a period of less than 2 months of heightened transmission, R̂Rt

dropped below 1, corresponding to a decline in the incidence of

new cases; likely a result of a combination of herd immunity,

Figure 3. Distribution of the initial effective reproduction number (Rt) across 100 simulations for the pandemic influenza
A(H1N1)pdm09 epidemic in South Africa, assuming known serial interval (SI) estimates derived from (A) confirmed secondary
cases only (SI: 2.3 days) and (B) confirmed plus suspected secondary cases (SI: 2.7 days) in the transmission chain (method 2).
doi:10.1371/journal.pone.0049482.g003

Figure 4. Temporal variation in the mean effective reproduc-
tive number (R̂Rt) of influenza A(H1N1)pdm09 in South
Africa, June 15 to October 4, 2009 (method 3).
doi:10.1371/journal.pone.0049482.g004
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public health infection control measures and climate impact on

virus transmission.

There are several limitations in this analysis which merit

discussion. First, we assume that all cases are known and reported.

It has been shown previously that, if cases are not reported, this

may bias estimates generated using this method [39]. If the

proportion of cases reported remains consistent over the study,

then the estimates of transmissibility will not be biased; however, if

the reporting fraction varies through time, then biased estimates of

the reproductive number and serial interval may result. Likewise,

variation in case ascertainment with time may bias our estimates of

the temporal variation of Rt. Generally higher reporting rates may

be anticipated in the early phase, with reporting fatigue later

becoming a factor. Secondly, data for this study are derived from

laboratory-based surveillance data from several regions across

South Africa; a large and diverse country. Our findings do not

incorporate heterogeneities (such as spatial and demographic

differences) that likely exist in transmission patterns, or assess the

degree to which these impact aggregate measures of initial Rt.

Methodologies that incorporate heterogeneities inherent in public

health data warrant further study.

Despite these limitations, the post-pandemic estimates presented

here add to the body of knowledge of pH1N1 transmissibility

parameters, which were previously dominated by estimates from

developed nations and often based on preliminary data. It remains

important that revised parameters, from complete datasets and

diverse geographies, are incorporated into planning mitigation

strategies for future pandemics. Nonetheless, the methods used in

this study would be adaptable to generating real-time estimates

during future epidemics. As we continue to build epidemiological

capacity in developing nations, including South Africa, we must

keep in mind the need for rapid assessments of transmissibility of

novel pathogens, in addition to disease severity, to better inform

public health interventions.
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