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Abstract

Type 2 diabetes has profound effects on metabolism that can be detected in plasma. While increases in circulating non-
esterified fatty acids (NEFA) are well-described in diabetes, effects on signaling lipids have received little attention. Oxylipins
and endocannabinoids are classes of bioactive fatty acid metabolites with many structural members that influence insulin
signaling, adipose function and inflammation through autocrine, paracrine and endocrine mechanisms. To link diabetes-
associated changes in plasma NEFA and signaling lipids, we quantitatively targeted .150 plasma lipidome components in
age- and body mass index-matched, overweight to obese, non-diabetic (n = 12) and type 2 diabetic (n = 43) African-
American women. Diabetes related NEFA patterns indicated ,60% increase in steroyl-CoA desaturase activity and ,40%
decrease in very long chain polyunsaturated fatty acid chain shortening, patterns previously associated with the
development of nonalcoholic fatty liver disease. Further, epoxides and ketones of eighteen carbon polyunsaturated fatty
acids were elevated .80% in diabetes and strongly correlated with changes in NEFA, consistent with their liberation during
adipose lipolysis. Endocannabinoid behavior differed by class with diabetes increasing an array of N-acylethanolamides
which were positively correlated with pro-inflammatory 5-lipooxygenase-derived metabolites, while monoacylglycerols
were negatively correlated with body mass. These results clearly show that diabetes not only results in an increase in plasma
NEFA, but shifts the plasma lipidomic profiles in ways that reflect the biochemical and physiological changes of this
pathological state which are independent of obesity associated changes.
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Introduction

Obesity is a risk factor for the development of Type 2 diabetes,

a disease which chronically increases circulating non-esterified

fatty acids (NEFA) [1], dampens the pulsatile secretion of insulin

[2,3], and diminishes tissue glucose uptake while promoting

hepatic glucose output [2,4,5]. Peripheral insulin resistance and

fuel partitioning in type 2 diabetes are well-studied with respect to

glucose, yet impacts on many metabolic domains remain to be

assessed. Investigations of diabetes employing global metabolomics

in plasma have reported changes in numerous metabolites

including lipids, carbohydrates and amino acids, highlighting the

fact that type 2 diabetes elicits broad perturbations of energy

metabolism [6–8]. For example, diabetes increases circulating

medium- and long-chain acylcarnitines [6] and branched-chain

amino acids [7,9], suggesting broad dysfunctions in fuel catabolism

and mitochondrial function [6]. In contrast, studies addressing the

impact of diabetes on circulating levels of low abundance signaling

lipids including oxylipins (OxL) and endocannabinoids (eCBs) are

less common. Here, we quantified many of these potent mediators

along with NEFA to assess the covariant behavior of these

molecules in obese diabetic and non-diabetic cohorts.

OxL and eCBs are structurally diverse groups of molecules with

broad effects on cellular function acting through receptor- and ion

channel-mediated processes [10,11]. The arachidonic acid-derived

OxLs (i.e. eicosanoids) are known to influence insulin signaling,

inflammation and vascular function with mechanistic implications

at the tissue level in diabetes and associated pathologies [10].

However, little is known regarding the impact of diabetes on

plasma concentrations of eicosanoids and other polyunsaturated

fatty acid (PUFA)-derived OxLs. Molecules with eCB properties

include the N-acylethanolamides (NAEs), monoacylglycerols

(MAGs) and lipoamino acids (LAA). Obesity and diabetes increase

plasma and tissue arachidonate-derived eCBs, N-arachidonoy-

lethanolamide (A-EA) and 2-arachidonylglycerol (2-AG) levels

[11]. These changes are hypothetically linked to dysfunctions in

eCB regulation involving dietary fat intake [12], leptin [13] and/

or insulin signaling [14]. While distinct signaling and significant

cross-talk exists between individual eCBs and their structural

analogs [15] little is known regarding the impact of diabetes on the
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eCB array beyond A-EA and 2-AG. Moreover, while NEFA, OxL

and eCB metabolism are linked [16], coordinated changes of these

three pathways have not been previously characterized.

To identify linkages between changes in NEFA and circulating

signaling lipids, we performed a quantitative metabolomic in-

vestigation targeting over 150 plasma lipids including NEFA,

OxLs and eCBs in overweight to obese, age and BMI matched

non-diabetic and diabetic women. Multivariate analysis methods

were used to identify key changes in biosynthetic relationships

which are predictive of the diabetic phenotype.

Methods

Subjects and Study Design
Study volunteers were recruited in the Project SuGAR study,

described in detail elsewhere [17]. This group displays an

extraordinarily low genetic admixture, lives in a relatively small

geographical space, and has a common dietary intake pattern

which is uniformly rich in animal fats. There were 1279 registered

participants in Project SuGAR, of which 290 were genotyped to

identify persons with a missense uncoupling protein 3 (UCP3)

G304A polymorphism. Of 52 subjects positive for the UCP3 g/

a polymorphism (43 females, 9 males), complete datasets for

clinical chemistries (blood lipids, glucose, lactate, HbA1c) and oral

glucose tolerance test (OGTT) were available for 28 women (22

T2Ds, 6 non-diabetics). These subjects were thus chosen for

subsequent metabolomics analyses, along with an age- and BMI-

matched set of 28 women without the polymorphism (22 T2Ds, 6

non-diabetics) for comparison. A 2-way ANOVA was used to

evaluate the association and interactions between the primary

metabolic discriminates of type 2-diabetes reported below, and the

UCP3 genotype. Neither significant associations with the UCP3

polymorphism nor diabetes x polymorphism interactions were

detected (Table S1). A comparison of clinical parameters for

subjects with and without type 2 diabetes is shown in Table 1.

