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Abstract

Introduction: Gene expression data is often assumed to be normally-distributed, but this assumption has not been tested
rigorously. We investigate the distribution of expression data in human cancer genomes and study the implications of
deviations from the normal distribution for translational molecular oncology research.

Methods: We conducted a central moments analysis of five cancer genomes and performed empiric distribution fitting to
examine the true distribution of expression data both on the complete-experiment and on the individual-gene levels. We
used a variety of parametric and nonparametric methods to test the effects of deviations from normality on gene calling,
functional annotation, and prospective molecular classification using a sixth cancer genome.

Results: Central moments analyses reveal statistically-significant deviations from normality in all of the analyzed cancer
genomes. We observe as much as 37% variability in gene calling, 39% variability in functional annotation, and 30%
variability in prospective, molecular tumor subclassification associated with this effect.

Conclusions: Cancer gene expression profiles are not normally-distributed, either on the complete-experiment or on the
individual-gene level. Instead, they exhibit complex, heavy-tailed distributions characterized by statistically-significant
skewness and kurtosis. The non-Gaussian distribution of this data affects identification of differentially-expressed genes,
functional annotation, and prospective molecular classification. These effects may be reduced in some circumstances,
although not completely eliminated, by using nonparametric analytics. This analysis highlights two unreliable assumptions
of translational cancer gene expression analysis: that ‘‘small’’ departures from normality in the expression data distributions
are analytically-insignificant and that ‘‘robust’’ gene-calling algorithms can fully compensate for these effects.
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Introduction

Background
Microarray-based assays of gene expression have become a

mainstay of basic and translational cancer research. A significant

number of modern investigations rely on these tools to inform

hypothesis generation [1], for pathway analysis [2,3], for

pharmacogenomics and drug discovery [4], and for developing

molecular-based disease classification strategies [5,6]. Additionally,

gene expression data are becoming progressively more important

for informing clinical diagnosis and patient management [7,8],

and microarray-based genomic profiles are now being used to

guide patient enrollment and stratification in large-scale clinical

trials [9,10].

Against this backdrop, the importance of accurate interpretation

of microarray results and the significant consequences of

systematic analytic errors becomes apparent. In the early days of

microarray analysis, high experimental costs and significant

technical variability limited the available information with which

comprehensive analyses of the practical effects of subtle biases in

microarray data or in its interpretation could be studied [11]. This,

in turn, necessitated that certain mathematical and biological

assumptions be made [12,13], and the lack of adequate data

precluded in-depth investigation of the validity of these assump-

tions.
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The Assumption of Normality in Two Related Types of
Expression Datasets

One common assumption is that data from microarray-based

genome expression analyses conform to a standard Gaussian

(normal) distribution. This assumption is rarely explicit but rather

is most commonly made implicitly when investigators apply

analytic algorithms predicated upon the Gaussian assumption.

Distribution-related assumptions are relevant to at least two,

distinct sets of expression data generated in microarray analyses,

and the normality assumption has been variably (often implicitly)

applied to both [12–15].

The first dataset to which distribution is relevant comprises the

complete set of individual expression values across all genes and all

samples in a given experiment. For example, in a study examining

the expression of 25,000 genes in 100 tumors, this is the set of all

2.5 million gene expression values. The distribution of this

composite dataset may be particularly relevant to downstream

clustering and class discrimination analyses, as many of these

algorithms are typically applied to the entire dataset as a whole.

When algorithms predicated upon a standard Gaussian distribu-

tion are used, the normal assumption is implicitly introduced.

The second dataset to which distribution is relevant is the

dataset comprising the individual expression values for a single

gene across the entire range of experimental samples. Continuing

the previous example, this experiment would generate 25,000 such

datasets, each with 100 data points. The distribution of these 100

data points may be particularly relevant to studies that examine

the consistency of behavior of a specific gene in a specific tumor

type or analyze the pattern of its change across a range of ‘‘classes’’

or ‘‘grades’’ of a specific tumor. Here the distribution may provide

a useful description of the behavior of this single gene across

multiple independent samples, but the normal assumption may be

implicitly introduced if algorithms used to analyze the behavior of

this gene are predicated upon a standard Gaussian distribution.

