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Abstract

Arabidopsis thaliana contains two genes encoding farnesyl diphosphate (FPP) synthase (FPS), the prenyl diphoshate
synthase that catalyzes the synthesis of FPP from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In
this study, we provide evidence that the two Arabidopsis short FPS isozymes FPS1S and FPS2 localize to the cytosol. Both
enzymes were expressed in E. coli, purified and biochemically characterized. Despite FPS1S and FPS2 share more than 90%
amino acid sequence identity, FPS2 was found to be more efficient as a catalyst, more sensitive to the inhibitory effect of
NaCl, and more resistant to thermal inactivation than FPS1S. Homology modelling for FPS1S and FPS2 and analysis of the
amino acid differences between the two enzymes revealed an increase in surface polarity and a greater capacity to form
surface salt bridges of FPS2 compared to FPS1S. These factors most likely account for the enhanced thermostability of FPS2.
Expression analysis of FPS::GUS genes in seeds showed that FPS1 and FPS2 display complementary patterns of expression
particularly at late stages of seed development, which suggests that Arabidopsis seeds have two spatially segregated
sources of FPP. Functional complementation studies of the Arabidopsis fps2 knockout mutant seed phenotypes
demonstrated that under normal conditions FPS1S and FPS2 are functionally interchangeable. A putative role for FPS2 in
maintaining seed germination capacity under adverse environmental conditions is discussed.
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Introduction

All isoprenoids are derived from the C5 building blocks

isopentenyl diphosphate (IPP) and its isomer dimethylallyl

diphosphate (DMAPP). In plants, IPP and DMAPP are synthe-

sized via two independent pathways: the mevalonic acid (MVA)

pathway in the cytosol [1] and the 2-C-methyl-D-erythritol 4-

phosphate (MEP) pathway in the plastids [2]. IPP and DMAPP

are subsequently used as substrates by distinct short-chain prenyl

diphosphate synthases that catalyze the head-to-tail condensation

of one molecule of DMAPP with one, two or three IPP units to

produce geranyl diphosphate (GPP; C10), farnesyl diphosphate

(FPP; C15) and geranylgeranyl diphosphate (GGPP; C20), respec-

tively [3], [4]. Pathway specialized branches starting from these

prenyl diphosphates lead ultimately to the production of the

astonishing number of isoprenoid end products synthesized by

plants. GPP serves as a precursor for monoterpenoids, GGPP is a

precursor of diterpenoids, gibberellins, carotenoids and abscisic

acid, side chains of chlorophyll, phylloquinone, plastoquinone and

tocopherols, and geranylgeranylated proteins, and FPP serves as a

precursor for sesquiterpenoids, sterols, brassinosteroids, triterpe-

noids, polyprenols, side chains of ubiquinone, and farnesylated

proteins [5]. It is generally accepted that the intracellular levels of

these prenyl diphosphates and their precursors IPP and DMAPP

must be strictly controlled to avoid deleterious effects on the

metabolic flux through the pathway branches competing for these

intermediates [6]. Indeed, overexpression of FPP synthase (FPS) in

Arabidopsis [7], [8], [9] and phytoene synthase in tomato [10]

results in altered levels of specialized isoprenoid end products that

negatively affect plant performance.

Plants contain small FPS (EC 2.5.1.1/EC 2.5.1.10) isozyme

families [11], [12], [13], [14], [15], [16], [17], [18]. This, together

with the key position of FPP at a node of the isoprenoid pathway

to which many branches leading to mitochondrial and cytosolic

isoprenoids are connected [19], [20], has fuelled interest in

deciphering the role of individual FPS isozymes in the isoprenoid

pathway. Arabidopsis contains two genes, FPS1 (At5g47770) and

FPS2 (At4g17190), encoding three FPS isozymes: FPS1L, FPS1S

and FPS2. The FPS1 gene encodes FPS1S and FPS1L, which
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differ only by an N-terminal extension of 41 amino acid residues

that targets FPS1L into mitochondria [10], [13] whereas the FPS2

gene encodes FPS2 that shares 90.6% amino acid identity with

FPS1 isozymes [12]. Although the intracellular localization of

Arabidopsis FPS1S and FPS2 remains to be experimentally

established, both isozymes are predicted to localize in the cytosol

since they do not bear any obvious subcellular targeting signal

[12]. However, the possibility that one or both Arabidopsis short

FPS isozymes might reside in a different compartment cannot be

excluded. In fact, a Catharanthus roseus short FPS lacking a

canonical peroxisomal targeting sequence partially localizes to

the peroxisomes of C. roseus cells [21]. This observation would

support the hypothesis for a partial localization of the early steps of

the plant isoprenoid pathway in peroxisomes [22], [23] as reported

to occur in mammals [24].

Studies in transgenic Arabidopsis expressing chimeric FPS::GUS

genes [25] and analysis of microarray expression data [26] have

shown that FPS genes are expressed in all organs throughout plant

development, albeit at greatly different levels. FPS1 is widely

expressed in all tissues throughout plant development whereas

expression of FPS2 is mainly concentrated in floral organs, seeds

and the early stages of seedling development. Characterization of

Arabidopsis fps1 and fps2 single knockout mutants demonstrated

that a single functional FPS gene is enough to sustain normal plant

growth and development, thereby indicating that FPS1 and FPS2

can almost fully complement each other. However, simultaneous

knockout of both FPS genes is embryo-lethal and severely impairs

male genetic transmission [26]. Thus, the small Arabidopsis FPS

gene family seemingly constitutes a redundant two-locus genetic

network in which as long as one gene functions, no noticeable loss

of plant fitness occurs. Nevertheless, FPS1 and FPS2 functions are

not completely redundant. FPS activity measurements and analysis

of sterol and ubiquinone levels, the major cytosolic and

mitochondrial FPP-derived isoprenoids, have shown that FPS1S

has a major role during most of the plant life cycle, whereas FPS2

has a predominant role in seeds and during the early stages of

seedling development. In fact, FPS2 is by far the major contributor

to total FPS activity in mature seeds, though shortly after

germination FPS1 replaces FPS2 as the major provider of FPS

activity. Hence, lack of FPS2, but not of FPS1, leads to a marked

reduction of sitosterol content in mature seeds concomitant to a

positive feedback regulatory response of 3-hydroxy-3-methylglu-

taryl coenzyme A reductase (HMGR), the enzyme that catalyzes

the main regulatory step in the MVA pathway and downstream

isoprenoid pathways [27]. The elevated levels of HMGR activity

become essential to sustaining a flux through the isoprenoid

pathway that is high enough to produce sufficient sterols and likely

other isoprenoids needed for normal seed viability, as revealed by

the hypersensitivity of fps2 mutant seeds to the HMGR inhibitor

mevastatin [26]. Correct quantitative and qualitative sterol compo-

sition is essential for proper seed development and viability, not only

because sterols have well established roles in maintaining membrane

structure and function [28] and as precursors of brassinosteroids

[29], but also because they are involved in signalling pathways that

are essential for normal embryogenesis [30], [31].

Biochemical characterization of individual FPS isozymes can

also greatly contribute to the understanding of their physiological

functions. So far, studies on the biochemical properties of plant

FPSs have been conducted in a very limited number of species

using purified native [32], [33] and recombinant [18], [34]

enzyme preparations and, to the best of our knowledge, a

comparative biochemical analysis between individual members of

FPS isozyme families has only been reported in Artemisia tridentata.

This plant contains two FPS isozymes that share 83% of amino

acid identity. In spite of this, FDS-1 and FDS-2 exhibit different

functional properties, which led the authors to propose specific

cellular functions for each of the two isozymes [18]. In the present

study, we report the results of a detailed functional and structural

characterization of the two Arabidopsis short FPS isozymes FPS1S

and FPS2. We also expand our previous FPS gene expression

analysis [25] by establishing the spatial and temporal pattern of

expression of the FPS genes during seed development, and present

the results of functional complementation studies of the fps2 single

knockout mutant phenotypes [26] with chimeric FPS gene

constructs. Altogether, findings reported herein provide new clues

to understand the biological role of FPS isozymes in Arabidopsis.

Materials and Methods

Chemicals
Unlabelled IPP, DMAPP, GPP and FPP were purchased from

Echelon Biosciences and [4-14C]IPP (60 mCi/mmol) was from

GE Healthcare Life Sciences. Mevastatin (Calbiochem, www.

merck-chemicals. com) was dissolved in EtOH to prepare a 5 mM

stock solution.

Plant Material and Growth Conditions
Arabidopsis thaliana wild-type (ecotype Col-3 qrt1/qrt1) and fps2

mutant plants were grown in vitro on Murashige and Skoog (MS)

medium (Duchefa, http://www.duchefa.com) solidified using

0.8% w/v agar, or in vivo on soil in a climate-controlled growth

chamber, under long-day conditions (16 h light/8 h dark) at 22uC.

When required, MS medium was supplemented with 1 mM

mevastatin.

Heterologous Expression of GST-FPS1S and GST-FPS2 in
E. coli and Recombinant Protein Purification

Arabidopsis FPS proteins were expressed as N-terminal GST

fusion proteins using a modified version of pGEX-3X plasmid

(Pharmacia Biotech). The polylinker of pGEX-3X was modified

by introducing a NotI restriction site upstream from the BamHI site

that allows to obtain native proteins having an N-terminal end

without extra residues after cleavage with Factor Xa protease [35].