One diabetic subject was omitted due to insufficient sample

volume. Of the 43 diabetic study participants included, 34 (79%)

were on insulin and or a combination of oral anti-hyperglycemic

and lipid lowering medications (insulin, n = 21; insulin and

biguanide, n = 2; insulin, fibrate and thiazoladendiones, n = 1;

biguanide, n = 2; sulfonylurea, n = 7; biguanide and sulfonylurea,

n = 1).

The Institutional Review Boards of the University of California,

Davis, Medical University of South Carolina, and the University

of Alabama at Birmingham approved the studies and participants

provided informed consent. Sample collection and plasma clinical

chemistry analyses are described elsewhere [6]. Volunteers were

instructed to eat their regular diets and avoid unusual activity or

exercise for 3d prior to blood collection. Diabetic patients were

instructed to refrain from oral medications the evening before and

morning of the study. Patients treated with insulin (n = 23) were

instructed to take regular or rapid-acting insulin at dinner the

night before the study, but withhold intermediate- or long-acting

insulin the evening before or morning of the blood collection.

Blood was obtained between ,0800 hrs and 0900 hrs by arm

venipuncture into EDTA-treated tubes from fasted subjects: no

food or drink since 2000 hrs the previous night. Plasma was frozen

at 220uC for 1–7 d before transport to 280uC freezers. Plasma

aliquots were used to carry out the current analysis, acylcarnitine

profiling [6], and global metabolomics [7].

Table 1. Characteristics of overweight diabetic and non-
diabetic African American Gullah-speaking female study
participants.

Clinical Parameter
non-diabetic
(n=12)

type 2 diabetic
(n=43)

Body Mass (kg) 89.3617 92.7617

BMI, kg/m2 (range) 3366 (24,43) 3666 (26,47)

Age,yrs (range) 49617 (21,69) 55614 (19,87)

Glucose, mg/dL 92610 210679*

HbA1c (%) 5.461 9.162*

Lactate, mmol/L 1.160 1.260

Triglycerides, mg/dL 100661 120675

Cholesterol, mg/dL 200652 210647

HDL cholesterol, mg/dL 45612 44613

LDL cholestrol, mg/dL 140642 140641

VLDL cholesterol, mg/dL 20612 23615

*p,0.0001 by Mann-Whitney U-test.
doi:10.1371/journal.pone.0048852.t001

Table 2. Plasma non-esterified fatty acids (mM) in BMI-
matched obese non-diabetic and type 2 diabetic African-
American women.*.

Lipid
non-diabetic
(n =12)

type 2 diabetic
(n=43) DGM (%)

S NEFA 290 [109, 653] 621 [182, 1960] 114

S SFA 135 [47.0, 341] 281 [79.0, 787] 109

14:0 2.93 [1.00, 19.0] 5.48 [1.00, 18.0] 87

16:0 92.7 [30.0, 260] 196 [46.0, 582] 111

18:0 38.7 [14.0, 66.0] 79.7 [30.0, 197] 106

19:0 0.05 [0.02, 0.13] 0.09 [0.03, 0.37] 85

20:0 0.12 [0.05, 0.43] 0.21 [0.01, 2.82] 75

S MUFA 54.8 [21.6, 124] 176 [48.0, 682] 220

S n7 fatty acids 8.76 [3.00, 28.0] 23.8 [8.00, 80.0] 172

S n9 fatty acids 46.0 [18.0, 95.0] 152 [40.0, 626] 230

16:1n7 3.08 [1.00, 17.0] 8.78 [3.00, 38.0] 185

18:1n7 5.68 [3.00, 10.0] 15.0 [5.00, 49.0] 165

18:1n9 45.1 [18.0, 95.0] 150 [40.0, 620] 231

20:1n9 0.37 [0.10, 0.65] 1.40 [0.14, 6.50] 278

S PUFA 99.2 [41.0, 185] 162 [33.0, 579] 63

18:2n6 54.8 [24.0, 102] 103 [22.0, 363] 87

9ct,11t-CLA 0.85 [0.32, 2.00] 1.29 [0.34, 4.00] 52

18:3n3 1.57 [0.34, 9.00] 4.02 [1.00, 16.0] 156

22:4n6 0.42 [0.03, 2.00] 0.74 [0.05, 3.00] 76

22:5n3 1.15 [0.12, 3.00] 2.17 [0.28, 9.00] 89

S trans fatty acids 44.7 [0.21, 3.65] 92.1 [0.86, 13.0] 106

trans 16:1n7 0.76 [0.19, 2.50] 2.04 [0.50, 9.00] 168

trans 18:2n6 0.28 [0.03, 1.00] 1.17 [0.05, 4.00] 211

*Values are reported as geometric means [ranges] if changes in geometric
means between groups are significant (Mann-Whitney U-test, p,0.05 with FDR
adjustment at q = 0.1). For remaining measurements see Table S5.
doi:10.1371/journal.pone.0048852.t002
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Oxylipins, Acylamides, Acylglycerols, and Lipoamino
Acids Measurements