The assumption of normality has been explicitly investigated in

gene expression analysis, although to a limited degree. While it

initially appeared to have both theoretical [16] and empiric

support [11,17], more recent analyses have suggested the

possibility of non-Gaussian distributions for gene expression data

[18–21]. At present, however, most of these observations are

derived from simulated [19,21], heterogeneous [20,21], or non-

clinical datasets [18–21].

Significance
The possibility that gene expression data violate the normality

assumption may be of considerable significance to clinical and

translational investigators. Most current and proposed medical

applications of microarray expression data are derived from

analyses predicated upon this assumption, many of which have

relied upon parametric statistics for gene calling and class

discovery [6–8]. Translational oncologists are among the most

avid consumers of microarray data and the most likely to propose

its clinical application, so a logical place to begin an investigation

of the magnitude, extent, and clinical implications of non-

Gaussian distributions in gene expression data is with large,

publicly-available cancer genome databases [22,23]. Notwith-

standing, this issue is fundamental to the current analytic

paradigm for gene expression data in general, and we anticipate

that the findings of this investigation will have significance beyond

the sphere of translational molecular oncology.

The present investigation has two objectives and has been

structured in two parts: the first is theoretical – to study the

distributions of cancer gene expression data – both at the

individual gene and at the complete dataset level – and to assess

the extent to which these deviate from normality. This provides

the foundation for the second, translational objective: to study the

implications of non-Gaussian gene expression distributions on

clinically-oriented genomic analyses. The experimental model has

been deliberately designed to recapitulate faithfully the workflow

of a typical, translational pipeline for gene expression analysis

(Figure 1).

Results

Distribution Analysis – Complete Datasets
We first examined the distributions of the complete set of

individual expression values across all genes and all samples in

each of five experiments (the first type of data set described in the

introduction). Table 1 summarizes the results of the central

moments analysis of five, large-scale (n = 180, each) human cancer

genomes, which was performed after normalization with either the

robust multichip average (RMA) [24] or the DChip [25] methods.

These data demonstrate that, while the means and standard

deviations suggest approximate normality (m range: 20.18–0.10; s
range: 0.84–1.58), the third and fourth central moments depart

from normality in a statistically-significant manner. Fisher’s indices

of skewness and kurtosis, which are considered significant at

a,0.05 when they exceed 61.96, are .100 for all samples.

Additionally, the F-test of the variance demonstrates statistically-

significant departures from normality for all samples (Tables 1,

S1). All five cancer gene expression distributions therefore depart

significantly from the normal distribution. This is further

supported by the results of the one-way and two-way KS tests,

which demonstrate significant departures from normality for all of

the datasets. Moreover, the findings of the central moments

analysis suggest that these distributions have slight but significant

skewness, are markedly kurtotic, and are heavy-tailed (Figure 2).

Similar results from data normalized using both the RMA [24]

and the DChip method [25] suggest that this departure from

normality is unlikely to be a function of the normalization

algorithm, and analysis of both Log2-transformed and Log2-

subtracted data suggests that it is not related to Log subtraction

(Tables 1, S1; Figures S1, S2).

These findings are not necessarily surprising, as neither of the

normalization methods nor the process of log-transformation are

specifically intended to produce normality; however, this analysis

demonstrates using multiple expression datasets that none of these

transformations are sufficient to produce Gaussian data. Accord-

ingly, it cannot be safely assumed that data that have been

‘‘normalized’’ using any of these methods actually conform to a

‘‘normal’’ (standard Gaussian) distribution.

Distribution Analysis – Individual Genes
We also examined the data distributions of individual genes

across the 180 samples of each of the 5 cancer data sets. Many

investigators examining data from an experiment containing

microarrays of multiple, similar tumors may assume that an

‘‘overexpressed’’ gene would exhibit a Gaussian distribution

centered around a positive mean value, an ‘‘underexpressed’’

gene will have a similar distribution around a negative value, and a

gene whose expression is unchanged will have a Gaussian

distribution centered around zero. Our analysis, however,

demonstrates that variable degrees of skewness and kurtosis as

well as marked deviations from unity among the standard

deviations are characteristic of the expression distributions for

individual genes. Table 2 summarizes the results of this analysis,

and Figure 3 gives an illustrative example of this effect by plotting
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the distributions selected genes from the brain tumor (glioblasto-

ma) data set.

