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Abstract

A better understanding of the impact of global climate change requires information on the locations and characteristics of
populations affected. For instance, with global sea level predicted to rise and coastal flooding set to become more frequent
and intense, high-resolution spatial population datasets are increasingly being used to estimate the size of vulnerable
coastal populations. Many previous studies have undertaken this by quantifying the size of populations residing in low
elevation coastal zones using one of two global spatial population datasets available – LandScan and the Global Rural Urban
Mapping Project (GRUMP). This has been undertaken without consideration of the effects of this choice, which are a
function of the quality of input datasets and differences in methods used to construct each spatial population dataset. Here
we calculate estimated low elevation coastal zone resident population sizes from LandScan and GRUMP using previously
adopted approaches, and quantify the absolute and relative differences achieved through switching datasets. Our findings
suggest that the choice of one particular dataset over another can translate to a difference of more than 7.5 million
vulnerable people for countries with extensive coastal populations, such as Indonesia and Japan. Our findings also show
variations in estimates of proportions of national populations at risk range from ,0.1% to 45% differences when switching
between datasets, with large differences predominantly for countries where coarse and outdated input data were used in
the construction of the spatial population datasets. The results highlight the need for the construction of spatial population
datasets built on accurate, contemporary and detailed census data for use in climate change impact studies and the
importance of acknowledging uncertainties inherent in existing spatial population datasets when estimating the
demographic impacts of climate change.
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Introduction

The estimation of sizes of populations at risk (PAR) is

increasingly being undertaken to guide strategic decision making

and policy. PAR in terms of natural and manmade disasters [1],

[2], hunger [3] and disease [4–8], for example, are now regularly

estimated. Estimation of the likely impacts of climate change is

becoming increasingly central to guiding strategic planning for

mitigation of its effects and a key part of such impact evaluations is

estimation of PAR.

These have included estimates of numbers impacted by flooding

[9], [10], water shortages [11] and a variety of other hazards [12].

Approaches for deriving these estimates are increasingly making

use of our improved abilities to produce detailed spatial datasets of

climate change related phenomena and impacts, and overlaying

these datasets on large area gridded population distribution

datasets to calculate total numbers of people impacted.

Approaches that are based on cartographic derivations of PAR

are reliant on the accuracy of both the phenomena being mapped

and the gridded population dataset. While the accuracies and

uncertainties inherent in the development of climate change

scenarios, and the mapping of their impacts are commonly

debated and accounted for in impact studies, the accuracy of the

accompanying population dataset used is rarely discussed, nor the

impact on results of the choice of one dataset over another

considered. Existing global population distribution datasets are

built on databases of census data of varying year and resolution

[13]. Moreover, spatially detailed contemporary census data is

often not available for many low-income countries [13], [14], and

therefore, global population datasets are often based on census

data over 10 years old with counts reported for coarse adminis-

trative units [13]. These differing years of census data, when used

along with a variety of intercensal growth rates, produce different

input datasets to the global mapping projects that show large

variations in population sizes and spatial distributions. These data

are then disaggregated from population counts within adminis-

trative units to grids, using differing modeling rules. The most

contemporary, detailed and widely used of these datasets are

LandScan [15] and the Global Rural Urban Mapping Project

(GRUMP) [16]. LandScan and GRUMP have been preferred for

PAR estimates by many previous studies due to their finer spatial

resolutions (30 arcseconds latitude/longitude grid or ,1 km at the
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equator), and more regular updates and incorporation of detailed

ancillary data for modeling than the other available gridded

population datasets. LandScan disaggregates census data based on

various weightings derived from land cover data, proximity to

roads, slope, and populated areas/points [15]. While based on

residential census population counts, the grid cells of LandScan

data represent ‘ambient’ population distribution integrating

diurnal movements and collective travel habits into a single

measure (see Materials and Methods for details), and national

totals are adjusted to match those reported by the US Census

Bureau. GRUMP uses night-time light satellite data as a proxy for

urban areas, reallocating census count data within administrative

boundaries based on rural-urban extents [16], and adjusting

national totals to those made by the United Nations Population

Division (UNPD). The cumulative effect of differences in input

data, modeling approaches and adjustments to totals leads to some

large differences in estimated population distributions (as illustrat-

ed by Fig 1), which in turn have effects on applications, as shown

for estimates of PAR of disease [8], [14]. Both LandScan and

GRUMP have been widely used to estimate the size of PAR of sea

level rises and coastal flooding, without consideration of these

differences.