Oxylipins and eCBs were isolated and quantified using

modifications of published protocols [18]. Briefly, plasma aliquots

(100 mL) were spiked with deuterated OxL and eCB surrogates,

and extracted with 60 mg Oasis HLB (Waters Corporation,

Milford, MA) solid phase extraction cartridges. Solvents were

removed under vacuum. Residues were reconstituted in methanol

containing an internal standard, filtered at 0.1 mm and analyzed

by UPLC-MS/MS. Analytes were separated with a 2.16150 mm,

1.7 mm Acquity BEH column on an Acquity UPLC (Waters Inc,

Milford MA), ionized by electrospray ionization and detected by

multi-reaction monitoring on an API4000 QTRAP (AB-SCIEX,

Foster City, CA). Oxylipins and NAEs/MAGs/LAAs were

analyzed in independent injections and ionized in negative and

positive modes, respectively. See Table S2 for NAE, MAG and

LAA mass transitions.

Non-esterified Fatty Acids (NEFA) Measurements
Plasma NEFA were isolated and converted to fatty acid methyl

esters using a modified extractive methylation procedure [19].

Samples aliquots (25 mL) were spiked with 30 mL of 20 mM 15:1n5

fatty acid (Nu-chek Prep, Inc., Elysian MN) in methanol, mixed

with 125 mL ethereal diazomethane, and incubated for 10 min at

25uC. Solvents were removed by vacuum and residues were

reconstituted in hexane containing internal standards and aliquots

(1 mL) were analyzed on an HP6890 GC-5973N MSD (Agilent

Technologies, San Jose, CA) equipped with a 30 m60.25

id60.25 mm DB-225 ms column (Agilent Technologies) with

electron impact ionization. Spectral data was acquired in

simultaneous selected ion monitoring/full scan (SIM/Scan) mode.

Analytes were quantified with ChemStation vE.02.14 (Agilent

Technologies) using internal standard methodologies against a 5 to

7 pt calibration curves.

Data Quality Assurance and Control
Assay variability was assessed by analyzing sample replicates

and laboratory reference materials in each batch and found to be

stable across the study. Data was corrected for surrogate losses (see

Table S3). Analytes are not reported if the signal to noise ratio is

,2, calculated concentrations are below the lowest calibrant, or

surrogate recoveries are below 40%. Of the ,150 plasma lipids

measured, 80 metabolites met these reporting criteria.

Univariate Statistics
Significant changes in metabolite concentrations and enzyme

activity indices (i.e. product to substrate ratios) were assessed in R

(version 2.13.1) [20] by Mann-Whitney U test. To control for the

false discovery rate (FDR) associated with multiple hypothesis

testing, the p,0.05 significance criterion was adjusted to allow

a maximum 10% probability (q = 0.1) of false positive detection

[21]. The percent change in geometric mean (GM) between

diabetic and non-diabetic cohorts was calculated using the

following equation:

GMdiabetic {GMnon{diabetic

GM non{diabetic

|100

Discriminant Modeling
Partial least squares projection to latent structures-discriminant

analysis (PLS-DA) [22] and orthogonal PLS-DA (OPLS-DA) [23]

multivariate classification models were developed for the study

population. Model performance was optimized using a novel

method for iterative variable selection (IVS). A metabolite-driven

OPLS-DA model was compared to a model built with clinical

variables alone [6]. The clinical parameters included plasma

concentrations of glucose, lactate, HbA1c, triglycerides, and both

total and lipoprotein cholesterol, as well as age, body mass, and

BMI. Classification performance was determined by the goodness

of the prediction statistic Q2 [23] and area under the receiver

operator characteristic curve (AUROC).

The IVS feature selection approach belongs to a larger class of

‘‘wrapper methods’’ [24], and implements a heuristic (i.e.

experience based) algorithm to accomplish a randomized, forward

Table 3. Estimated enzyme activities in BMI-matched obese non-diabetic and type 2 diabetic African-American women based on
plasma NEFA product to substrate ratios.*.

Activity Indices{ non-diabetic (n=12) type 2 diabetic (n =43) DGM (%)