The cDNAs coding for FPS1S and FPS2 were amplified by PCR

using, respectively, the forward primers 59-ATGGAGACC-

GATCTCAAGTCAACC-39 and 59-ATGGCGGATCT-

GAAATCAACC-39, the common reverse primer 59-

CGCGGATCCCTACTTCTGCCTCTTGTAG-39 (translation

start and stop codons are shown in bold, and BamHI restriction

site is underlined) and plasmids pcNC3 [13] and pcNC2 [12] as

templates, respectively. The resulting PCR products were digested

with BamHI, phosphorylated with T4 Polynucleotide kinase

(Promega) and cloned into the NotI (blunt ended by nuclease S1

treatment) and BamHI restriction sites of the modified pGEX-3X,

yielding plasmids pGEX-3X-NotI-FPS1 and pGEX-3X-NotI-

FPS2. These expression plasmids were transformed into the E.

coli strain BL21 (DE3), harbouring pUBS520 encoding E.coli

tRNAArg AGA/AGG [36], and transformed cells were grown

overnight on LB plates supplemented with ampicillin (100 mg/

mL). Plasmids were isolated from overnight cultures and their

sequences were verified. To express the recombinant proteins,

30 mL of LB medium supplemented with ampicillin (100 mg/mL)

and kanamycin (50 mg/mL) was inoculated with 0.5 mL of an

overnight culture of BL21 (DE3) cells harbouring either pGEX-

3X-NotI-FPS1 or pGEX-3X-NotI-FPS2 and grown at 37uC to an

OD600 of 0.5–0.6. After induction with 0.4 mM isopropyl thio-b-

D-galactopyranoside (IPTG) the cultures were shifted to 20uC and

incubated for 16 additional hours at 200 rpm. E.coli cells were
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collected by centrifugation at 7,000 g for 5 min at 4uC,

resuspended in 3 mL of PBS (80 mM Na2HPO4, 20 mM

NaH2PO4, 100 mM NaCl, pH 7.5) and disrupted by sonication

(0.5 min/mL suspension) while being chilled in a 210uC bath.

Cell debris was removed by centrifugation at 15,000 g for 30 min

at 4uC, and the resulting supernatant was loaded onto a 1 mL

Glutathione-Sepharose 4B affinity chromatography column (GE

Healthcare) pre-equilibrated with PBS. All procedures for enzyme

purification were performed at 4uC unless otherwise indicated.

The column was washed with a minimum volume of 10 mL of

PBS and re-equilibrated with Factor Xa cleavage buffer (50 mM

Tris-HCl, pH 7.5, 50 mM NaCl, 1 mM CaCl2). GST-FPS fusion

proteins were digested by adding to the column 40U of Factor Xa

(Amersham Biosciences) in cleavage buffer to the column. After

overnight incubation at 20–22uC the resulting native FPS proteins

were eluted with cleavage buffer. Fractions of 250 mL were

collected and analyzed by 12,5% SDS-PAGE [37] after a quick

estimation of protein concentration with a NanoDrop ND-1000

spectrophotometer (Thermo Fisher Scientific Inc.). Fractions

enriched in FPS protein were pooled and the remaining Factor

Xa protease was removed by treatment with Factor Xa removal

resin (Qiagen) according to the manufacturer’s instructions.

Glycerol was then added to a final concentration of 15% (v/v)

and samples were stored frozen at 280uC. The purity of each FPS

preparation was checked by SDS-PAGE. Protein concentration was

determined by the method of Lowry [38] using BSA as a standard.

FPS Enzyme Activity Assay and Kinetic Studies
FPS activity of purified recombinant FPS isozymes was

measured in a total volume of 100 mL containing 30 mM PIPES

(pH 7.0), 6 mM NaCl, 4 mM MgCl2, 150 mM sucrose, 10 mg/

mL aprotinin, 2 mg/mL E64, 1 mg/mL pepstatin, 0.35 mM

PMSF, 0.30 mg/mL bovine serum albumin (BSA), 100 mM

[4-14C]IPP (6.97 mCi/mmol), 100 mM GPP and the appropriate

amount of enzyme (between 10 and 40 ng). The reaction was

initiated by the addition of the substrates after preincubation of the

enzyme for 5 min at 37uC. The reaction was carried out at 37uC
for 15 min and terminated by the addition of 585 ml of 2 M HCl

pre-chilled at 0uC. Solid NaCl was added to saturation and the

reaction products were acid hydrolysed by incubation for 30 min

at 37uC. The mixture was extracted with 1 mL of n-hexane and

the radioactivity in 500 mL of the hexanic phase was quantified by

liquid scintillation counting. To measure FPS activity in extracts

from plant tissues, shoots (between 200 and 250 mg) or seeds

(between 25 and 40 mg) were mixed with extraction buffer (2 mL

per mg of seedlings and 20 mL per mg of seeds) containing 50 mM

PIPES, pH 7.0, 250 mM sucrose, 10 mM NaCl, 5 mM MgCl2,

5 mM DTT, 15 mg/mL aprotinin, 3 mg/mL E64, 1.5 mg/mL

pepstatin, and 0.5 mM PMSF pre-chilled at 4uC and ground to a

fine powder with mortar and pestle. The slurry was centrifuged at

200 g for 10 min at 4uC to remove cell debris and the resulting

supernatant was collected and centrifuged again at 16,000 g for

20 min at 4uC. The supernatant was recovered and FPS activity

(between 100 and 200 mg of protein) was assayed for 30 min at

37uC as described above. One unit of FPS is defined as the

amount of enzyme that incorporates one nanomol of IPP into

acid-labile products per minute and mg of protein at 37uC.

For pH dependence analysis, enzyme activity assays were

carried out using MES (5.5, 6.0), PIPES (6.5, 7.0) and Tris-HCl

(7.5, 8.0, 8.5, 9.0). The apparent Km values for the substrates IPP,

DMAPP and GPP were calculated from Lineweaver-Burk plots of

FPS activity. The Km values for DMAPP and GPP were

determined with substrate concentrations in the range of 6.25 to

200 mM with a fixed IPP concentration of 100 mM. The Km value

for IPP was determined with concentrations in the range between

1 to 100 mM and a fixed DMAPP concentration of 200 mM. A

nonlinear regression analysis in Sigma Plot 7.0 was used to

calculate the kinetic parameters.

Determination of HMGR Enzyme Activity and Sitosterol
Content in Seeds

For HMGR activity measurements, seeds (50 mg) were frozen

in liquid nitrogen, ground to a fine powder with mortar and pestle,

and mixed with 0.4 mL of pre-chilled extraction buffer (40 mM

sodium phosphate, pH 7.5, 100 mM sucrose, 30 mM EDTA,

50 mM NaCl, 10 mM DTT, 10 mg/mL aprotinin, 1 mg/mL E64,

0.5 mg/mL leupeptin, 1 mg/mL pepstatin, 0.5 mM PMSF and

0.25% (w/v) Triton X-100). The slurry was centrifuged at 200 g

for 10 min at 4uC to remove cell debris and HMGR activity was

immediately measured in the supernatant as previously described

[39]. One unit of HMGR activity is defined as the amount of

enzyme that converts one picomol of 3-hydroxy-3-methylglutaryl

coenzyme A into MVA per min and mg of protein at 37uC.

Sitosterol levels in seeds were analyzed by GC-MS as previously

described [26].

Western Blot Analysis
Aliquots (40–50 mg of protein) of the same seed extracts used for

FPS activity measurements (16,000 g supernatant) were fraction-

ated by 10% SDS-PAGE and electrotransferred onto Hybond-P

polyvinylidene difluoride membranes (Amersham, Buckingham-

shire, UK) at a constant intensity of 125 mA for 3 h at 4uC. The

membrane was blocked in PBS pH 7.5, 0.5% (v/v) Tween 20 and

5% (v/v) Blotto non-fat dry milk (Santa Cruz Biotechnology inc.)

for 16 h at 4uC, and incubated with rabbit polyclonal anti-FPS1S

antibody [8] (1:8000 dilution in blocking solution) for 1 h at room

temperature. The membrane was then incubated with goat anti-

rabbit IgG conjugated to peroxidase (Amersham) (1:60000 dilution

in blocking solution) for 1 h at room temperature. The FPS1S-

antibody complex was visualized using the ECL Advance Western

blotting system (GE Healthcare) according to the manufacturer’s

instructions. Protein loading was assessed by Coomassie blue

staining of the membranes.

Differential Scanning Fluorimetry
The difference in thermal stability between FPS1S and FPS2

was analyzed by differential scanning fluorimetry (DSF) [40]. In

brief, 20 mL reactions were set up on a 96-well thin-wall plate (Bio-

Rad) containing 3–14 mM each protein in assay buffer (50 mM

Tris-HCl, pH 7.5, 50 mM NaCl, 1 mM CaCl2, 15% (v/v)

glycerol and 56 Sypro Orange (Invitrogen). Assay buffer was

added instead of protein in the control samples. The plates were

sealed with optical-quality sealing tape (Bio-Rad) and heated on a

iQ5 Real Time (RT)-PCR instrument (Bio-Rad) from 20–80uC in

increments of 0.2uC. Fluorescence was monitored with a charge-

coupled device (CCD) camera using 490 and 575 nm as emission

and excitation wavelengths, respectively. The mid-point temper-

ature of the unfolding transition or melting temperature (Tm) was

calculated by fitting a Boltzmann model to the fluorescence

imaging data after eliminating data beyond the fluorescence

intensity maximum.

Homology Modelling
To construct homology models of Arabidopsis FPS1S and FPS2

that could be directly comparable with respect to their sequence

differences, we chose as template the crystal structure of

unliganded human FPS (PDB 2F7M) [41]. The sequence identity
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of human FPS and FPS1S was 45% over 99% of its length (339

out of 343 amino acids) and between human FPS and FPS2 was

46% over 99% of its length (338 out of 342 amino acids). The

phosphate ion and the four water molecules found in the active site

of FPS in this structure were kept to maintain a stable

conformation of the active site loops during modelling. First, we

threaded the correct FPS1S and FPS2 sequences onto the

template structure using Modeller 9.10 [42] and then selected

the 10 best models out of 1000 independent models on the basis of

the Z-DOPE normalized scores, which ranged from –1.916 to –

1.337 for FPS1S and from –1.949 to –1.529 for FPS2 (a Z-DOPE

of less than –1 indicates a plausible model with 80% of the Ca
atoms lying within 3.5 Å of their correct positions). Next, the top

ten models for each protein were refined and minimized using the

Rosetta force field and Monte Carlo sampling methods [43], [44]

and the improved models were clustered and analyzed to obtain a

final model. The final models for FPS1S and FPS2 showed correct

stereochemistry as assessed by MolProbity [45].