Curve Fitting
Empiric curve fitting was used to further investigate the actual

morphology of the cancer gene expression distributions (Table 3;

Figures 4, S3, S4, S5, S6). This analysis suggests that complex,

multi-parameter distributions are required to more accurately

model the expression data distributions. In general, the best-fit

distributions were those that are parameterized to model skewness,

kurtosis, and heavy tails. These include multi-parameter distribu-

tions related to the b-prime (Pearson VI, capable of modeling

skewness) (e.g. Log-logistic, Dagum, Burr), kurtotic distributions

(e.g. hyperbolic-secant), and the versatile, 4-parameter Johnson

SU [26].

Figure 1. Overview of Analytic Workflow. The flow diagram depicts typical microarray analysis workflow (top section), the statistical methods
used at each step (middle section), and the corresponding tables and figures in this manuscript that present analyses at each level (bottom section).
doi:10.1371/journal.pone.0046935.g001

Figure 2. Cancer gene expression datasets are not normally-distributed. The source data for these graphs are the Log2-subtracted datasets.
All bin widths have been set to 200 to improve visualization. Red curves represent the best-fit normal distribution. The primary image gives the
histogram with the superimposed theoretical normal curve. The inset presents the quantile-quantile (QQ) plot, where deviation from the line (y = x,
black) illustrates deviation of the empiric from the theoretical normal distribution. Left panel shows data normalized with the RMA method. Right
panel shows data normalized with the DChip method. A: Brain; B: Breast; C: Colon; D: Gastric; E: Ovarian.
doi:10.1371/journal.pone.0046935.g002
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Table 1. Central Moments Analysis.

Log2 Subtracted

RMA DChip

Statistic Test Statistic Statistic Test Statistic

Brain

Patients (features) 180 (9,841,500) 180 (9,841,500)

First Moment Mean 0.020 ,0.0001, ,0.0001* 0.104 ,0.0001, ,0.0001*

Second Central Moment Variance 0.710 ,.0001 [0.706,0.710]** 1.336 ,.0001 [1.328,1.336]**

Standard Deviation 0.843 1.156

Third Central Moment Skew 0.836 ,0.0001 (1.016103)# 20.110 ,0.001 (2140.7)#

Fourth Central Moment Excess Kurtosis 3.912 0.002 (2.56103){ 2.429 0.002 (1.66103){

One-Sample Kolmogorov-Smirnov 0.118 ,.0001 (60.0004){ 0.053 ,.0001 (60.0004){

Two-Sample Kolmogorov-Smirnov 0.118 ,.0001w 0.053 ,.0001w

Breast

Patients (features) 180 (9,841,500) 180 (9,841,500)

First Moment Mean 0.033 ,0.0001, ,0.0001* 20.180 ,0.0001, ,0.0001*

Second Central Moment Variance 0.813 ,.0001 [0.809,0.813]** 1.818 ,.0001 [1.808,1.818]**

Standard Deviation 0.902 1.349

Third Central Moment Skew 0.223 ,0.0001 (286.2)# 20.280 ,0.001 (235.9)#

Fourth Central Moment Excess Kurtosis 5.268 0.002 (3.46103){ 1.531 0.002 (980.3){

One-Sample Kolmogorov-Smirnov 0.115 ,.0001 (60.0004){ 0.090 ,.0001 (60.0004){

Two-Sample Kolmogorov-Smirnov 0.115 ,.0001w 0.090 ,.0001w

Colon

Patients (features) 180 (9,841,500) 180 (9,841,500)

First Moment Mean 0.002 0.105, 0.012* 20.044 ,0.0001, ,0.0001*

Second Central Moment Variance 0.991 ,.0001 [0.986,0.991]** 1.778 ,.0001 [1.768,1.779]**

Standard Deviation 0.996 1.334

Third Central Moment Skew 21.640 ,0.0001 (22.16103)# 20.278 ,0.001 (2356.1)#

Fourth Central Moment Excess Kurtosis 17.590 0.002 (1.16104){ 1.622 0.002 (1.16103){

One-Sample Kolmogorov-Smirnov 0.112 ,.0001 (60.0004){ 0.050 ,.0001 (60.0004){

Two-Sample Kolmogorov-Smirnov 0.112 ,.0001w 0.050 ,.0001w

Gastric

Patients (features) 180 (9,841,500) 180 (9,841,500)

First Moment Mean 0.052 ,0.0001, ,0.0001* 20.094 ,0.0001, ,0.0001*

Second Central Moment Variance 1.120 ,.0001 [1.113,1.120]** 2.482 ,.0001 [2.468,2.483]**