Global sea level has risen through the 20th century and is

expected to rise up to ,60 cm by 2100 [17]. Sea level rise (SLR)

can also be triggered by extreme climate changes, such as the

potential collapse of the West Antarctic Ice Sheet, and may even

reach up to 6 m by 2130 [18].

While such high impact climate-induced events have very low

occurrence probability and SLR above 2 m by 2100 likely cannot

be justified [19], extreme SLR predictions are often integrated in

studies estimating global impacts of climate change to inform

policy-makers [20], [21]. Coastal flooding and storms during

events are expected to occur with greater frequency and intensity

through climate change. Moreover, geographic variation in SLR

resulting from non-uniform distribution of temperature, salinity,

and associated surface ocean circulation changes are likely to affect

low elevation coastal zones (LECZ) [22]. Predicted SLR and

increasing occurrences of coastal flooding have prompted a set of

studies to quantify impact on vulnerable LECZ population

through PAR estimates [20], [21], [23–25]. These estimates are

generated by the cartographic overlay of gridded population

distribution datasets and LECZ footprints (defined as low-lying

land areas contiguous to the coastal boundary), where coastal

areas below 10m of elevation are considered a conservative

estimate of the vulnerable zones [18], [21]. Figure 1 highlights the

Figure 1. Population distributions for east Argentina, east Mozambique and south west Viet Nam. This figure illustrates population distributions
in 3 countries as mapped by LandScan 2008 and GRUMP version 1. Values represent population counts per pixel. The low elevation coastal zone
(LECZ) boundary is shown in red.
doi:10.1371/journal.pone.0048191.g001
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differences in estimated LECZ population distributions for three

example regions that result from the differing modeling procedures

used by GRUMP and LandScan. GRUMP has been used to

determine the population and urban settlement patterns in LECZ

[21], and to map climate change risks to populations in Africa,

Asia and South America [23]. Similarly, LandScan has been

utilized to estimate PAR due to climate change along the US coast

[24], to estimate land area loss and population affected due to

inundation scenarios [25], and to assess SLR effects on popula-

tions living on deltas across a range of geographic, and economic

conditions [20]. Finally, influential Intergovernmental Panel on

Climate Change (IPCC) reports on climate change impacts [26]

refer to evidence from sets of studies that base PAR estimates on

either GRUMP or LandScan with no acknowledgment of the

possible uncertainties that arise. All of these studies rely heavily on

the accuracy of (i) the coastal mapping, and (ii) the population

distribution datasets.

A recent study showed that elevation data from different sources

introduces variations in PAR estimates [27]. Our objective in this

study is to demonstrate the variability in PAR estimates that can

be obtained through using different population datasets, rather

than presenting PAR estimates in a plausible sea level rise

scenario. In order to achieve this goal, we maintain the elevation

data as constant, and examine the effects of varying the population

distribution data. We quantify the differences in PAR estimates

derived from LandScan and GRUMP to illustrate the uncertainty

introduced by the choice of dataset. We use global population

distribution datasets for LandScan and GRUMP in combination

with a satellite-derived dataset outlining the boundaries of land

area contiguous with the coastline up to 10m of elevation to

extract population total estimates within the LECZ (see Materials

and Methods for details). The estimated totals using LandScan

and GRUMP are compared at continental and national levels to

assess the size of PAR variations achievable through switching

population dataset, and we calculate both absolute differences

between LandScan and GRUMP and relative differences between

the two datasets.

Materials and Methods

Population datasets
The most recent (at the time of writing) population count

datasets from LandScan (2008 version) [28] and the Global Rural

Urban Mapping Project (GRUMP) (2000 version 1) [29] were

obtained. Both of these datasets have a spatial resolution of 30

arcseconds (,1 km at the equator). Both LandScan and GRUMP

are based upon census population counts – the main difference

between the two is the year and administrative levels of input

census data used, and the modeling procedures used to

disaggregate these data. LandScan disaggregates annual midyear

sub-national population estimate data based on weightings derived

from land cover, roads, slope, urban areas, village locations, and

high resolution imagery analysis; hence the population distribution

surface is a highly modeled one that represents ‘ambient’