SCD 0.60 [0.45, 1.01] 0.96 [0.29, 1.91] 60

16:1n7/16:0 0.03 [0.02, 0.07] 0.04 [0.02, 0.11] 35

18:1n9/18:0 1.16 [0.88, 1.98] 1.88 [0.56, 3.77] 62

D6D 0.08 [0.05, 0.13] 0.08 [0.05, 0.14] –

18:3n6/18:2n6 0.01 [ND, 0.02] 0.01 [ND, 0.02] –

20:3n3/20:4n6 0.15 [0.08, 0.25] 0.16 [0.10, 0.26] –

ELOVL2 0.42 [0.24, 0.60] 0.72 [0.23, 10.4] 70

22:4n6/20:4n6 0.02 [ND, 0.04] 0.03 [ND, 0.19] –

22:5n3/20:5n3 0.82 [0.47, 1.18] 1.40 [0.46, 20.8] 70

ELOVL2/D6D/SPCS{ 6.71 [3.99, 25.2] 3.99 [1.48, 11.0] 241

22:5n6/22:4n6 3.12 [0.96, 44.7] 1.37 [0.23, 17.0] 256

22:6n3/22:5n3 8.76 [5.76, 26.2] 6.15 [2.71, 13.4] 230

*Values are reported as geometric means [ranges] if changes in geometric means between groups are significant (Mann-Whitney U-test, p,0.05 with FDR adjustment at
q = 0.1).
{SCD, steroyl-CoA desaturase; ELOVL2, elongase of very long chain fatty acids 2; D6D, delta 6 desaturase; SPCS, Sprecher pathway VLCPUFA chain shortening.
{ELOVL2/D6D/SPCS has inherent dependencies on other enzymes in the very long chain fatty acid synthesis pathway including ELOVL1 and ELOVL4.
doi:10.1371/journal.pone.0048852.t003
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and backward variable subset selection. The full feature set is

stochastically divided into subsets that undergo iterative backward

variable deletion and forward variable addition until model

performance converges to a local maxima, based on the cross-

validated R2 or Q2. After each iteration the algorithm-optimized

variable sets are combined and the procedure is repeated until the

model performance converges to the global maxima. Due to the

small study population feature selection was not included in the

model validation procedures. However, the degree of model

overfitting by this procedure was independently assessed.

IVS was implemented in R [package: pls [25]] using non-linear

partial least squares [26] on log transformed and centered

metabolite concentrations, scaled to unit variance. Using normal-

ity transformations optimized for each metabolite did not alter

model results, as compared to uniformly log transformed data.

The optimal model was chosen based on maximum Q2 from 100

independent IVS optimized PLS-DA models. To simplify model

interpretation the selected model parameters were used to

construct an OPLS-DA model, which collapses informative model

aspects into a single latent variable. The degree of IVS optimized

model overfitting was estimated by carrying out 7 independent

IVS feature selection embedded model validations. The full data

set was randomly split between training (2/3) and test sets (1/3).

The training data was used to develop 100 IVS optimized sub-

models. Comparison of these models’ predictive performances for

the held out test sets to that of the training sets were used to

estimate the degree of model overfitting for the reported model.

Based on this investigation, the performance statistics of the final

model shown in Table S4 is expected to be lowered by ,4610%

due overfitting.

OPLS-DA model training and validation was conducted in

SIMCA-P+ v 12.0.1 (Umetrics; Umeå/Malmö, Sweden) by

randomly assigning 2/3 of samples to training and remaining 1/

3 to test sets. External OPLS-DA model cross-validation was

conducted by repeating the training/testing procedure 3 times, to

ensure that each subject was represented among one of the three

Figure 1. The type 2 diabetes-associated lipidomic changes projected in context of their biological relationships in obese African-
American women. Metabolites are represented by circular ‘‘nodes’’ linked by ‘‘edges’’ with arrows designating the direction of the biosynthetic
gradient (i.e. substrate to product). Some metabolites are linked by more than one enzymatic step. Node sizes represent magnitudes of differences in
plasma metabolite geometric means (DGM). Arrow widths represent magnitudes of changes in product over substrate ratios (DP:S). Colors of node
borders and arrows represent the significance and direction of changes relative to non-diabetics as per the figure legend. Differences are significant
at p,0.05 by Mann-Whitney U test adjusted for FDR (q= 0.1).
doi:10.1371/journal.pone.0048852.g001
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test sets. The model diagnostic and performance statistics were

calculated as the mean 6 standard deviation of the 3 independent

training/testing procedures. A summary model, including all

subjects, was constructed to evaluate model scores and loadings.

As a baseline for comparison, a clinical parameter OPLS-DA

model (no IVS optimization) was generated using identical

training and testing procedures.

Parameter Connectivity Network Generation
Similarities in metabolite correlation patterns were translated

into proximities within a visualized network using multi-di-

mensionally scaled Euclidean distances calculated from 1-|Spear-

man’s r|. Correlations between measurements (e.g. metabolites),

represented by nodes (i.e. shapes), are designated by edges (i.e.

connecting lines) whose characteristics are determined based on

the Spearman’s rank-order coefficient of correlation (r) between

two respective species. High density regions among biosyntheti-

cally or biologically related metabolites are highlighted by ellipses

defined by Hotelling’s T2 (p,0.05) for group multivariate normal

distributions within the coordinate space. Network visualizations

were generated using imDEV v 1.4 [27].

Results

Plasma Free Fatty Acids
In subjects with Type 2 diabetes, increases in plasma NEFA and

stearoyl-CoA desaturase (SCD) activity, and reductions in

peroxisome-dependent synthesis of very long chain ($22 carbon)