In Silico Evaluation of Free Energy and Structure Changes
Upon Mutation

Free energy (DDG) and structure changes upon mutation were

calculated using two established methods, the Rosetta DDG

application [46] and the publicly available CC/PBSA web server

(http://ccpbsa.biologie.uni-erlangen.de/ccpbsa/) [47]. The

changes in stability predicted by the two independent calculations

were analyzed in the context of the predicted structural changes.

The Rosetta DDG protocol corresponds to row 16 of a recent

benchmarking study [46]. Row 16 protocol first repacks all

residues according to Rosetta standard sidechain sampling

procedures while keeping the backbone fixed, and then minimizes

all backbone and sidechain degrees of freedom. Energies are

calculated for 50 wild-type and mutant sequence contexts and the

predicted DDG is the difference in the free energy between the

mutant and wild-type protein. The CC/PBSA method is accessed

via a web interface where the coordinates are submitted along with

a string describing the desired mutation. In a nutshell, the CC/

PBSA method generates two random conformational ensembles

each one of them consisting of 300 wild-type and mutant

minimized structures for which energies are evaluated using a

custom energy function. Those energy contributions are scaled to

reproduce experimentally measured free energies using five-fold

cross validation.

Gene Constructs for Mutant Complementation
To construct plasmid pCAM-FPS2p::FPS1S, a 1388-bp frag-

ment including 1329 bp of the FPS2 gene promoter, the 59

untranslated region and the ATG translation start codon, was

amplified by PCR using genomic DNA as a template, forward

primer 59-GCGTCGACAGCTTGGAGCATAAGAAG-39 and

reverse primer 59-TCCGCCATGGATAGGATCAAGG-39. A

SalI restriction site was added at the 59 end of forward primer

and an NcoI site encompassing the ATG start codon of FPS2 was

created in the reverse primer by introducing a G (shown in bold)

instead of a C. A 2353-bp fragment including the region encoding

FPS1S and 339 bp of the 39-non coding region was amplified by

PCR using genomic DNA as a template, forward primer 59-

AGCTCTTCCATGGAGACCGATC-39 and reverse primer 59-

TTGGAGCTCTTTGGAATGGAATGTAGG-39. An NcoI re-

striction site encompassing the ATG start codon of FPS1S was

created by introducing a C (shown in bold) instead of a G in the

forward primer and a SacI restriction site was added at the 59 end

of reverse primer. Both genomic fragments were cloned into

pGEM-T Easy vector (Promega), excised by digestion with either

SalI and NcoI or NcoI and SacI, and cloned into the SalI and SacI

sites of pBluescript KS+ in a three-piece ligation yielding

pBFPS2p::FPS1S. The entire FPS2p::FPS1S fragment was then

excised by digestion with SalI and SacI and cloned into

pCAMBIA2300 yielding plasmid pCAM-FPS2p::FPS1S.

To create plasmid pCAM-FPS2p::FPS1S-mutdis, a 1375-bp

fragment including 1329 bp of the FPS2 gene promoter was

amplified by PCR using genomic DNA as a template, forward

primer 59-GCGTCGACAGCTTGGAGCATAAGAAG-39 and

reverse primer 59-CCCAAGCTTGATAGGATCAAG-

GAAGGTGT-39. Restriction sites for SalI and HindIII (under-

lined) were added at the 59 end of forward and reverse primers,

respectively. The amplified fragment was cloned into pGEM-T

Easy vector yielding pGEM-FPS2p. A 2472-bp fragment including

the entire coding region of the FPS1 gene and 339 bp of the 39-

non coding region was amplified by PCR using genomic DNA as a

template, forward primer 59-GGGATATCAGTGT-

GAGTTGTTGTTGT-39 and reverse primer 59-

TTGGAGCTCTTTGGAATGGAATGTAGG-39. Restriction

sites for EcoRV and SacI (underlined) were added at the 59 end

of forward and reverse primers, respectively. In the forward

primer the third base of the ATG codon corresponding to the

translation start codon of FPS1L isoform was changed to C (shown

in bold). The amplified fragment was cloned into the EcoRV and

SacI sites of pBluescript SK+ yielding pBFPS1S-mutdis. The FPS1

gene fragment was then excised from pBFPS1S-mutdis with

EcoRV and SacI and cloned into plasmid pGEM-FPS2p, which

had been previously digested with HindIII, treated with nuclease

S1 to produce blunt ends and digested again with SacI (in the

pGEM-T polylinker) yielding pGEM-FPS2p::FPS1S-mutdis. The

entire FPS2p::FPS1S-mutdis fragment was then excised by

digestion with SalI and SacI and cloned into pCAMBIA2300

yielding plasmid pCAM-FPS2p::FPS1S-mutdis.

To construct plasmid pCAM-FPS1p::FPS2, a 1526-bp fragment

including 1338 bp of the FPS1 gene promoter and 185 bp of the

59 leader region up to the ATG translation start codon of FPS1S

was amplified by PCR using DNA from genomic clone pgNC241

as a template [12], forward primer 59-GCGTCGACATAG-

TAGTTAATGTTGGGG-39 and reverse primer 59-

TCTCCATGGAAGAGCTTTGGATACG-39. A SalI site was

added at the 59 end of forward primer and an NcoI site

encompassing the ATG start codon of FPS1S was created by

introducing a G (shown in bold) instead of a T in the reverse

primer. A 2553-bp fragment including the entire coding region of

the FPS2 gene and 438 bp of the 39-non coding region was

amplified by PCR using genomic DNA as a template, forward

primer 59-GATCCTATCCATGGCGGATCTG-39 and reverse

primer 59-AGCGAGCTCATTTCCACTAATCTTCTCG-39.

An NcoI restriction site encompassing the ATG start codon of

FPS2 was created by introducing a C (shown in bold) instead of an

A in the forward primer. A SacI restriction site was added at the 59

end of reverse primer. Both genomic fragments were cloned into

pGEM-T Easy vector, excised by digestion with either SalI and

NcoI or NcoI and SacI, and cloned into the SalI and SacI sites of

pBluescript KS+ in a three-piece ligation yielding pBFPS1p::FPS2.

The entire FPS1p::FPS2 fragment was then excised by digestion

with SalI and SacI and cloned into pCAMBIA1300-T-Nos yielding

plasmid pCAM-FPS1p::FPS2. Plasmid pCAMBIA1300-T-Nos

was generated by introducing the T-Nos sequence from pBI221

into the SacI and EcoRI sites of pCAMBIA1300.

To create plasmid pCAM-FPS1mutdisp::FPS2, a 1526-bp

fragment of the FPS1 flanking region was amplified by PCR using

as a template a chimeric translational FPS1S::GUS gene fusion in

which the ATG start codon of FPS1L had been converted to an
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ATC codon by site directed mutagenesis [25] and the same

forward and reverse primers used to construct pCAM-

FPS1p::FPS2. The amplified fragment was cloned into pGEM-T

Easy yielding pGEM-FPS1mutdisp. The FPS1 gene fragment was

then excised with SalI and NcoI and cloned into pBFPS1p::FPS2 to

replace the corresponding non-mutated region of FPS1 promoter,

yielding plasmid pBFPS1mutdisp::FPS2. The entire pBFPS1mut-

disp::FPS2 fragment was then excised with SalI and SacI and

cloned into pCAMBIA1300-T-Nos yielding plasmid pCAM-

FPS1mutdisp::FPS2.

All PCR fragments used to construct plasmids described above

were sequenced to exclude amplification artifacts. The correct

fusion of the genomic fragments was also confirmed by sequencing.

Plant Transformation and Transgene Expression Analysis
Agrobacterium tumefaciens strain GV3101 harbouring plasmids

described above was used to transform Arabidopsis fps2-1 mutant

plants by the floral dip method [48]. Seeds from infiltrated plants

were surface sterilized and sown in Petri dishes containing solid

MS medium supplemented with 50 mg/mL kanamycin. Antibiot-

ic-resistant seedlings (T1) were transplanted into soil and grown to

maturity. Lines homozygous for the transgenes containing a single

insertion were selected by segregation analysis of the kanamycin

resistance trait.

To analyze the expression of the transgenes introduced into the

fps2-1 mutant, total RNA was isolated from 12-days-old seedlings

form fps2-1 lines harbouring FPS2p::FPS1S, FPS2p::FPS1-mutdis,

FPS1p::FPS2, or FPS1mutdisp::FPS2. Total RNA (1,5 mg) was

treated with DNAse (Ambion) and single-stranded cDNA pools

were synthesized using oligo-dT primer and SuperScript III

reverse transcriptase (Invitrogen) according to standard protocols.

PCR reactions were carried out by 35 cycles of amplification (45 s

at 94uC, 60 s at 50uC and 90 s at 72uC with a 5 min final

extension at 72uC) using as template 7.5 mL of a 1:10 dilution of

the corresponding single-stranded cDNA pools and 1 unit of Taq

polymerase (Biotools). Primers 59- GGCTTTGCA-

CACCTTCCTTG-39 and 59-CCTGTGGATGTGATTGC-

GAAG-39 were used for expression analysis of FPS2p::FPS1S and

FPS2p::FPS1-mutdis genes, and primers 59-GGTGGGAGTCTC-

TATCGTCGTCGTATCCAA-39 and 59-CGGAGAGGCCC-

GAGTATG-39 were used for expression analysis of FPS1p::FPS2

and FPS1mutdisp::FPS2 genes. The expression of the ACT2

(At3g18780) gene was analyzed using primers 59-GATCTGG-

CATCACACTTTCTAC-39 and 59- GCCTTGGAGATCCA-

CATCTGCTG-39. The expression of the PP2AA3 (At1g13320)

gene encoding the 65 kDa regulatory subunit of protein phospha-

tase 2A (PP2A) was analyzed using primers 59-TAACGTGGC-

CAAAATGATGC-39 and 59-GAAGCCAACATTAACATTAG-

TAGC-39.

