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Prior to the evolution of DNA-based organisms on earth over 3.5 billion years ago it is hypothesized that RNA was the
primary genetic molecule. Before RNA-based organisms arose, peptide nucleic acids may have been used to transmit
genetic information by the earliest forms of life on earth. We discovered that cyanobacteria produce N-(2-
aminoethyl)glycine (AEG), a backbone for peptide nucleic acids. We detected AEG in axenic strains of cyanobacteria with
an average concentration of 1 pg/g. We also detected AEG in environmental samples of cyanobacteria as both a free or
weakly bound molecule and a tightly bound form released by acid hydrolysis, at concentrations ranging from not detected
to 34 ng/g. The production of AEG by diverse taxa of cyanobacteria suggests that AEG may be a primitive feature which
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Introduction

It has been hypothesized that RNA was the primary molecule
for conveyance of genetic information by life on earth prior to the
evolution of DNA over 3.5 billion years ago [1,2]. However, the
nature of primitive genetic systems before the evolution of RNA-
based organisms is unclear. Polymers of N-(2-aminoethyl)glycine
(AEG, Fig. 1), have been hypothesized as possible backbones of
peptide nucleic acids (PNAs) that facilitated transmission of genetic
information in the pre-RNA world [3,4]. PNAs based on AEG
have been synthesized and studied [5-9].

Cyanobacteria, photosynthetic Gram-negative bacteria, arose
early in the earth’s history based on fossils from the Early Archean
Apex Chert of Western Australia dating to 3.5 billion years ago
[10]. Cyanobacteria were major contributors to the oxygenation of
the earth’s atmosphere, and picoplankton such as Prochlorococcus
and Synechococcus continue to play an important role in the global
carbon balance [11]. Cyanobacteria are cosmopolitan, with some
taxa occupying extreme habitats such as geothermal pools,
hypersaline waters, or polar environments.

To determine if cyanobacteria produce AEG, we analyzed
axenic cultures of cyanobacteria from the Pasteur Culture
Collection (PCC) as well as environmental collections of cyano-
bacteria using triple quadrupole mass spectrometry (LC-MS/MS).
Analyses were independently conducted at the Institute for
Ethnomedicine in Jackson Hole, USA and at the Department of
Analytical Chemistry of Stockholm University, Sweden.
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Results

We detected AEG as a free or weakly bound molecule in eight
axenic PCC strains (Table 1; Fig. 2), which included both
nitrogen-fixing and non-nitrogen fixing cyanobacteria from all five
morphological cyanobacterial groups [12]. The total concentra-
tions of free AEG and AEG liberated as a result of TCA extraction
in the PCC strains ranged between 281 and 1717 ng/g. We also
detected AEG in 15 different environmental samples of cyano-
bacteria we collected from diverse habitats around the world
ranging from freshwater ponds in the deserts of Mongolia to
marine samples from Qatar and river samples from Japan (Table 1;
Fig. 2). The concentrations of AEG detected in environmental
samples were generally higher than for the axenic samples, with
concentrations ranging between not detected and 34 pg/g. After
the removal of free and weakly bound AEG with a TCA extraction
step, we hydrolyzed the precipitate, and detected AEG as a bound
form in five environmental samples (T'able 1). We could not detect
AEG in blank BG11 media, before or after hydrolysis.