PUFAs (VLCPUFAs) were observed. For instance, diabetic

subjects showed a 114% increase in circulating NEFA (Table 2)

and total NEFA was positively correlated with fasting glucose

(r= 0.68, p,0.0001), with monounsaturated fatty acids (MUFA)

showing the greatest magnitude of changes. The ratio of the

MUFA species, palmitoleate (16:1n7) and oleate (18:1n9), to their

saturated fatty acid (SFA) precursors, palmitate (16:0) and stearate

(18:0), were used to estimate SCD activity [28]. As seen in Table 3
and Figure 1, diabetes was associated with increases in both

measures of SCD activity. A similar strategy was used to assess

changes in VLCPUFA biosynthesis [29]. While the D6-desaturase

(D6D) activity was unchanged in diabetic subjects, an increase in

the elongase of very long chain fatty acids 2 (ELOVL2) activity is

suggested by the ratio of 22:5n3 over 20:5n3 (Table 3). The

conversions of 22:4n6 to 22:5n6 and 22:5n3 to 22:6n3 rely on the

combined activities of ELOVL2, D6D and Sprecher pathway

chain shortening (SPCS) via peroxisomal b-oxidation [30]. While

not explicit defined within this calculation, this ratio may be

further affected by other enzymes in the very long chain fatty acid

biosynthesis which elongate 24 carbon fatty acids, including

ELOVL1 and ELOVL4, to produce fatty acids up to 38 carbons

in length. Since ELOVL2 increased and D6D was unchanged,

changes in the ratios of 22:5n6 over 22:4n6 and 22:6n3 over

22:5n3 may suggest a reduction in SPCS activity, and/or a general

reduction in very long chain biosynthesis in diabetic subjects.

Changes in this potential marker of VLCPUFA biosynthesis

activity were inversely correlated with the SCD activity index

(r=20.45; p = 0.002). Results for all measured plasma NEFA

species can be found in Table S5.

Plasma Free Oxylipins
While the total OxL concentration were unchanged in the

diabetic state, increases in the concentrations of some fatty acid

epoxides, diols and ketones were detected (Table 4). Each of the

three measured linoleic acid (18:2n6)-derived epoxides and one of

three a-linolenic acid (18:3n3)-derived epoxides were elevated

from 47 to 127% in diabetic subjects (Table 4). In contrast two of

the 3 measured arachidonic acid (20:4n6)-derived epoxides, were

elevated by ,50%. The vicinal or 1,2-diol metabolites of the 18

carbon fatty acid epoxide were unchanged, while the arachido-

nate-derived 14,15- and 11,12-dihydroxyeicosatrieneoates (DiHE-

TrE) were elevated by ,35%. The fatty acid ketone, 13-KODE,

an NAD+ dependent dehydrogenation product of the 18:2n6

alcohol 13-HODE [31], was also elevated 86% in diabetic

subjects. Analogous fatty acid ketones including 9-KODE and

the arachidonate-derived KETEs either did not meet reporting

Table 4. Concentrations of selected plasma oxylipins (nM) in
BMI-matched obese non-diabetic and type 2 diabetic African-
American women.*.

Lipid
non-diabetic
(n =12)

type 2 diabetic
(n =43) DGM (%)

S oxylipins 79.2 [43.4, 370] 91.1 [15.3, 365] –

SC18 Epoxides 5.10 [2.12, 50.7] 9.4 [2.27, 60.6] 84

9(10)-EpODE 0.32 [0.10, 4.00] 0.66 [0.10, 6.00] 106

9(10)-EpOME 1.18 [0.30, 11.0] 2.68 [0.70, 20.0] 127

12(13)-EpOME 1.43 [0.50, 12.0] 2.76 [0.70, 17.0] 93

EKODE 1.69 [0.80, 18.0] 2.43 [0.20, 14.0] 44

SC20 Epoxides 1.14 [0.57, 5.14] 1.61 [0.48, 9.20] 41

11(12)-EpETrE 0.46 [0.20, 2.00] 0.70 [0.10, 4.00] 52

14(15)-EpETrE 0.24 [0.10, 1.00] 0.35 [0.10, 2.00] 46

S Diols 23.4 [9.50, 66.4] 22.4 [2.29, 71.9] –

11,12-DiHETrE 0.44 [0.32, 0.70] 0.62 [0.34, 1.24] 41

14,15-DiHETrE 0.52 [0.38, 0.72] 0.67 [0.38, 1.44] 29

S Ketones 7.94 [4.05, 30.4] 13.2 [1.29, 75.7] –

13-KODE 5.63 [3.00, 25.0] 10.5 [0.80, 68.0] 86

*Values are reported as geometric means [ranges] if changes in geometric
means between groups are significant (Mann-Whitney U-test, p,0.05 with FDR
adjustment at q = 0.1). For remaining measurements see Tables S6 and Table
S7.
doi:10.1371/journal.pone.0048852.t004

Table 5. Plasma N-acylamides and lipoamino acids (nM) in
BMI-matched obese non-diabetic and type 2 diabetic African-
American women.*

Lipid non-diabetic (n=12) Diabetic (n=43) DGM (%)

S NAE 67.4 [27.0, 124] 106 [25.0, 440] 57

P-EA 9.59 [5.00, 40.0] 18.9 [6.00, 162] 97

O-EA 20.3 [8.00, 33.0] 36.2 [9.00, 175] 78

L-EA 7.91 [4.00, 27.0] 11.4 [5.00, 44.0] 44

DGL-EA 0.5 [0.30, 1.00] 0.93 [0.30, 4.00] 86

A-EA 2.09 [1.00, 3.00] 3.57 [1.00, 8.00] 71

DoP-EA 1.29 [0.20, 2.76] 1.97 [0.68, 4.66] 52

DoHex-EA 0.55 [0.30, 1.00] 1.02 [0.40, 2.00] 85

S LAA 8.67 [2.50, 36.1] 21.0 [4.50, 88.6] 142

NO-Gly 8.15 [2.00, 34.0] 20.2 [4.00, 86.0] 148

*Values are reported as geometric means [ranges] if changes in geometric
means between groups are significant (Mann-Whitney U-test, p,0.05 with FDR
adjustment at q = 0.1). For remaining measurements see Table S8.
doi:10.1371/journal.pone.0048852.t005
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criteria or did not display significant diabetes-associated effects

(Table S6 and Table S7).