population distribution. The GRUMP suite of data products were

developed in an effort to reallocate census population counts to

urban and rural areas, and not just areal weighting of census

counts to a grid as followed in the production of the Gridded

Population of the World (GPW) dataset [30]. Unlike GPW,

GRUMP is a ‘lightly modeled’ dataset that not only uses areal

weighting to redistribute population counts from administrative

polygons (census counts from census boundaries) to a uniform

quadrilateral grid, but also reallocates urban population based on

night-time lights. Since GRUMP represented population in 2000

and LandScan represented 2008, two methods for producing

temporally comparable datasets were used: (i) The LandScan and

GRUMP datasets were projected to common years (GRUMP to

2008 to match LandScan, and also LandScan to 2000 to match

GRUMP) to ensure comparability by applying national, medium

variant, intercensal growth rates by country [31], following

methods described previously [32] and also undertaken in other

LECZ studies [18], [20] (ii) We calculated national level

population totals for LandScan 2008 and GRUMP 2000, using

their respective national boundary definitions, and adjusted

national totals in GRUMP 2000 to match those of LandScan

2008, and vice-versa. The differences in country-level percentage

differences between LECZ estimates for the two time periods were

found to be statistically insignificant, illustrating that the differ-

ences in LECZ PAR found between datasets are largely insensitive

to different projection methods used in this study. Each of these

adjustment approaches, however, ultimately contributes to addi-

tional uncertainty in the PAR estimates, a fact that is also rarely

acknowledged in previous studies. While not ideal, the use of

national level growth rates to project or backcast datasets to

specific years is regularly undertaken, since the availability of

LandScan and GRUMP for specific years often does not meet the

needs of the researchers using these data. Examples of studies that

have undertaken similar approaches can be found on the GPW/

GRUMP website [29]. By undertaking these different methods of

projection and producing comparable datasets, and assessing the

differences in PAR estimates produced, the sensitivity and

contribution to any PAR size differences of the different

comparison approaches could be assessed.

Elevation Datasets
The global LECZ footprint used in this study is derived from the

SRTM30 Enhanced Global Map, which is based on raw SRTM

data, but is enhanced with the U.S. Geological Survey’s

GTOPO30 and ocean bathymetry data from ETOPO2 [18].

This enhanced global dataset, developed by ISciences, LLC, Ann

Arbor (2003), has a vertical resolution of 1 m and spatial resolution

of 30 arcseconds (,1 km at the equator), and corrects for the data

gap and inaccuracies of raw SRTM data. The LECZ layer

includes land areas, 10 m and below, contiguous to coastal

boundaries, and expands down to 24000 m to include areas

below sea level. The expansion of the LECZ footprint beyond the

coastal boundary ensures inclusion of populations residing below

sea level and protected by levees, and also addresses issues

regarding mismatches in coastal boundaries between population

datasets, especially in small island countries. In most countries,

LECZ is much less than 100 km in width, except for the mouths of

major rivers such as the Amazon in Brazil.

PAR extraction
The LECZ footprint was used to extract LECZ population data

from LandScan, and GRUMP. This extraction method involved

cartographic overlaying of the LECZ footprint and population

grids in a Geographic Information System (GIS) resulting in raster

layers for LECZ population, one each for LandScan and

GRUMP. The files accompanying GRUMP and LandScan that

define country cell allocations across the world were used,

respectively, to summarize population data for LECZ countries,

i.e. those not land-locked. Absolute differences between LandScan

and GRUMP population estimates (using datasets adjusted to be

comparable using the different approaches outlined above) were

then calculated for the LECZ countries, and later used to calculate

the differences, both at the country and continent levels, as the

percentage of the total UNPD 2008 populations. The percentage

Uncertainties in Vulnerable Population Estimation
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Table 1. Continent-wise low elevation coastal zone (LECZ) population estimates derived from LandScan 2008 and GRUMP
(projected to 2008) datasets.