GUS Assay in Arabidopsis Seeds
Siliques were harvested, opened longitudinally, placed in GUS

assay buffer (50 mM phosphate buffer, pH 7.0, 0.2% (v/v) Triton

X-100, 20 mM X-Gluc and 2 mM potassium ferricyanide) and

subjected to vacuum for 10 min. After incubation for 24 hours at

37uC, siliques were placed in ethanol:acetic acid (1:1) and

incubated for either 4 hours (young seeds with embryos at the

globular and heart stages) or 8 hours (mature seeds with embryos

at torpedo and cotyledon stages). GUS-stained seeds were cleared

in Hoyer’s medium for 3–4 days in darkness [49]. Dissected seeds

were placed on a slide covered with a coverslip, stored in darkness

for 24 hours and observed under a Zeiss Axiophot microscope

equipped with Nomarski optics. Photographs were taken using the

same microscope equipped with an Olympus DP70 photo camera.

Expression of GFP-FPS1S, GFP-FPS2, FPS1S-GFP and
FPS2-GFP in Agroinfiltrated Leaves of N. benthamiana
Plants

The FPS1S coding sequence (1029 bp) was amplified by PCR

using forward primer 59-ACGCGTCGACAATGGAGACC-

GATCTCAAGTCAACC-39, reverse primer 59-CTGTCGA-

TATCCCTTCTGCCTCTTGTAGATCTTAGC-39 and plas-

mid pcNC3 [13] as a template. The sequence coding for FPS2

(1039 bp) was amplified using forward primer 59-ACGCGTCGA-

CAATGGCGGATCTGAAATCAACCTTC-39, reverse primer

59-GAGTATGATATCCCTTCTGCCTCTTGTAGATCT-

TAGC-39 and plasmid pcNC2 [12] as a template. Translational

start codons are shown in bold. SalI and EcoRV restriction sites

(underlined) were added at the 59 end of the forward and reverse

primers, respectively. The amplified fragments were cloned into

the corresponding sites of plasmid pENTR3C (GatewayH,

Invitrogen) yielding plasmids pENTR-FPS1S and pENTR-FPS2.

Both cDNA fragments were subsequently transferred from

pENTR-FPS1S and pENTR-FPS2 to pMDC43 and pMDC83

(GatewayH, Invitrogen) yielding plasmids pMDC43FPS1S,

pMDC43FPS2, pMDC83FPS1S and pMDC83FPS2, in which

the FPS coding sequences were fused in-frame to the 59- or 39-ends

of the green fluorescent protein (GFP) coding sequence. In all cases

the coding sequences were under the transcriptional control of the

CaMV35S gene promoter. All constructs were sequenced to

confirm the in-frame fusions. Plasmids coding for the different

protein fusions were transformed into Agrobacterium tumefaciens strain

EHA105. The recombinant A. tumefaciens strains were grown

overnight at 28uC in YEB liquid medium supplemented with

100 mg/mL rifampicine and 25 mg/mL kanamycin. Cells were

harvested by centrifugation and resuspended to an OD600 of 0.150

in a solution containing 10 mM MgCl2, 10 mM HEPES, pH 5.6,

and 200 mM acetosyringone (3,5-dimethoxy-49-hydroxy-acetophe-

none). Prior infiltration, bacterial suspensions were incubated at

room temperature for 3 h. For co-expression experiments,

suspensions of A. tumefaciens harbouring the FPS-GFP expression

constructs were mixed with A. tumefaciens cultures harbouring

constructs for expression of the cyan fluorescent protein (CFP)-

peroxisome marker (CFP-SKL) [50] and the tobacco etch

polytovirus helper component protein (HC-Pro) silencing suppres-

sor [51] in a 1:1:1 ratio. Leaves of 2–4 week old N. benthamiana

plants were infiltrated by gently appresing a 2-ml syringe without a

needle to the abaxial surface of fully expanded leaves. Following a

2–3 day incubation of infiltrated plants under long-day conditions

at 25uC and 60% humidity, abaxial epidermis of leaf tissue was

examined by confocal laser-scanning microscopy using a Leica

SP5 microscope (Leica Microsystems). GFP and CFP were excited

by using 488 and 458 laser lines, respectively. Images were

acquired sequentially to avoid crosstalk between channels. LAS-

AF Lite 2.6.0 software was used for image capture and for merging

false-coloured images of transiently co-transformed cells.

Results

Biochemical Characterization of Recombinant FPS1S and
FPS2 Isozymes

Arabidopsis FPS1S and FPS2 isozymes were expressed in E. coli

as soluble N-terminal GST fusions (Figure 1A). The resulting

recombinant proteins were purified through Glutathione-Sephar-

ose 4B affinity chromatography, digested with Factor Xa protease

to release native FPS1S and FPS2 enzymes, and further purified to

remove both the excised GST moiety and Factor Xa protease.

SDS-PAGE analysis showed that this purification procedure
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yielded highly purified preparations of both enzymes (Figure 1B)

that were used for biochemical characterization.

Prenyltransferases are known to require a divalent metal ion for

catalytic activity. Thus, we first analyzed the effect of different

Mg2+ concentrations on FPS1S and FPS2 activity. Similar values

of activity were obtained when the enzyme activity was measured

in the presence of MgCl2 concentrations ranging between 1 and

5 mM (data not shown). The optimal pH range for FPS1S and

FPS2 was also determined. Both enzymes showed a similar pH-

rate profile with only minor differences (Figure 2A). Maximal

activity for both enzymes was observed at a pH value of 7.0, albeit

the pH-rate profile of FPS1S was slightly shifted toward more

acidic pH values compared to FPS2. We next investigated the

effect of NaCl on the activity of FPS1S and FPS2 using

concentrations in the range from 0 to 2 M. As shown in

Figure 2B, the activity of both enzymes progressively declined as

the concentration of NaCl increased, though in the case of FPS1S

this effect was observed only at NaCl concentrations higher than

0.5 M. At all NaCl concentrations tested, FPS2 was markedly

more sensitive to the inhibitory effect of NaCl than FPS1S.

Purified FPS1S and FPS2 were also subjected to kinetic analyses

and the resulting steady-state kinetic constants are shown in

Table 1. Both enzymes displayed typical Michaelis-Menten

behaviour, as observed for other FPSs, and exhibited similar Km

values in the mmolar range (from 8.3 to 31.5 mM) for both IPP and

the allylic substrates DMAPP and GPP. The affinity (Km) of FPS1S

and FPS2 for the reaction intermediate GPP was approximately

2.7-fold higher than for DMAPP, thus indicating a preference of

both enzymes for the allylic intermediate. Similarly, comparison of

the specificity constants (kcat/Km) indicated a 2-fold higher

catalytic efficiency for GPP compared to DMAPP. The inhibitory

effect of the reaction product FPP on FPS1S and FPS2 activity was

analyzed using concentrations in the range from 0 to 1 mM. The

activity inhibition profile was nearly identical for both enzymes,

with a maximal 30% reduction of activity at the highest FPP

concentration assayed.

Interestingly, FPS2 preparations consistently showed higher

specific activity than the FPS1S ones. In fact, FPS2 showed

catalytic rate constant (kcat) values for IPP, DMAPP, and GPP that

were 3.2-, 2.7- and 2.7-fold higher, respectively, than FPS1S, thus

indicating that FPS2 is a more efficient catalyst than FPS1S. These

differences cannot be attributed to differential stability of the

enzymes either under storage conditions or during the purification

procedure since both retained more than 90% of their initial

activity after 2 months of storage at 280uC and their activity

remained virtually unaffected after incubation for 1 hour at 37uC
(Figure 3A). In contrast to this later observation, we observed a

markedly different response of FPS1S and FPS2 to treatment at

45uC for different time-periods. As shown in Figure 3A, FPS2

activity remained unaltered after incubation for 1 hour at 45uC

Figure 1. Expression in E. coli and purification of recombinant
FPS1S and FPS2 proteins. (A) Total protein extracts from E. coli cells
harbouring either pGEX-3X-NotI-FPS1 or pGEX-3X-NotI-FPS2 before
(lanes 1 and 3) and after induction (lanes 2 and 4) of GST-FPS1S and
GST-FPS2 expression with 0.4 mM IPTG for 6 hours at 22uC. (B) Soluble
protein extracts of IPTG-induced E. coli cells harbouring either pGEX-3X-
NotI-FPS1 (lane 1) or pGEX-3X-NotI-FPS2 (lane 2), and purified native
FPS1S (lane 3) and FPS2 (lane 4) protein preparations after Glutathione-
Sepharose 4B affinity column chromatography, proteolytic digestion
with Factor Xa and protease removal. Arrows indicate the position of
GST-FPS protein fusions and purified native FPS proteins. Molecular
masses of standards (M) are indicated in kDa.
doi:10.1371/journal.pone.0049109.g001

Figure 2. Effect of pH and NaCl on FPS1S and FPS2 enzyme
activity. (A) FPS activity of purified FPS1S and FPS2 was determined at
pH values ranging from 5.5 to 9.0 as described under Materials and
Methods. Enzyme activities are expressed relative to the maximal
activity values for FPS1S and FPS2. (B) Effect of NaCl on FPS1S and FPS2
enzyme activity. FPS activity of purified FPS1S and FPS2 was determined
at the indicated NaCl concentrations. Enzyme activities are expressed
relative to the activity values for FPS1S and FPS2 measured without
NaCl. The mean values and SE were calculated from three independent
experiments.
doi:10.1371/journal.pone.0049109.g002

Arabidopsis Farnesyl Diphosphate Synthase

PLOS ONE | www.plosone.org 6 November 2012 | Volume 7 | Issue 11 | e49109



whereas FPS1S activity was completely abolished after 20 minutes

at the same temperature. A similar result was obtained when

protein extracts from the Arabidopsis fps1-1 and fps2-1 single

knockout mutants bearing only one functional FPS gene (FPS2 and

FPS1 respectively) were incubated at 45uC for different time-

periods and assayed for FPS activity. Again, incubation at 45uC
had almost no effect on FPS2-derived activity in extracts from fps1-

1 plants, whereas FPS1-derived activity in extracts from fps2-1

plants was severely diminished upon incubation at the same

temperature (Figure 3B). These differences in thermal stability

were corroborated by differential scanning fluorimetry (DSF) [40].