Plasma N-acylethanolamides and Lipoamino Acids
With the exception of stearoyl-ethanolamide, the measured

NAEs were significantly elevated in diabetic subjects (Table 5). Of

the two measured LAAs only N-oleoylglycine (NO-Gly) was

elevated in diabetic subjects (Table 5). Mean MAG concentra-

tions were unchanged in association with diabetes (Table S8) but

showed negative correlations with BMI in these obese cohorts.

Combined Analysis of NEFA, OxL and eCB Changes
The lipidomic changes associated with diabetes are projected in

context of their biochemical relationships in Figure 1. Metabo-

lites are represented by circular ‘‘nodes’’ with colored borders

linked with ‘‘edges’’ represented by arrows designating the

enzyme-dependent substrate to product transformation. Node

color indicates chemical class while node size represents percent

changes in metabolite concentrations. Edge widths represent

percent changes in product to substrate ratios. The colors of node

borders and edges indicate direction of significant changes, with

gray indicating p.0.05.

In Figure 1, SFA and MUFA metabolites are displayed at the

left, while omega-6 and omega-3 PUFA metabolites are displayed

in the center and right. Orange circled nodes indicate increasing

concentrations in diabetic subjects, with the low abundance

eicosenoic acid (20:1n9) showing the largest increase (276%;

Table 2). As with 18:1n9, N-oleoylethanolamide (O-EA) and NO-

Gly also increased in diabetics. However, while the NO-Gly/

18:1n9 ratio was unchanged, the O-EA/18:1n9 decreased as

indicated by a blue connecting arrow. All NAEs (lime green nodes)

matched the observed increases in their parent NEFA as shown by

the linkage of these lipids by gray edges. This holds true for the

epoxides (cyan nodes) as well. Unlike the diols derived from 20:4n6

epoxides, diabetes-associated increases in the 18:2n6- and 18:3n3-

derived epoxides are not matched by significant changes in their

diols.

Changes in indices of enzymatic activity are also highlighted in

this figure. Increased SCD activity is indicated by the orange

arrows between all SCD-linked SFAs and MUFAs (e.g. 16:0 to

16:1n7 and 18:0 to 18:1n9 nodes), while the diabetes-associated

decrease in SPCS activity is reflected in the blue arrows linking

22:6n3 with 22:5n3 and 22:4n6 with 22:5n6.

Predictive Models for Type 2 Diabetes
OPLS-DA models built either with metabolites or clinical

parameters were excellent predictors of type 2 diabetes. However,

the metabolite-based model had superior classification statistics

(Q2 = 0.61 vs. 0.46; AUROC = 0.97 vs. 0.94; Table S4) and

highlighted metabolic shifts associated with diabetes. OPLS-DA

model scores for each subject (Figure 2) correlate with both

fasting glucose (r = 0.7, p,0.0001) and glycosylated hemoglobin

(HbA1c; r = 0.5, p,0.05).

The model loading plot (Figure 2) describes the distributions

and intercorrelations for model components in the context of their

importance in the classification model. Metabolites are arranged

Figure 2. An OPLS-DA model built from 15 plasma lipids discriminates non-diabetic and diabetic cohorts. Horizontal scatter plots of
the log transformed concentrations for each model variable are shown. The horizontal arrangement of metabolite scatter plots is scaled to their
loading in the discriminant model. A given species importance in the classification increases with increasing displacement from the origin (broken
line). The direction of the displacement, left or right, designates whether the species was decreased (left) or increased (right) in the diabetic relative to
the non-diabetic patients. The overall model discrimination performance is presented as a scatter plot of subject model scores (inset).
doi:10.1371/journal.pone.0048852.g002
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Figure 3. Analysis of correlations among all measured variables and estimated enzyme activities in non-diabetic and type 2
diabetic African-American women. Significant (p,0.05) non-parametric Spearman’s correlations for non-diabetic (top left triangle) and type 2
diabetic (bottom right triangle) subjects are indicated by orange (positive) and blue (negative) intersections.
doi:10.1371/journal.pone.0048852.g003
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based on their loading on the models’ predictive latent variable.

Species with the greatest displacement from the origin (hashed

line) indicate the most influential model parameters; whereas, the

direction of their displacement designates if the metabolite was

decreased (left) or increased (right) in diabetic compared to non-

diabetic cohorts. The loading plot indicates that 18:1n9, its

precursor 18:0, the docosahexaenoyl-ethanolamide (DoHex-EA)

and the VLCPUFA 22:5n6 are the dominant discriminating

variables. Together, 18:0 and 18:1n9 report on the increased SCD

activity in diabetic subjects. Changes in SFA but not MUFA are

correlated with the VLCPUFA model components, 20:4n6 and

docosapentaenoate (22:5n6), which are themselves highly corre-

lated (p,0.0001) and report on the diabetes-associated change in

VLCPUFA biosynthesis. The elevation in 18:2n6- and 18:3n3-

derived epoxides 9(10)-EpOMEs and 9(10)-EpODEs displayed

positive correlation with SFA and MUFA. The retention of the

20:4n6 metabolite 12-HETE in the model is also of particular

interest. While the 12-HETE values between diabetic and non-

diabetic cohorts did not reach significance (p = 0.3), ,20% of the

diabetic subjects showed substantially elevated 12-HETE concen-

trations.