Standard Deviation 1.058 1.575

Third Central Moment Skew 0.228 ,0.0001 (369.2)# 20.177 ,0.0001 (2220.9)#

Fourth Central Moment Excess Kurtosis 3.981 0.002 (2.66103){ 1.374 0.002 (879.6){

One-Sample Kolmogorov-Smirnov 0.066 ,.0001 (60.0004){ 0.107 ,.0001 (60.0004){

Two-Sample Kolmogorov-Smirnov 0.066 ,.0001w 0.017 ,.0001w

Ovarian

Patients (features) 180 (9,841,500) 180 (9,841,500)

First Moment Mean 0.036 ,0.0001, ,0.0001* 0.009 ,0.0001, ,0.0001*

Second Central Moment Variance 1.027 ,.0001 [1.022,1.028]** 1.889 ,.0001 [1.878,1.890]**

Standard Deviation 1.014 1.374

Third Central Moment Skew 0.827 ,0.001 (1.066103)# 0.350 ,0.0007 (447.8)#

Fourth Central Moment Excess Kurtosis 5.692 0.002 (3.66103){ 2.320 0.002 (1.56103){

One-Sample Kolmogorov-Smirnov 0.099 ,.0001 (60.0004){ 0.048 ,.0001 (60.0004){

Two-Sample Kolmogorov-Smirnov 0.099 ,.0001w 0.048 ,.0001w

Results of the central moments analysis for each of the five tumor types, using each of two normalization methods. RMA = Robust Multichip Average.
* = t-test 2 class unpaired, Wilcoxon Rank-Sum vs. simulated.
** = f-test.
# = Standard Error of Skewness (Fisher’s Skewness Index).
{ = Standard Error of Kurtosis (Fisher’s Kurtosis Index).
{ = p-value [95% CI].
w = p-value.
doi:10.1371/journal.pone.0046935.t001
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While these distributions fit the data more accurately than the

normal distribution, KS testing indicates that they are imperfect

fits (Table 3). Moreover, there is no single distribution that is

clearly superior for modeling all sets of expression data. Overall,

this analysis confirms the significant departures from normality

associated with the cancer genome expression data and demon-

strates the complex nature of the underlying expression distribu-

tions.

Gene Calling & Functional Annotation
Up to this point the analysis has been focused on investigating

the actual distributions of gene expression datasets and comparing

these to a theoretical, normal distribution. This analysis has

demonstrated that human cancer gene expression data is not

normally-distributed, either on the experiment or on the single-

gene level. An appropriate next question would be whether these

deviations from normality affect commonly-performed gene

expression analytics, including molecular classification, gene

calling, and functional annotation.

To investigate this question, we performed an analysis of a gene

expression dataset from 23 low-grade gliomas (LGG), including a

unique subset of eleven tumors with intact chromosomes 1p and

19q (arbitrarily designated Class 1) and another subset of eight

oligodendrogliomas with chromosome 1p/19q codeletions [5,27]

(arbitrarily designated Class 2), was used to study the effects of the

data distribution on identification genes that are differentially-

expressed between known tumor subsets. This was accomplished

by applying a uniform transform (Box-Cox [28]) to the expression

dataset to improve the normality of the data distribution and then

comparing the results of gene calling algorithms applied to the

parent and transformed datasets (Figure 5). In this way only the

shape of the distribution has changed, and the null hypothesis is

that this transformation should have no effect on gene calling if the

methods are sufficiently ‘‘robust’’ to distribution morphology or

are truly ‘‘distribution-independent.’’

The two-sided student’s t-test with a standard Bonferroni

correction (p,0.01), identified 50 differentially-expressed genes

between Class 1 and Class 2 using the parent distribution and 55

using the transformed distribution (9.1% difference). Forty-nine

(49) of 56 total differentially-expressed genes were common to

both lists (87.5%), while 7 were uniquely identified in only one of

the two lists (12.5%) (Tables 4A, S3).