The melting temperature (Tm) derived from the DSF data is a

useful diagnostic tool because greater thermal stability is associated

with a positive shift in Tm with respect to a reference T0 (Tm –

T0 = DTm .0) and vice versa. DSF experiments with 3–14 mM

FPS1S or FPS2 in FPS activity assay buffer yielded Tm values of

37uC and 48.3uC, respectively, a difference in Tm of 11.3uC
(Figure 3C). Based on these results, it can be concluded that FPS2

is more resistant to thermal inactivation than FPS1S because FPS2

protein is thermodynamically more stable than FPS1S.

Structural Basis of the Enhanced Thermal Stability of
FPS2

To further our understanding of the differential thermal stability

between FPS1S and FPS2, homology models for both proteins

were built using as a template the crystal structure of unliganded

human FPS (PDB 2F7M) [41] (Figure 4A) and carefully assessed

with respect to their stereochemistry. Best models for both

enzymes showed correct stereochemical parameters and native

dimer interfaces using various stringent criteria [45], [52]. The

root-mean-square (r.m.s.) deviation between each model and the

template structure was 0.26 Å and between the two models was

0.29 Å. Mapping of the sequence substitutions between FPS1S and

FPS2 onto their respective ribbon structures and molecular

surfaces (Figure 4B) showed that the immense majority of these

substitutions occur at the outer surface of the enzyme.

Detailed analysis of the thirty-two substitutions that separate

FPS2 from FPS1S revealed that the increase in surface polarity

and the greater capacity to form surface salt bridges of FPS2

compared with FPS1S appear to be determining factors of the

enhanced thermostability of FPS2. Indeed, there are several

discernable trends in amino acid substitution between FPS2 and

FPS1S that lends support to this hypothesis. First, FPS2 has four

charged residues more than FPS1S of which three are basic and

one is acidic. Secondly, polar and charged sidechains in FPS2 tend

to be longer on average than in FPS1S (e.g., substitutions follow

Asp = . Glu, Asn = . Gln), which could afford greater rotameric

freedom and thereby facilitate formation of polar interactions on

the protein’s surface. In summary, inspecting the FPS1S and FPS2

homology models around each mutated residue suggested that as

Table 1. Steady-state kinetic constants for FPS1S and FPS2.

Variable
substrate Kinetic parameter FPS1S FPS2

IPP Km (mM) 23.160.4 31.360.5

kcat (min21) 62.5 269.0

kcat/Km (min21mM21) 2.7 8.6

DMAPP Km (mM) 22.762.1 31.560.5

kcat (min21) 52.2 197.3

kcat/Km (min21mM21) 2.3 6.2

GPP Km (mM) 8.361.2 11.361.0

kcat (min21) 36.4 132.8

kcat/Km (min21mM21) 4.4 11.7

The Km mean values and SE were calculated from three independent
experiments.
kcat values were calculated for the dimeric form of the enzyme.
doi:10.1371/journal.pone.0049109.t001

Figure 3. Thermal stability of FPS1S and FPS2 enzyme activity.
(A) Activity of purified FPS1S (open symbols) and FPS2 (closed symbols)
was measured after incubation at either 37uC (squares) or 45uC (circles)
for the indicated time periods. (B) FPS activity in 16,000 g protein
extracts from fps1-1 (FPS2 activity, closed circles) and fps2-1 (FPS1
activity, open circles) mutants was determined after incubation at 45uC
for the indicated times. In both cases enzyme activities are expressed
relative to the FPS activity values at time 0 min and the mean values
and SE were calculated from three independent experiments. (C)
Differential scanning fluorimetry (DSF) results plotted as change in
fluorescence emission intensity (normalized to unity at its maximum)
with increasing temperature (20–80uC). The FPS1S and FPS2 curves
correspond to 6 mM enzyme.
doi:10.1371/journal.pone.0049109.g003
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many as three additional salt bridges (and several strong hydrogen

bonds) could be established in FPS2 compared to FPS1S. Other

metrics of structure stability, such as sidechain hydrogen bonds (31

in all/4 strong versus 30 in all/2 strong) and salt bridges across the

dimer interface (7 versus 5) interface did also favour FPS2 with

respect to FPS1S. Interestingly, a number of aromatic-aromatic,

aromatic-sulfur and pi-cation interactions seem to be more

prevalent in FPS2 than in FPS1S, and could also make a sizable

contribution to the overall thermal stability of the two enzymes.

To accurately calculate the changes in free energy and structure

induced by single residue substitutions we applied the Rosetta

DDG [46] and CC/PBSA [47] methods to predict the free energy

and structure changes underwent by FPS1S as single FPS2-

mimicking substitutions are introduced. Results indicated that the

cumulative free energy change summed over all mutated residues

was energetically very favourable regardless of the method used, in

qualitative agreement with the results from DSF experiments.

Moreover, the Rosetta DDG and CC/PBSA protocols flag 58%

(15 versus 11) and 69% (9 versus 4) of the non-neutral substitutions

as stabilizing (DDG , –1 kcal/mol). Of the non-stabilizing

mutations, Rosetta DDG brands more mutations than CC/PBSA

as destabilizing (DDG . +1 kcal/mol) than neutral (DDG between

–1 and +1 kcal/mol). Figure 4C shows this pattern for both the

Rosetta DDG and the CC/PBSA protocols. Of the 21 out of 32

substitutions that change any residue in FPS1S to a polar/charged

residue in FPS2, 85% (18) are predicted as non-destabilizing (the

three exceptions are Q70K, E170D and D283E) thereby

providing corroborative evidence for the important role of surface

electrostatic interactions for FPS2 thermal stability. Perhaps one of

the larger discrepancies between the two prediction methods

involves substitutions F58Y, N65Q, Q70K and V72T, for which

DDG estimates are reversed. These four substitutions, which are

located in three consecutive helices, cluster tightly together around

a 6-Å sphere and therefore it is plausible that the true structure of

Figure 4. Homology modelling of FPS1S and FPS2 proteins and in silico DDG calculations. (A) Ribbon representation of the dimeric and
monomeric structures of human FPS (PDB 2F7M), which was used to template the threading of Arabidopsis FPS1S and FPS2. The active site cleft is
labelled and a bound phosphate ion is shown in sticks. (B) Sequence substitutions between FPS1S (top) and FPS2 (bottom) were mapped onto the
ribbon structure (left monomer) or the molecular surface (right monomer) of the homology modeled dimers. Chemical character is colour coded as
follows: red, acidic (Asp, Glu); blue, basic (Arg, Lys, His); green, polar (Ser, Thr, Asn, Gln, Tyr); orange, apolar (Met, Phe, Pro, Trp, Val, Leu, Ile, Ala). (C)
Histogram of DDG (kcal/mol) upon single-site substitution calculated using Rosetta DDG application (top) or CC/PBSA (bottom). Mutations predicted
to occur with a decrease in DDG are coloured green and those expected to increase DDG are coloured pink. Horizontal dashed lines at –1 to +1 kcal/
mol bound the neutral area where DDG is supposed to contribute little to the overall stabilization or destabilization of the mutated protein.
doi:10.1371/journal.pone.0049109.g004
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FPS2 had undergone compensatory changes that cannot be

accurately captured by our single-site mutation calculations.

Future structural studies of FPS1S and FPS2 should provide more

accurate rationales for the observed stability differences.

Subcellular Localization of FPS1S and FPS2
Arabidopsis FPS1S and FPS2 isoforms have long been

considered to localize in the cytosol, mainly because no obvious

organellar targeting signals have been detected in their primary

structure. To provide experimental data supporting this assump-

tion, the subcellular localization of Arabidopsis FPS1S and FPS2

was investigated by transiently expressing N- and C-terminal

fusions of both FPS isoforms to the GFP in agroinfiltrated N.

benthamiana leaf cells (Figure 5). Confocal laser microscopy analysis

of the transfected cells revealed that all four tested proteins (GFP-

FPS1S, FPS1S-GFP, GFP-FPS2, and FPS2-GFP) showed a diffuse

pattern of fluorescence throughout the cytosol that was completely

different from the punctuate fluorescence pattern characteristic for

peroxisomal proteins, as revealed by comparison with the

fluorescence signal of the peroxisomal marker CFP-SKL. These

results strongly suggested that both FPS1S and FPS2 localize in

the cytosol and not in the peroxisomes.