Discussion

Included in our analysis were two strains (Nostoc PCC 7120 and
Synechoeystis PCC 6803) that have had their complete genomes
sequenced [13,14]. The production of AEG by both strains, which
have only a 37% sequence similarity [14], suggests that the
cyanobacterial ability to produce AEG is highly conserved. This,
coupled with our discovery of AEG in all five morphological
sections of cyanobacteria [12] suggests that the production of AEG
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Figure 1. AEG [N-(2-aminoethyl)glycine] is a small molecule which when polymerized can form a peptide nucleic acid backbone. A,
The AEG monomer. B, its proposed role as a peptide nucleic acid showing three AEG molecules each connected to a base by an acetyl linkage. C,
Predicted fragmentation pattern of AQC derivatized AEG (m/z 459) following collision-induced dissociation to produce daughter ions of m/z 171, 214,
289 and 119. Predicted structures were produced using High Chem Mass Frontier 5.1 software (High Chem Ltd., Slovak Republic).
doi:10.1371/journal.pone.0049043.g001
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Figure 2. Cyanobacteria produce AEG [N-(2-aminoethyl)glycine], both in axenic PCC strains and environmental samples. Using triple
quadrupole LC-MS/MS analysis, AEG was identified using a precursor ion m/z 459 and selective reaction monitoring of four transitions m/z 459 to m/z
289 (top pane), m/z 214 (second pane), m/z 171 (third pane), and m/z 119 (bottom pane). a, AEG was detected as a free or weakly bound compound
in axenic Nostoc PCC 7120. b, A synthetic AEG standard. ¢, AEG in an extract of bound compounds from an environmental cyanobacterial sample
collected at Benson Marina, Logan, Utah, USA.

doi:10.1371/journal.pone.0049043.g002
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may be a primitive feature within cyanobacteria. We are confident
of our detection of AEG in cyanobacteria since LC-MS/MS is
well-suited to the detection of small molecules in complex matrices
[15] and has been shown to distinguish synthetic AEG from its
structural isomers [16].

It is possible that AEG may occur in higher trophic levels in
food chains based on cyanobacteria, since cyanobacteria are
primary producers in many aquatic and some terrestrial ecosys-
tems. The presence of AEG as a bound form in environmental
samples suggests that biomagnification is possible as occurs for
some of its isomers [17,18].

The metabolic function of AEG in extant species of cyanobac-
teria and its potential evolutionary significance is unknown,
although we do note that PNAs have been investigated by the
pharmaceutical industry as possible gene silencers [19,20]. Recent
research shows synthetic xeno-nucleic acid to be susceptible to
evolutionary change [21,22]. It is tantalizing to hypothesize that
the presence of AEG in cyanobacteria may be an echo of the pre-
RNA world.

Materials and Methods

Axenic cyanobacterial strains were obtained from The Pasteur
Chulture Collection of Cyanobacteria, Paris (PCC) and grown for
two months according to PCC recommendations. When sufficient
biomass was attained, strains were lyophilized and free and weakly
bound amino acids were extracted with TCA [23]. The remaining
pellet was then hydrolyzed in 6 M HCI [23]. Extracts were
derivatized with 6-aminoquinolyl-N-hydroxysuccinimidyl carba-

mate (AQC) and analyzed by LC-MS/MS [16]. Blank BG11
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media containing nitrate was tested as a control. Environmental
samples were similarly extracted and analyzed [16,24] with the
exception that several samples were hydrolyzed directly without
TCA extraction, one sample was hydrolyzed in 6 M NaOH
(Table 1), and the samples analyzed by Stockholm University were
extracted using 10% TCA. The TCA extract was also hydrolyzed
for all the Utah samples, one of which was positive for AEG
(Table 1). Identification of AEG was based upon (a) the presence
of the parent ion m/z 459; (b) retention time; (c) presence of
product ions from collision-induced dissociation (m/z 171 quan-
tifier ion; m/z 289, m/z 214, m/z 119 qualifier ions [¢f Ref 16
Fig. 1A]); and (d) ratios of qualifier ions relative to the quantifier
ion. All samples were compared with an authenticated AEG
standard (A1153 TCI America). Separation of AEG from its
isomers B-N-methylamino-L-alanine (BMAA) and 2,4-diaminobu-
tyric acid (2,4-DAB) was assessed using authenticated standards
and culture extracts spiked with AEG and these standards, which
showed a minimum separation of 0.15 min per isomer. The
standard curve was prepared using six AEG concentrations (n =3)
covering three orders of magnitude (7.4-740 nM AEG,
r?=99.9%). The limits of detection (LOD) and the limits of
quantification (LOQ) for AEG were 7.4 nM and 37 nM,
respectively.
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