Even with the stringent Bonferroni correction, the t-test is a

parametric test that makes assumptions regarding the shape of the

underlying distribution. To eliminate this effect, we applied two,

nonparametric methods for gene calling. A two-class, unpaired

significance analysis of microarrays (SAM) [29] identified 759

differentially-expressed genes in the parent and 478 in the

transformed distribution (37.2% difference). Of 760 total genes,

477 (62.8%) were common to both lists while 283 (37.2%) were

unique to only one of the two lists (Tables 4A, S4). A two-class,

unpaired Kruskal-Wallis (KW) test identified 1,801 differentially-

expressed genes in the parent distribution and 1800 in the

transformed distribution. There was 99.9% overlap in these gene

lists (Tables 4A, S5).

An alternate strategy for gene calling uses linear modeling for

microarrays (LIMMA) [30] a Bayesian approach to linear

modeling to calculate a moderated t-test. While this method

assumes normality of the underlying data, it is viewed by many to

be superior to standard and corrected t-tests and is considered

robust to a variety of confounding mathematical and statistical

effects [31]. LIMMA identified 2,866 differentially-expressed

Figure 3. Single-Gene Expression Distributions are not Gaussian. These graphs illustrate the wide range of potential skewness (A) and
kurtosis (B) that exist in the expression distributions of individual genes comprising the cancer expression datasets. This refutes the assumption that
the expression data for individual genes follow an approximately Gaussian distribution around the gene’s mean expression level. Data for these
graphs was taken from the log2-subtracted, RMA-normalized glioblastoma expression data. For the skewness comparison, five genes with
comparable means, standard deviations, and kurtosis were selected from subsets of genes representing approximately the 10th, 25th, 50th, 75th and
90th percentiles for per-gene skewness contained in the dataset. Similarly, for the kurtosis comparison, five genes with comparable means, standard
deviations, and skewness were selected from subsets of genes representing approximately the 10th, 25th, 50th, 75th and 90th percentiles for per-gene
kurtosis contained in the dataset. The identities of the genes are not germane for comparative purposes.
doi:10.1371/journal.pone.0046935.g003

Table 2. Single Gene Distribution Variability.

S Skewness Kurtosis

mean median min Max s Mean median min max s mean median min max s

Brain RMA 0.37 0.28 0.04 3.32 0.27 0.53 0.39 27.79 12.39 0.90 1.82 0.47 21.81 161.65 6.30

DChip 0.58 0.48 0.00 3.72 0.33 20.07 20.12 213.42 13.42 0.97 1.47 0.37 22.02 180.00 6.72

Breast RMA 0.47 0.40 0.08 3.71 0.32 0.76 0.49 25.66 12.35 1.20 3.20 0.73 21.64 160.94 9.79

DChip 0.78 0.72 0.08 3.83 0.32 20.15 20.19 25.69 12.20 0.64 1.00 0.49 21.67 156.34 2.29

Colon RMA 0.35 0.29 0.05 2.75 0.21 0.40 0.27 24.93 12.71 0.89 1.80 0.68 21.73 166.98 5.62

DChip 0.69 0.59 0.03 3.89 0.36 20.32 20.31 26.60 13.42 0.89 1.50 0.57 21.67 180.00 4.52

Gastric RMA 0.53 0.43 0.09 4.00 0.36 0.84 0.84 26.83 12.44 1.27 3.67 1.90 21.73 162.49 7.02

DChip 0.89 0.80 0.10 4.22 0.40 20.32 20.34 27.52 13.42 0.82 1.77 1.01 21.82 180.00 3.33

Ovarian RMA 0.49 0.44 0.09 3.04 0.30 0.81 0.48 26.05 12.35 1.52 4.84 1.29 21.57 160.99 10.69

DChip 0.75 0.69 0.10 3.48 0.29 20.43 20.36 26.75 7.10 0.92 2.32 0.92 21.48 78.97 4.30

These data show deviation from the parameters of a Gaussian distribution for the standard deviations (s), skewness, and kurtosis of the expression distributions of
individual genes comprising the cancer expression datasets. If the assumption that individual gene expression distributions are Gaussian were correct, then the mean s
should approximate 1, the mean skewness should approximate 0, and the mean kurtosis should approximate 3. The deviations from these theoretical parameters
exhibited by the individual gene expression distributions in all five cancer datasets refute the Gaussian assumption for individual genes.
doi:10.1371/journal.pone.0046935.t002
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genes in the parent and 2,981 in the transformed distribution. Of

3,047 total genes, 2,710 (88.9%) were common to both lists while

337 (11.1%) were unique to only one of the two lists (Tables 4A,

S6).