Analysis of Intercorrelations Among Metabolites and
Clinical Parameters

Correlation matrix heat maps (Figure 3) and parameter

connectivity networks (PCNs; Figure 4) are used to visualize

diabetes-associated changes in parameter relationships. Diabetes

was associated with the striking emergence of metabolite and

pathway correlations not apparent in the non-diabetic condition.

Correlations among variables are designated by orange (positive)

or blue (negative) heat map intersections (p,0.05) and PCN

connecting lines (p,0.05, non-diabetic; p,0.01, diabetic). In

Figure 4 variables with similar intercorrelations are positioned

closely, and metabolite classes are contained within ellipses

representing their 95% probability regions. While powerful, this

3-dimensional projection can closely position uncorrelated com-

pounds in the 2-dimensional display.

In short, variable intercorrelations are dramatically shifted in

the diabetic state. The positive correlation between fasting glucose

and C20-C22 PUFAs in the non-diabetic group is replaced by

correlations with SFA, MUFAs, A-EA, and a selection of OxLs in

the diabetic group. Conversely BMI is negatively correlated to

MAGs in both groups, but negatively correlated with the 18

carbon epoxides and diols only in the diabetic cohort. In diabetes,

LDL cholesterol gains a positive correlation with EpODEs and

PUFA ketones (Figure 3). This display also highlights the shifts in

Figure 4. Parameter connectivity networks of metabolites and clinical parameters in African-American women with and without
type 2 diabetes. Spearman’s correlations were used to generate multi-dimensionally scaled parameter connectivity networks for variable
intercorrelations. Networks were oriented with fasting glucose at the origin and SFA in the lower right quadrant. Colored ellipses represent the 95%
probability locations of metabolite classes (Hoettlings T2, p,0.05). Nodes indicate clinical parameters (diamonds), ,20-carbon fatty acid metabolites
(circles) and $20-carbon fatty acid metabolites (triangles), with discriminant model variables and glucose enlarged. Significant correlations between
species are designated by orange (positive) or blue (negative) connecting lines (p,0.05, non-diabetic; p,0.01, diabetic participants).
doi:10.1371/journal.pone.0048852.g004
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the SCD and the VLCPUFA activity as reported by the SPCS

activity indices. In the OPLS-DA model, DoHex-EA was the key

acylethanolamide discriminant of diabetes. DoHex-EA is also

positively correlated with SFA, MUFA, and PUFAs in the non-

diabetic group only, a pattern not shared by A-EA (Figure 3).

Finally, while OxL correlations are increased in diabetic subjects,

class specific associations change. Notably, the 5-lipoxygenase-

dependent products, 5-KETE and 5-HEPE increase their

correlations with all PUFA-metabolites, while remaining un-

correlated to their parent lipids. In contrast, the isoprostanes

became positively correlated with the .20 carbon PUFA pools in

diabetic participants. These patterns of changes are well summa-

rized in Figure 4, where the connectivity networks highlight the

migration of epoxides (cyan ellipse) toward the bulk of the NEFAs

(yellow and orange ellipses), while the .20 carbon PUFAs become

dissociated from this group. Thus, the NEFA fine structure shifts

from a highly intercorrelated matrix, having weaker correlations

with the omega-3 PUFAs, to a clear subdivision between SFA/

MUFA/18 carbon PUFAs and .20 carbon PUFAs.

Discussion

The diabetes-associated perturbations of circulating lipid

mediators and their relationships to plasma fatty acids are largely

unexplored. Plasma NEFA concentrations reflect shift in NEFA

uptake and release by adipose, liver and muscle [32], being

dominated by adipose lipolysis in the fasted state [33]. Not

unexpectedly, increases in plasma SFA and MUFA dominated the

diabetes-associated changes in NEFA and were strong predictors

of type 2 diabetes. However our targeted lipidomic survey

uncovered subtle relationships between freely circulating NEFA,

oxylipins, and endocannabinoids.

Based on the array of biosynthetically-related MUFA to SFA

ratios, a net increase in systemic SCD activity was apparent in the

diabetic cohort (Table 3 and Figure 1). Increased SCD activity

and/or expression have been reported in hypertriglyceridemia,

obesity, nonalcoholic fatty liver disease (NAFLD), and the

metabolic syndrome [34–37]. As the current study cohorts were

BMI-matched and not hypertriglyceridemic [6], it is apparent that

systemic SCD activity was elevated in the type 2 diabetic cohort

beyond that expected by obesity alone. Such an observation is

consistent with the increase in available glucoses, increasing de

novo lipogenesis resulting in an elevation in SCD activity [35]

Despite the observed type 2 diabetes-associated increases in

plasma NEFA, long and very long chain polyunsaturated fatty

acids were not significantly elevated in this disease. In fact plasma

markers of peroxisome-dependent VLCPUFA chain-shortening in

both omega-3 and omega-6 pathways were reduced in diabetes,

which also inversely correlated with SCD activity. Impaired

VLCPUFA synthesis have previously been reported in the retina

of streptozotocin-induced diabetic rats [38] and in NAFLD [39].