Continent
LECZ population
estimates: LandScan

LECZ population
estimates: GRUMP

Total 2008 population
estimates by UNPD of
LECZ countries

LECZ population
estimates as %
total UNPD
population:
LandScan

LECZ population
estimates as %
total UNPD
population:
GRUMP

% difference in
LECZ population
derived from
LandScan and
GRUMP datasets

Africa 63,050,042 57,096,275 752,731,674 8.38 7.59 0.79

Americas 60,548,793 58,705,036 904,609,518 6.69 6.49 0.20

Asia 550,417,035 531,441,504 3,935,404,359 13.99 13.50 0.48

Europe 47,828,449 45,937,995 665,829,990 7.18 6.90 0.28

Oceania 4,168,768 2,546,088 34,605,327 12.05 7.36 4.69

Relative differences in LECZ population estimates are also reported as percentage of the total population of the LECZ countries from each of these continents as
estimated by the United Nations Population Division (UNPD). A detailed list of all countries has been provided in Table S1.
doi:10.1371/journal.pone.0048191.t001

Figure 2. Variability in population at risk (PAR) estimates. This figure highlights the differences in PAR estimates residing in low elevation coastal
zones (LECZ) across the world achievable through switching between LandScan and GRUMP: (a) absolute differences in 2008 between LandScan and
GRUMP PAR estimates, and (b) percentage change in PAR from 2008 national population totals defined by the United Nations Population Division.
doi:10.1371/journal.pone.0048191.g002
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differences calculated using the GRUMP and LandScan datasets

adjusted in differing ways (projections to 2000 and 2008, national

population total matching) showed no overall significant differ-

ences (Mann-Whitney U-test, p,0.01 in all cases), suggesting that

projection method contributes statistically insignificant differences

relative to the differences introduced through differing input

datasets and modeling approaches used between GRUMP and

LandScan. This is consistent with previous findings [13].

Results and Discussion

At the continental level there is little variation in PAR estimates

derived from LandScan and GRUMP (Table 1), however such

summarizations mask some substantial variations at the country

level. Several countries from all the five continents exhibit PAR

differences between LandScan and GRUMP of over 5% of the

UNPD national population estimates (Fig. 2). Most of these

countries are, unsurprisingly, small islands, with their entire land

area in the LECZ. Eight out of the top ten countries with the

largest differences in estimates are small island countries (Table 2),

with five of them having total population of less than 25,000.

These countries exhibit over 25% difference in their PAR

estimates due to choice of population dataset , with the largest

difference being approximately 47% for the American island of

Saint Pierre et Miquelon. While the spatial datasets used in this

study have similar coastal boundaries for the vast majority of

regions, small islands often display inconsistencies due to a

mismatch in cell gridding used in the two population datasets.

Since the LECZ used in this study expands beyond the coastal

boundaries to include areas down to 24000 m, it addresses such

mapping inconsistencies in small island countries. Inconsistencies

in definitions of global administrative boundaries, however,

inevitably introduce uncertainties into PAR estimates – a fact

rarely acknowledged.

Census datasets used to construct both GRUMP and LandScan

for Europe are of similar, detailed resolution, meaning that the

difference in modeling approach taken by GRUMP and Land-

Scan generally have little impact on output population distribu-

tions, and thus, country-level discrepancies between PAR

estimates are small (Fig. 2). Similarly, high-resolution census

tract-level count data used as input resulted in very similar

population distributions for the US, as quantified by LandScan

and GRUMP, producing only 0.1% differences between the two

PAR estimates, despite substantial LECZ populations in excess of

25 million today. The PAR estimates for African countries, where

input census data varies considerably in resolution and quality

[13], exhibit much larger differences however (Fig. 2). Moreover,

many of the Central and South American countries such as

Argentina, Belize, Colombia, Cuba, Haiti, Honduras, and

Venezuela have a 1%-3% relative difference in PAR achievable

through switching between LandScan and GRUMP. While these

proportions might seem low, for a country such as Argentina with

Table 2. Country-level differences between population at risk (PAR) estimates achievable through switching between LandScan
and GRUMP.

Country
Difference in PAR estimates as % of
national population estimates (UNPD)

National population estimates for 2008
(UNPD)

Top 10 countries with the largest PAR disparities

Saint Pierre et Miquelon (Americas) 47.12 6,036

Wallis and Futuna (Oceania) 44.65 15,297

Samoa (Oceania) 43.20 177,883

Guyana (Americas) 40.88 757,659

United Arab Emirates (Asia) 39.77 3,683,453

Anguilla (Americas) 35.66 14,277

British Virgin Islands (Americas) 31.07 22,495

French Polynesia (Oceania) 29.43 265,497

Tuvalu (Oceania) 28.74 9,946

Tonga (Oceania) 28.54 102,737

Top 10 countries based on combined ranking of large PAR disparities and large population (.1,000,000)