Expression Pattern of Arabidopsis FPS1 and FPS2 Genes
during Seed Development

Characterization of Arabidopsis fps single knockout mutants

revealed a differential contribution of FPS isoforms to total FPS

activity in mature seeds [26]. In order to investigate whether this

effect could be due to differential expression of FPS1 and FPS2 in

seed tissues, we analyzed the spatial and temporal pattern of

expression of GUS activity in seeds at different developmental

stages harvested from Arabidopsis lines harbouring FPS1S::GUS

and FPS2::GUS transgenes (Figure 6). These chimeric gene fusions

included approximately 1350 bp of the corresponding FPS

promoter region [25]. In FPS1S::GUS plants, the primary site of

GUS activity detection at all stages of development was the

maternal chalazal seed coat (Figure 6A–E). At the globular, heart

and early-torpedo stages of embryo development some variable

and weaker GUS staining could also be detected in surrounding

tissues (Figure 6A–C) although it is difficult to establish whether

this expression reflected diffusion of the substrate or true

expression of the transgene. At latter stages of embryo develop-

ment GUS activity was restricted to the chalazal seed coat

(Figure 6D and E). Interestingly, no expression of GUS activity in

the embryo could be detected at any developmental stage. The

pattern of GUS expression driven by the FPS2 promoter was

completely different (Figure 6F–J). At the globular stage of embryo

development GUS staining was detected only in the chalazal

endosperm (Figure 6F), but from the heart stage onward GUS

activity could also be detected in the embryo (Figure 6G–J). At the

heart and early torpedo stage GUS expression in the embryo was

primarily localized to the root apical meristem region (Figure 6G

and H, arrowhead) and the pro-vascular tissue of embryo (Figure 6,

inset). Up to this developmental stage, a very faint staining could

also be detected in the endosperm of some seeds when they were

subjected to intensive staining. At later developmental stages GUS

activity was clearly detected in the whole embryo as well as in the

surrounding endosperm (Figure 6I). In mature seeds, strong GUS

activity was also present in the cotyledonary embryo (Figure 6J),

which is in sharp contrast to the absence of GUS activity in the

embryo of mature seeds expressing FPS1S::GUS (Figure 6E). In

conclusion, analysis of FPS1S::GUS and FPS2::GUS expression

analysis demonstrated that FPS genes are differentially regulated

during Arabidopsis seed development, showing highly comple-

mentary expression patterns particularly at late stages of seed

formation.

Functional Complementation of fps2 Mutant Seed
Phenotypes by FPS1S

Mature seeds lacking FPS2 activity display several phenotypes

including reduced levels of sitosterol, the main sterol found in plant

tissues, increased HMGR activity and hypersensitivity to mevas-

tatin compared to both fps1 and wild-type seeds [26]. To

determine whether FPS1S could complement these phenotypes,

transgenic fps2-1 plants expressing FPS1S under the control of the

FPS2 gene promoter were obtained. To this end we created two

different gene constructs that were able to produce only isoform

FPS1S (Figure 7A and B). The FPS2p::FPS1S-mutdis gene consisted

of 1375 bp of the FPS2 59-flanking region, including 1329 bp of

the promoter and the entire 59-untranslated region, fused to the

genomic coding region of FPS1 in which the distal ATG start

codon was converted into an ATC codon to ensure that only

FPS1S isoform could be produced. The FPS2p::FPS1S gene

differed from FPS2p::FPS1S-mutdis gene in that the region

comprised between the two ATG codons was removed.

Several independent lines of these two kinds of transgenic plants

were obtained and characterized. Among them, lines 6.2, 7.2 and

10.2 for FPS2p::FPS1S-mutdis and lines 2.2, 7.1 and 8.1 for

FPS2p::FPS1S were selected for further characterization. The

expression of FPS2p::FPS1S-mutdis and FPS2p::FPS1S was analyzed

in young seedlings using semiquantitative RT-PCR and a primer

set consisting of a forward primer specific for the FPS2 59-

untranslated sequence and a reverse primer located in the FPS1

coding region. The three selected FPS2p::FPS1S-mutdis lines

showed very similar levels of expression of the FPS1 mRNA that

were even higher than those detected in wild-type plants

(Figure 8A). Accordingly, protein extracts from seeds of

FPS2p::FPS1S-mutdis lines also contained both higher levels of

FPS1S protein, as demonstrated by Western blot analysis

(Figure 8B), and higher values of FPS activity (Figure 9C)

compared to wild-type seeds. On the contrary, FPS protein and

enzyme activity levels in extracts from seeds of the three

FPS2p::FPS1S transgenic lines were comparable to those found

in extracts of fps2-1 mutant seeds, which indeed were much lower

that those detected in wild-type seed extracts (Figure 8B and C).

The inability of FPS2p::FPS1S to restore wild-type levels of FPS

protein and enzyme activity was not due to a lack of expression of

the transgene, since its mRNA was detected in the seedlings of the

three selected lines. In two of them (lines 7.1 and 8.1), expression

of the transgene was less intense than in wild-type plants whereas

in the third one (line 2.2) expression was slightly stronger than in

control plants (Figure 8A). These observations suggested that

translation of the chimeric FPS2::FPS1S mRNA expressed by

FPS2p::FPS1S was severely impaired, which is most likely due to

the different structural environment around the AUG start codon

of the FPS2::FPS1S mRNA compared to that of the FPS2 and

FPS2::FPS1S-mutdis mRNAs (Figure S1). Among the different

structural features known to be involved in translational control of

specific mRNAs [53], base-pairing involving nucleotides within

the AUG codon has been recognized as an important structural

determinant that may influence translation initiation [54], [55].

To complete the characterization of the transgenic lines we next

assessed whether expression of FPS1S driven by the FPS2

promoter could complement the characteristic phenotypes of

fps2-1 seeds. Sitosterol and HMGR activity levels were quantified

in seeds of FPS2p::FPS1S-mutdis and FPS2p::FPS1S lines. None of

the fps2-1 seed phenotypes could be rescued by FPS2p::FPS1S

expression (Figures 9A–C), a result that was fully consistent with
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the lack of FPS1S protein production and enzyme activity

recovery (Figure 8B and C). On the contrary, sitosterol and

HMGR activity levels were both restored to those of wild-type

seeds in lines expressing FPS2p::FPS1S-mutdis (Figures 9A and B).

Recovery of wild-type levels of HMGR activity in seeds also

restored normal mevastatin sensitivity to these lines (Figure 9C).

Altogether, these results demonstrated that FPS1S is able to

functionally replace FPS2.

Rescue of fps2 Mutant Seed Phenotypes by Increasing
Total FPS Activity in Seeds

Once we had demonstrated that expression of FPS1S driven by

the FPS2 promoter was able to rescue the phenotypes caused by

loss of function of FPS2, we set out to determine whether

expression of FPS2 driven by the FPS1 promoter could also rescue

the fps2-1 phenotypes. To this end fps2-1 plants harbouring genes

FPS1mutdisp::FPS2 and FPS1p::FPS2 (Figure 7C and D) were

created and characterized. FPS1mutdisp::FPS2 consisted of 1526 bp

of the FPS1 59-flanking region, including 1338 bp of the FPS1 gene

promoter and the entire 59-untranslated region in which the distal

ATG start codon was converted into an ATC codon, fused to the

genomic coding region of FPS2 so that only FPS2 isoform could be

produced from this transgene. In the FPS1p::FPS2 gene, the distal

ATG codon was not disrupted and therefore this transgene could

potentially express both FPS2 and a long version of FPS2

equivalent to FPS1L. Among the transgenic lines obtained, lines

6.2, 5.4 and 5.2 harbouring FPS1mutdisp::FPS2, and lines 3.1, 2.4

and 2.1 harbouring FPS1p::FPS2 were selected for further

Figure 5. Subcellular localization of GFP-tagged FPS1S and FPS2 proteins. Confocal laser scanning micrographs showing the distribution of
fluorescence in agroinfiltrated N. benthamiana epidermal cells transiently co-expressing FPS1S-GFP (A), GFP-FPS1S (E), FPS2-GFP (I) or GFP-FPS2 (M)
with the peroxisome protein marker CFP-SKL (B, F, J and N). Co-localization evaluation of GFP-tagged FPS proteins with the peroxisome protein
marker (C, G, K and O). Differential interference contrast (DIC) images showing the morphology of transformed cells (D, H, L and P). Scale
bars = 20 mm.
doi:10.1371/journal.pone.0049109.g005
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characterization. The expression of the transgenes was analyzed in

young seedlings of these lines using semiquantitative RT-PCR and

a primer set consisting of a forward primer specific for the FPS1 59-

untranslated sequence and a reverse primer specific for the FPS2

coding region. All selected lines showed comparable expression

levels of the chimeric FPS2 mRNAs that, as expected, were not

detected either in wild-type plants or in fps2-1 plants (Figure 10A).

However, striking differences in FPS protein and activity levels

were observed between the two groups of transgenic plants. FPS

protein content in seeds of the three FPS1mutdisp::FPS2 lines was

comparable and only slightly above that found in fps2-1 seed

extracts. By contrast, total FPS protein levels in FPS1p::FPS2 seeds

varied greatly. The amount of FPS protein in line 2.4 was pretty

similar to that found in FPS1mutdisp::FPS2 plants whereas line 3.1

had strikingly elevated levels of FPS protein. Line 2.1 showed

intermediate levels of FPS that were, nevertheless, higher than in

wild-type plants (Figure 10B). These differences could be due to

the production of different relative amounts of short and long

versions of FPS2 in FPS1p::FPS2 seeds. Unfortunately, it is not

possible to determine the relative contributions of the individual

short and long FPS2 forms to the total amount of FPS2 protein

since they both have the same size after processing of the long

version of FPS2 [9]. In any case, a close correlation between FPS

protein content and enzyme activity levels was observed in the

seed extracts of all lines (Figure 10C). Analysis of the characteristic

fps2-1 phenotypes in seeds of the transgenic lines revealed that the

phenotypes associated to loss of function of FPS2 were fully

rescued in all transgenic lines regardless of the degree of FPS

activity enhancement in the mature mutant seeds (Figure 11A–C).