In fact, insulin resistance accelerates NAFLD in rodents [40] and

observed changes in the VLCPUFA indices suggest an increased

prevalence of NAFLD among the diabetic cohort.Diabetes and

obesity are associated with pancreatic b-cell dysfunction, chronic

inflammation, and vascular complications, conditions directly

influenced by oxylipin metabolism [10]. While hyperglycemia and

diabetes increase oxidative stress [41], and the total OxL

concentration was positively correlated with fasting glucose, it

did not increase in the diabetic compared to the non-diabetic

cohort. Moreover, oxidative stress markers including the F2

isoprostanes were equivalent between cohorts. However, the

concentration of multiple fatty acid epoxides, as well as several

diols and ketones increased in association with diabetes. In

particular, the epoxides of 18:2n6 and 18:3n3, and the 18:2n6

ketone 13-KODE, were increased 2-fold and positively correlated

with changes in SFA and MUFA. Changes in levels of 20:4n6 and

20:5n3-derived oxylipins were more subtle with ,50% increases.

Type 2 diabetes-associated changes in these species may arise from

increased biosynthesis, decreased degradation, and or increased

release of preformed metabolites. However, since fasting increases

adipose lipolysis [33] and in this cohort epoxides and ketones are

strongly correlated with plasma NEFA, we hypothesize that these

species are derived from lipolysis of adipose. In support of this

hypothesis, we have found that the adipose triglycerides of

hamsters fed differing lipids in the diet preferentially accumulate

18 carbon species, with EpOMEs .5-fold over DiHOMEs, and

KODEs ,2-fold over HODEs in this pool [42].

Endocannabinoids and their related metabolites are important

regulators of inflammation and energy balance, functioning

through interaction with cannabinoid type 1 and type 2 receptors,

transient receptor potential vanilloid type 1, and peroxisome

proliferator activated receptors [11,43,44]. Previous investigations

have reported increases in eCBs among both obese and diabetic

humans [11]. Here plasma MAGs were inversely proportional to

BMI, but unaffected by diabetes status. Conversely, plasma NAEs,

including A-EA, were elevated and its concentrations correlated

with SFA and MUFA in the diabetic cohort (Figure 3). Given

that insulin dependent suppression of plasma A-EA is inversely

correlated with liver fat [14], the higher A-EA in this studies

diabetic cohort is consistent with insulin resistance and an

increased prevalence of NAFLD. Similarly, increases in the

omega-3 DoHex-EA were strong predictors for the type 2

diabetes-associate phenotype (Figure 2) and correlated with two

5-lipooxygenase metabolites, 5-HEPE and 5-KETE among di-

abetic participants. The basis for higher NAE metabolites in

diabetes remains to be established, but an anti-inflammatory role

is plausible. Specifically, the diabetes-associated elevation in SFA

can activate Toll-Like Receptor 4 (TLR4), which has been

reported to initiate inflammatory signaling and enhance NAE, but

not MAG synthesis [45]. The NAEs may therefore act in

a feedback loop to suppress inflammatory signaling through

cannabinoid type 2 receptors [46].

In conclusion, to determine impacts of type 2 diabetes on the

non-esterified plasma lipidome we quantified NEFA, oxylipins,

acylethanolamides, lipoaminoacids and monoacylglycerides in

weight-matched obese diabetic and non-diabetic cohorts. Di-

abetes-associated NEFA patterns indicate increases in SCD

activity and decreases in VLCPUFA chain shortening, which

may indicate impaired hepatic insulin sensitivity and/or fatty liver

disease. Among diabetic participants, increases in 18 carbon

epoxides and ketones correlate strongly with changes in SFA and

MUFA, consistent with an enhanced release from adipose stores

and/or suppressed degradation of these oxylipins. Type 2 diabetes

is also associated with increases in NAEs and LAAs, but not

MAGs. While the increases in NAE tone may constitute an

adaptive mechanism to suppress inflammation developed in

response to increases in circulating SFAs, MAG concentrations

provide a diabetes-independent metabolic marker of body mass.

Together, the observed changes in the plasma lipidome describe

type 2 diabetes as a state of imbalance with respect to metabolic

processes associated with fatty acid desaturation, VLCPUFA

systhesis, adipose lipolysis, endocannabinoid tone and inflamma-

tory activation. Oxylipin analysis revealed that these changes

occur in the absence of systemic oxidative stress greater than that

seen in obesity. Through this targeted lipidomic analysis, the

following plasma markers were found as predictors of the type 2

diabetes phenotype: 1) 18:1n9/18:0, a marker of increased SCD
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activity; 2) 22:5n6/22:4n6, a marker of suppressed VLCPUFA

synthesis; 3) 9(10)-EpOME and 9(10)-EpODE, putative markers of

adipose lipolysis; 4) DoHex-EA, a marker of increased eCB system

tone; 5) 1-LG, a metabolic marker of obesity.
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