The effects of the distribution on functional annotation were

studied first by using DAVID [32,33] to annotate for gene

ontology (GO) [34,35] and Kyoto Encyclopedia of Genes and

Genomes (KEGG) [36] terms in the gene lists previously generated

by the SAM and KW analyses and then by performing a statistical

enrichment analysis for the annotated terms. This identified 46

unique terms in the SAM lists, with 60.9% overlap between the

enriched terms in the parent and transformed lists. Conversely,

analysis of the lists generated by the KW analysis identified 49

enriched terms, all of which were identical in the lists from the

parent and transformed datasets (100.0% overlap) (Tables 4B, S7,

S8).

Figure 4. Distribution Fitting. Distribution fitting for the brain cancer dataset for RMA (top) and DChip (bottom) normalized data. The three best-
fit curves are superimposed on the histogram, and the normal distribution curve is included for comparison. The specific parameters for the best-fit
distributions are given. The inset displays the quantile-quantile (QQ) plot for the best-fit and normal distributions. These charts demonstrate that
multiparameter distributions capable of modeling skewness and kurtosis better characterize the data than the standard Gaussian (normal)
distribution. Similar graphs for additional tumor types are given in figures S2, S3, S4, S5.
doi:10.1371/journal.pone.0046935.g004
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Classification
Gene expression data are frequently used as the basis for

attempts at molecular-based subclassification of tumors with

similar histology but different clinical phenotypes. We exploited

the a priori knowledge [5] of two such groups within the low-grade

glioma dataset (Class 1 and Class 2) to simulate the classification

process and to study the relationship of the results to the shape of

the underlying data distribution. Discriminant analysis (DA) and k-

nearest neighbors (KNN) classifiers were trained on a subset of the

tumors with representatives from each class and were then used to

classify ten, novel tumors into one of the two classes. Identical

analyses were performed on data from the parent and transformed

distributions. The results of these analyses demonstrate a 20%

difference in class assignment (2/10 samples) for the DA and 30%

(3/10 samples) for the KNN classifier when used with the parent

data but identical classifications for both models when used with

the transformed dataset (Figure 6). This effect is independent of

the initial method of data reduction (SAM or t-test) (Figure S7).

Discussion

Gene Expression Data are not Normally-Distributed
The distribution of gene expression data is typically assumed to

conform to a standard Gaussian (normal) distribution [11,17].

This assumption may be attributable to a combination of three

factors. First, this behavior may be (arguably) predicted by the

central limit theorem [16]. Second, basic analyses of gene

expression datasets, which generally include calculations of the

mean and standard deviation as well as visual inspection of the

data distribution, usually reveal bell-shaped curves with means (m)

centered near zero and standard deviations (s) approximately

equal to one. Third, in the early days of gene expression analysis

when these assumptions were codified, datasets were small and

observed differences from these theoretical values may not have

achieved statistical significance.

The modern era of expression analysis, characterized by

decreased cost and increased sample availability, now affords the

luxury of working with datasets that include several times more

samples and exponentially-more features than those of the past.

These datasets, like the ones examined herein, allow more precise

analysis of the distributions of expression data. In this analysis we

have gone beyond calculating m and s (which, in fact, appear at

first glance to be consistent with normality in these data) and have

performed a comprehensive analysis of the higher-order central

moments for these distributions. This analysis exploits the

availability of nearly 108 features per dataset to allow statistical

significance assessments of seemingly-minor deviations from

normality. In so doing, it reveals that these deviations achieve a

high degree of statistical significance for all of the first four central

moments. This provides convincing evidence that these cancer

gene expression data do not conform to a standard Gaussian

distribution (Figure 2, Table 1) and that categorical assumptions of

normality for these types of datasets may be invalid.

Gene Expression Data Exhibits Complex Distribution
Characteristics

Empiric curve fitting identifies, in an unbiased fashion,

distributions that most accurately model the observed distributions

of the expression data. Analysis of the empirically-fit distributions

provides additional information regarding data distribution and

can be used to draw general conclusions regarding the types of

downstream analyses that may be applicable to these datasets.

This analysis demonstrates that the expression distributions are not

well modeled by simplified, two- parameter distributions (such as

the normal distribution) but instead require distributions with

multiple (3–4) shape parameters to model the data accurately.

Table 3. Empiric Distribution Fitting.