In fact, a small increase of FPS activity of only 1.2-fold (line 6.2)

was sufficient to restore wild-type sitosterol and HMGR activity

values as well as normal Mst sensitivity to the same extent than a

drastic enhancement of FPS activity (approximately 9-fold in line

3.1). These results suggested that impaired synthesis of FPP in the

mature embryo due to the lack of FPS2 activity could be fully

compensated just by increasing slightly the synthesis of FPP in the

seed maternal tissues.

Discussion

Isozymes usually display specific biochemical properties that

allow fine-tuning of metabolic pathways to meet the specific needs

of tissues and organs at different developmental stages and/or

under different environmental conditions. The occurrence in

plants of small FPS isozyme families has raised the still-

unanswered question about the role of individual FPS isozymes

in the cytosol/ER isoprenoid biosynthetic pathway. Most of the

information currently available on the biological function of FPS

isozyme family members has been obtained from the pattern of

expression of the corresponding genes [11], [14], [15], [16], [17],

[25] and the characterization of mutants that either overexpress

[8], [10] or lack individual FPS isozymes [26]. By contrast, much

less attention has been paid to investigate and compare the

biochemical properties of individual FPS isozyme family members,

despite this knowledge may also greatly contribute to the

understanding of their role in the isoprenoid pathway [18].

Figure 6. Histochemical analysis of GUS activity during seed development in Arabidopsis lines harbouring transgenes FPS1S::GUS
(panels A to E) and FPS2::GUS (panels F to J). Seeds containing embryos at the globular (A and F), heart (B and G), early-torpedo (C and H),
torpedo (D and I) and maturation green (E and J) developmental stages were analyzed for GUS expression as described under Material and Methods.
GUS expression in the root meristematic region of the embryo at heart (G) and early-torpedo (H) stages in FPS2::GUS seeds is indicated by
arrowheads. The inset between panels (H) and (I) shows expression of FPS2::GUS in the root meristematic region and the pro-vascular tissue of an
embryo at the early-torpedo stage.
doi:10.1371/journal.pone.0049109.g006

Arabidopsis Farnesyl Diphosphate Synthase

PLOS ONE | www.plosone.org 11 November 2012 | Volume 7 | Issue 11 | e49109



In this study we report a detailed functional and structural

characterization of the Arabidopsis FPS1S and FPS2 isozymes.

Both enzymes were efficiently expressed in E. coli as GST-FPS

fusion proteins, though the GST tag was removed by proteolytic

cleavage during the purification process (Figure 1) to avoid any

interference it could have on FPS activity [56]. Biochemical

characterization of the purified native FPS1S and FPS2 revealed

that both enzymes displayed very similar pH-rate profiles with an

optimum at pH 7.0 (Figure 2). This pH preference was consistent

with the predicted cytosolic localization of both FPS isozymes

because the pH of the cytoplasm of plant cells is kept slightly

alkaline at 7.2-7.5 under non-eliciting conditions [57]. The

cytosolic localization of both FPS isozymes was demonstrated by

transiently expressing N- and C-terminal fusions of FPS1S and

Figure 7. Schematic representation of chimeric genes FPS2p::FPS1-mutdis (A), FPS2p::FPS1S (B), FPS1mutdisp::FPS2 (C) and FPS1p::FPS2
(D). Dark gray boxes represent FPS2 genomic sequences whereas sequences corresponding to FPS1 gene are represented by light gray boxes. In all
constructs the 39-untranslated regions of both FPS genes is represented by an empty box. The position of the translational start codons is indicated as
ATG and that of stop codons is indicated as TAG. In the FPS2p::FPS1S-mutdis (A) and FPS1mutdisp::FPS2 (C) constructs, the 59-most ATG codon in exon
1 of the FPS1 gene was mutated to an ATC codon (encoding Ile). Arrows indicate the transcription start sites. In the FPS1 gene, position +1 was
assigned to the most internal transcription start site.
doi:10.1371/journal.pone.0049109.g007
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FPS2 with GFP in agroinfiltrated N. benthamiana leaf cells. Under

our experimental conditions all the four fusion proteins localized

exclusively in the cytosol (Figure 5). This result was fully consistent

with the absence of canonical subcellular targeting signals in the

FPS1S and FPS2 proteins, and argued against the possibility that

FPS1S and FPS2 could harbour a cryptic signal for peroxisomal

targeting as recently reported to occur in a C. roseus short FPS

enzyme. In contrast to our results, an N-terminal fusion of CrFPS

with YFP was found to localize both in the peroxisomes and the

cytosol of C. roseus cells despite the protein does not contain any

Figure 8. Characterization of fps2-1 mutant lines harbouring FPS2p::FPS1S and FPS2p::FPS1-mutdis genes. (A) The expression of
FPS2p::FPS1S and FPS2p::FPS1-mutdis was investigated using total RNA from 12-day-old seedlings of Arabidopsis wild-type, fps2-1 and the indicated
lines of the fps2-1 mutant harbouring FPS2p::FPS1S-mutdis and FPS2p::FPS1S chimeric genes (upper panel). PCR products were electrophoresed in a
1% agarose gel. The size in bp of the amplified cDNA fragments corresponding to FPS2p::FPS1-mutdis, FPS2p::FPS1S and ACT2 (actin) genes is
indicated on the left. The size of the fragment amplified from FPS2p::FPS1S-mutdis lines (548 bp) was larger than that amplified from both
FPS2p::FPS1S lines and wild-type plants (396 bp) because the FPS2::FPS1-mutdis mRNA contains the region between the two ATG translation start
codons of the FPS1 gene, which is not present in the FPS2::FPS1S mRNA. Numbers on the right indicate the sizes in bp of DNA markers shown in lane
M. (B) Western blot analysis of total FPS protein in 16,000 g extracts from seeds of plant lines indicated above (upper panel). The lower panel shows
the Coomassie blue-stained electrophoretic protein patterns in the 35 to 50 kDa range of extracts used for FPS protein level determinations. Images
show the results of one representative experiment. (C) FPS activity in the 16,000 g protein extracts used for Western blot analysis. FPS activity in fps
mutants is expressed relative to that in the wild-type, which was assigned a value of 100. The mean values and SE were calculated from three
independent experiments.
doi:10.1371/journal.pone.0049109.g008
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classical peroxisomal targeting sequence [21]. It is also worth

noting that our finding that none of the Arabidopsis short FPS

isoforms reside in the peroxisomes was fully consistent with the

results of extensive proteomic studies that have detected both

FPS1S and FPS2 in the cytosolic proteome of Arabidopsis [58]

and could not detect any FPS protein in purified Arabidopsis

peroxisomes [59], [60]. The distinct subcellular localization of

Arabidopsis and C. roseus short FPS isozymes could be related to

the different profile of isoprenoid compounds produced by these

two plant species [3], [61], though the central position of FPS in

the isoprenoid pathway and the fundamental role of isoprenoid

biosynthesis in plant biochemistry and physiology would argue

Figure 9. Reversion of fps2-1 phenotypes by expressing FPS1S under control of the FPS2 promoter. Sitosterol (A) and HMGR activity (B)
levels in seeds from Arabidopsis wild-type, fps2-1 and the indicated lines of the fps2-1 mutant harbouring FPS2p::FPS1S-mutdis and FPS2p::FPS1S
chimeric genes. Values are expressed relative to the wild-type values. Data represent the mean values and SE of three independent experiments. (C)
Reversion of mevastatin hypersensitivity. Representative seedlings of the same lines were grown for 12 days under long-day conditions (16 h light/
8 h dark) on MS plates supplemented with 1 mM mevastatin.
doi:10.1371/journal.pone.0049109.g009

Figure 10. Characterization of fps2-1 mutant lines harbouring FPS1mutdisp::FPS2 and FPS1p::FPS2 genes. (A) The expression of
FPS1mutdisp::FPS2 and FPS1p::FPS2 was investigated using total RNA from 12-day-old seedlings of Arabidopsis wild-type, fps2-1 and the indicated
lines of the fps2-1 mutant harbouring FPS1mutdisp::FPS2 and FPS1p::FPS2 chimeric genes. PCR products were electrophoresed in a 1% agarose gel.
The size in bp of the amplified cDNA fragments corresponding to FPS1mutdisp::FPS2 and FPS1p::FPS2 (1088 bp) and PP2A genes (307 bp) is indicated
on the right. Numbers on the left indicate the sizes in bp of DNA markers shown in lane M. (B) Western blot analysis of total FPS protein in 16,000 g
extracts from seeds of plant lines indicated above (upper panel). The lower panel shows the Coomassie blue-stained electrophoretic protein patterns
in the 35 to 50 kDa range of extracts used for FPS protein level determinations. Images show the results of one representative experiment. (C) FPS
activity in the 16,000 g protein extracts used for Western blot analysis. FPS activity in mutants is expressed relative to that in the wild-type, which was
assigned a value of 100. The mean values and SE were calculated from three independent experiments.
doi:10.1371/journal.pone.0049109.g010
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Figure 11. Reversion of fps2-1 phenotypes by expressing FPS2 under the control of the FPS1 promoter. Sitosterol (A) and HMGR activity
(B) levels in seeds from Arabidopsis wild-type, fps2-1 and the indicated lines of the fps2-1 mutant harbouring FPS1mutdisp::FPS2 and FPS1p::FPS2
chimeric genes. Values are expressed relative to the wild-type values. Data represent the mean values and SE of three independent experiments. (C)
Reversion of mevastatin hypersensitivity. Representative seedlings of the same lines were grown for 12 days under long-day conditions (16 h light/
8 h dark) on MS plates supplemented with 1 mM mevastatin.
doi:10.1371/journal.pone.0049109.g011
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against this hypothesis. Thus, given the ongoing controversy

regarding the subcellular localization of FPS and other MVA

pathway enzymes and the potential interference of fluorescent

protein tags with proper subcellular targeting of proteins, further

studies based on alternative experimental approaches are required

in order to establish whether or not short FPS isozymes localize in

different subcellular compartments in a plant-species dependent

manner.