United Arab Emirates (Asia) 39.77 3,683,453

Gambia (Africa) 20.12 1,656,103

Libya (Africa) 19.45 6,297,761

Oman (Asia) 18.48 2,751,575

Qatar (Asia) 17.03 1,111,849

New Zealand (Oceania) 13.79 4,209,284

Guinea-Bissau (Africa) 13.69 1,580,870

Singapore (Asia) 10.87 4,508,366

Sri Lanka (Asia) 7.65 20,005,855

Philippines (Asia) 6.59 90,438,674

The PAR differences are reported here as proportions of the total national population of the corresponding countries as estimated by the United Nations Population
Division (UNPD) for 2008. The top 10 countries with the highest PAR disparity are listed, alongside the top 10 by PAR disparity for countries with populations over one
million. A detailed list of all countries has been provided in Table S1.
doi:10.1371/journal.pone.0048191.t002
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relatively large coastal populations, this relative difference

translates to over a million people. When those countries with a

population greater than 1 million were ranked from largest to

smallest by differences in PAR estimates, nine out of ten of the top

ten countries were either Asian or African, showing differences

ranging from 6% to 39% of their total population (Table 2).

Absolute differences of more than a million people for 2008 were

found for many countries, including Indonesia and Japan, with

each of these showing a difference of greater than seven million

through estimating populations living in LECZ using GRUMP

and LandScan. Moreover, for India, a country with high coastal

population densities, a percentage difference of just 0.5%

translates to over six million people.

Ideally, identifying which existing population dataset produced

the most accurate distributions within LECZ would provide clear

guidance for future selection of datasets for PAR estimation.

Determining this remains a difficult task, however, because if

detailed population distribution data exists, it is often used as input

data to the global population datasets themselves. Previous studies

have, however, attempted to assess mapping accuracies between

population datasets for individual countries, and often found large

variations and inconsistent results between countries in terms of

which dataset proved to be the most accurate, largely determined

by the resolution and age of input census data [32–34]. Most

countries collect census data once a decade, and such data are

often not made available matched to reliable spatial boundary

data. Moreover, many low incomes countries – particularly in sub-

Saharan Africa – have not conducted full censuses for over

15 years. At finer spatial scales, uncertainties arise due to the daily

dynamics of populations within urban environments – e.g. data on

residential populations excludes large commercial and industrial

areas of the urban environment which are more populated during

daylight hours, thus underestimating high population densities in

coastal urban areas for much of the day. From this perspective, it

may not be prudent to use residential census data as a reference to

produce error statistics for ambient population data, especially in

coastal PAR studies where the temporal component of PAR is of

importance. Of perhaps greater importance is the lack of

information in existing spatial population datasets on the attributes

of populations mapped, such as age and sex. Different population

groups are more vulnerable to the effects of climate change,

disasters and disease than others, yet existing datasets only provide

information on total population counts [8].

With predicted SLR in the coming decades posing multiple

threats to vulnerable coastal populations, PAR assessments are

being increasingly undertaken [35]. Spatial population datasets

have played an important role in previous LECZ PAR estimate

studies, as well as in numerous other fields of research [14], [16],

[36]. Our findings here highlight that even today with increasingly

accurate, detailed, and reliable spatial data on climatic and

environmental variables, our knowledge of human population

distributions – especially in low income regions of the world – can

be surprisingly limited [13]. With the advancement of theory and

computational capabilities, future work on spatial population

datasets should ideally focus on integrating robust handling of

uncertainties into demographic database construction methods as

a priority [8]. Moreover, dataset producers could also consider the

modification and provision of open-access availability of modeling

techniques so that improved input data can be more easily

incorporated into datasets, even when made available after the

modeled products have been generated. Models for population

allocation need to be critically evaluated and revised on a regular

basis, and perhaps most importantly, the most contemporary and

spatially detailed population data should ideally be shared at all

times, with full metadata documenting production and any

accuracy information. While efforts to improve spatial population

data have been started through differing projects [37], [38], these

remain small in scope and capacity. Hence, in the absence of

global population databases with greater precision, studies utilizing

a particular dataset should acknowledge how the inherent

uncertainties of the input data and method will likely affect

conclusions.

Supporting Information

Table S1 Country-wise low elevation coastal zone
(LECZ) population estimates derived from LandScan
2008 and GRUMP (projected to 2008) datasets. Relative

differences in LECZ population estimates are also reported as

percentage of the total population of the LECZ countries from

each of these countries as estimated by the United Nations

Population Division (UNPD).

(XLSX)
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