Comparison of the steady-state kinetic constants of purified

FPS1S and FPS2 (Table 1) revealed that both enzymes have

similar Km values for their substrates and a clear preference for

GPP over DMAPP as the allylic substrate for FPP formation. A

similar kinetic behaviour has also been reported for FPS enzymes

from both eukaryotic and prokaryotic organisms [33], [18], [56],

[62], [63]. The kinetic similarities between FPS1S and FPS2 are

consistent with the high degree of sequence conservation (90.6%

identity) shared by these isozymes. However, FPS1S and FPS2

also displayed some remarkable differential properties that must be

a consequence of the small differences in their primary structure.

FPS2 is a more efficient catalyst that FPS1S by a factor of 2.5- to

3-fold (Table 1). All known FPS proteins contain seven highly

conserved amino acid motifs [64] that are involved in enzyme

catalysis and product chain length determination [5], [65].

Arabidopsis FPS1S and FPS2 differ by only 32 amino acid

residues out of a total of 343 and 342 amino acids, respectively.

These amino acid changes are scattered throughout the sequence

but, interestingly, none of them is located within the conserved

motifs involved in catalysis [12]. Thus, it is difficult to attribute the

differences in catalytic efficiency between FPS1S and FPS2 to a

particular amino acid substitution. Rather it appears that this

functional difference is the consequence of subtle changes in the

three-dimensional structure of the enzymes due to multiple

individual amino acid changes acting together. In fact, FPS is a

homodimeric enzyme in which subunits interact with each other

to form a shared active site rather than bearing an independent

active site in each subunit [66]. The suggested structural

differences between FPS1S and FPS2 must also account for the

greater thermal stability (Figure 3) and higher sensitivity to the

inhibitory effect of NaCl (Figure 2) exhibited by FPS2 compared to

FPS1S. In fact, a single amino acid substitution is sufficient to alter

temperature and salt sensitivity in the case of malate dehydroge-

nase [67], [68], [69]. Indeed, inspection of atomic-level homology

models of FPS1S and FPS2 and theoretical calculations of the free

energy and structural changes that accompany the single-site

substitution of FPS2 unique amino acids into the FPS1S structural

template indicate that surface salt bridge formation and reduced

conformational entropy might largely account for the increased

thermostability observed for FPS2. These stabilizing electrostatic

effects are reflected in specific amino acid composition biases that

have been extensively studied in thermophilic proteins [70], [71].

Our recent characterization of Arabidopsis fps single knockout

mutants showing that FPS1S and FPS2 can almost fully

compensate each other’s loss throughout most of the plant life

cycle demonstrated that FPS1S and FPS2 have largely overlapping

physiological functionalities. The only signs of functional special-

ization were observed in mature seeds and early developing

seedlings. At these developmental stages FPS2 becomes the major

contributor to total FPS activity, to the point that residual FPS1-

derived activity in mature seeds is unable to supply enough FPP for

normal sterol production, which triggers a compensatory en-

hancement of HMGR activity that is crucial for proper seed

germination and seedling establishment [26]. Interestingly, our

GUS expression analysis during seed development revealed a

marked spatial and temporal divergence in the FPS1 and FPS2

expression pattern, which from the torpedo stage onward showed

a strong degree of qualitative complementarity (Figure 6), also

known as reciprocal expression pattern. This is when only one

gene copy is expressed in some organs or tissue types and the other

copy is expressed in others [72]. In the mature stages of seed

development FPS2 expression clearly dominates over the expres-

sion of FPS1. The FPS2 gene is expressed throughout the

endosperm and the embryo at the torpedo stage, and throughout

the cotyledonary embryo in mature seeds, whereas the expression

of FPS1 remains restricted to the maternal chalazal seed coat. The

exclusive expression of FPS2 in the whole cotyledonary embryo,

which at this stage occupies most of the seed, along with the higher

catalytic efficiency of FPS2, explain why this isozyme is the major

contributor to total FPS activity in mature seeds [26]. Interest-

ingly, our results from genetic cross-complementation studies of

the fps2-1 mutant seed phenotypes showed that expression of

FPS1S driven by the FPS2 gene promoter (Figure 8) restored wild-

type sitosterol and HMGR activity levels as well as normal

sensitivity to mevastatin (Figure 9). This finding demonstrated that

under normal conditions FPS1S and FPS2 are completely

functionally interchangeable, which is fully consistent with the

kinetic similarities exhibited by FPS1S and FPS2, and raises the

question as to why FPS2 is the predominant FPS isozyme

expressed in mature seeds and during the early stages of seed

germination and seedling emergence. Seed viability is essential for

survival of higher plants and therefore seeds are well equipped to

withstand extended periods of exposure to harsh environmental

conditions, as for instance extreme temperatures that may cause

protein denaturation and inactivation among other effects.

Arabidopsis seeds can complete germination even after treatment

for more than 3.5 hours at 45uC [73], a temperature that is lethal

for seedlings [74]. It is thus tempting to speculate that FPS2 has

been evolutionarily selected as the predominant FPS isozyme in

mature seeds of Arabidopsis because of its striking thermotoler-

ance that could contribute to maintain seed germination capability

of seeds exposed to high temperatures. It will be interesting to

determine whether other isoprenoid biosynthetic enzymes ex-

pressed in seeds also display this biochemical feature. Moreover,

the higher catalytic efficiency of FPS2 compared to FPS1S would

enable early developing seedlings to sustain an active synthesis of

isoprenoid precursors until the newly made FPS1S replaces FPS2

in this task.

FPP synthesis has been found to be indispensable for

Arabidopsis embryos to progress beyond the pre-globular/

globular stage and continue further development [26]. Our

GUS expression analysis in seeds suggests that early developing

embryos do not synthesize their own FPP since no embryo-specific

expression of any of the FPS genes could be detected until the

heart stage of embryo development (Figure 6). Rather it seems that

early developing embryos import FPP or downstream FPP-derived

isoprenoid precursors from other seed tissues like the maternal

chalazal seed coat and/or the chalazal endosperm, where FPP can

be synthesized as inferred from the expression of FPS1 and FPS2 in

these tissues. This is a plausible hypothesis since the maternal

chalazal seed coat and the chalazal endosperm are both

considered to be specialized seed tissues involved in the uptake,

reprocessing and release of metabolites into the endosperm to

support embryogenesis [75], [76]. The proposal that an active

synthesis of isoprenoid precursors occurs in the chalazal

endosperm at the early stages of embryo development is further

supported by the results of a previous study showing a strong

expression of isopentenyl transferase (IPT) genes AtIPT4 and

AtIPT8 in the chalazal zone of Arabidopsis seeds, that disappeared

when the embryo progressed to the heart stage [77]. IPTs catalyze
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the first committed step of the cytokinin biosynthetic pathway, the

isopentenylation of AMP, ADP and ATP from DMAPP [78].

Interestingly, the finding that FPS2 gene started to be expressed in

embryos at the heart stage of development suggests that the

embryo acquires the ability to synthesize its own FPP at this stage,

though this biosynthetic capability does not seem to be essential for

normal embryo and seed development since embryos in fps2

mutant seeds lacking FPS2 activity are fully viable (Figure S2).

These observations support the hypothesis that the maternal

chalazal seed coat is able to supply sufficient FPP or FPP-derived

precursors to the embryo and the endosperm to sustain normal

seed development, though the amount of isoprenoid precursors

supplied by this tissue would not be sufficient to sustain normal

sterol production in the fps2 seeds (Figure 9). The finding that

expression of FPS2 under control of the FPS1 promoter (Figure 10),

whose activity is restricted to the chalazal seed coat based on the

GUS expression analysis (Figure 6), was also able to restore normal

sterols levels to fps2 seeds (Figure 11) lends further support to the

hypothesis that the maternal chalazal seed coat can function as a

source of FPP for the developing embryo and reinforces the view

that maternal seed tissues contribute sterol precursors to develop-

ing Arabidopsis embryos [79]. Nevertheless, to the best of our

knowledge direct experimental evidence of FPP exchange between

cells has yet to be provided. These cross-complementation

experiments also indicated that the level of FPS1-derived activity

in the chalazal seed coat of fps2 seeds is only slightly below the

minimum threshold of total FPS activity needed to sustain a

normal flux through the sterol pathway in seeds, since a 1.2-fold

increase of FPS activity in this tissue with respect to the activity in

fps2 seeds (Figure 10) is enough to prevent all fps2 seed and

seedling phenotypes including normal sterols levels (Figure 11). In

conclusion, the existence of two potential sources of FPP in seeds

would explain why under normal conditions embryos and seeds of

fps single knockout mutants develop like their wild-type counter-

parts.

Supporting Information

Figure S1 Predicted secondary structure of the region
containing the AUG translation initiation codon of the
FPS2::FPS1S, FPS2, and FPS2::FPS1S-mutdis mRNAs.
Secondary structure models were generated by using the RNAfold

web server (http://rna.tbi.univie.ac.at/). The AUG start codons

are marked with an oval.

(TIF)

Figure S2 Normal embryo development in fps2-1 mu-
tant seeds. Seeds with embryos at the indicated developmental

stages were fixed and cleared for visualization as previously

described [26].

(TIF)
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prokaryotic farnesyldiphosphate synthase from the octocoral Eunicea fusca:

differential display, inverse PCR, cloning, and characterization. Mar Biotechnol
11: 62–73.

64. Koyama T, Obata S, Osabe M, Takeshita A, Yokoyama K, et al. (1993)

Thermostable farnesyl diphosphate synthase of Bacillus stearothermophilus:
molecular cloning, sequence determination, overproduction, and purification.

J Biochem (Tokyo) 113: 355–363.
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