Tumor RMA Normalized DChip Normalized

Best-Fit Distributions Kolmogorov-Smirnov Best-Fit Distributions Kolmogorov-Smirnov

a
Critical
Value Test Statistic a

Critical
Value Test Statistic

Brain Log-Logistic (3P) 0.05 0.0292 0.0595 Hyperbolic Secant 0.05 0.0319 0.0135

Dagum (4P) 0.05 0.0292 0.0595 Dagum (4P) 0.05 0.0319 0.02

Johnson SU 0.05 0.0292 0.0662 Johnson SU 0.05 0.0319 0.0203

Breast Johnson SU 0.05 0.0255 0.0518 Burr (4P) 0.05 0.0337 0.0067

Dagum (4P) 0.05 0.0255 0.0544 Johnson SU 0.05 0.0337 0.0095

Log-Logistic (3P) 0.05 0.0255 0.0548 Hyperbolic Secant 0.05 0.0337 0.0216

Colon Laplace 0.05 0.0274 0.0563 Dagum (4P) 0.05 0.0332 0.0141

Hyperbolic Secant 0.05 0.0274 0.0828 Johnson SU 0.05 0.0332 0.0182

Johnson SU 0.05 0.0274 0.1133 Hyperbolic Secant 0.05 0.0332 0.0183

Gastric Log-Logistic (3P) 0.05 0.029 0.0498 Johnson SU 0.05 0.0366 0.0083

Dagum (4P) 0.05 0.029 0.0505 Logistic 0.05 0.0366 0.017

Johnson SU 0.05 0.029 0.5831 Hyperbolic Secant 0.05 0.0366 0.0308

Ovarian Log-Logistic (3P) 0.05 0.0274 0.6245 Johnson SU 0.05 0.0343 0.0051

Dagum (4P) 0.05 0.0274 0.0637 Dagum (4P) 0.05 0.0343 0.0116

Johnson SU 0.05 0.0274 0.0646 Hyperbolic Secant 0.05 0.0343 0.0239

Results of the empiric distribution fitting for each of the five cancer genomes normalized using each of two normalization methods. RMA = Robust Multichip Average.
The top three distributions in each category appear in the order of their overall goodness of fit.
doi:10.1371/journal.pone.0046935.t003
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Several derivatives of the b-prime distribution (e.g. Log-logistic,

Dagum, Burr [37,38]) were empirically identified as useful models

for this data. This is logical given that the b-prime is related to the

Pearson type VI distribution, which is one of a family of

distributions originally used to model skewed data [38]. The

hyperbolic secant distribution was also commonly identified

among these empiric models. This is a more straightforward, 2-

parameter distribution with an exaggerated kurtosis [39], and its

identification as a useful model for these data underscores the

kurtotic nature of the datasets. Finally, the 4-parameter Johnson

SU [26] is a versatile distribution to model skewed and kurtotic

data. Together the Johnson family of distributions covers the

entire skewness-kurtosis spectrum, and the SU distribution is

particularly useful with logarithmic data [38]. In aggregate, the

identification of these particular families (b-prime/Pearson,

hyperbolic-secant, Johnson) highlights the skewness and kurtosis

of these datasets and emphasizes the inadequacy of the normal

distribution to model accurately cancer gene expression data.

The goal was to use the process of distribution fitting to learn as

much as possible about the underlying data structure of the cancer

transcriptome, not to identify a single, ‘‘best-fit’’ distribution for

cancer gene expression data. In fact, the KS analysis (Table 3)

demonstrates that none of the 57 distributions (Table S2) against

which these data were tested provided an ideal model for the

underlying data. It remains unclear if a single distribution can

describe the cancer transcriptome faithfully, and it is likely that no

two cancer gene expression datasets will have the same, ‘‘best-fit’’

distribution. We hypothesize that the complex shape of the

aggregate distributions may reflect their composition of various,

unique distributions of the component genes. Further investigating

this mixture-model hypothesis and its implications for gene calling

is outside the scope of this report but merits further investigation.

Notwithstanding, identifying such a theoretical model for the

aggregate distribution is not necessarily required to conduct high-

quality analysis of expression data. Instead, investigators who work

with gene expression data may wish to perform similar analyses to

those described in order to understand the nature of the

distribution of their unique datasets. This will then allow them

to verify that their downstream analyses are not confounded by

inaccurate assumptions regarding the shape of the data distribu-

tions.

Non-Gaussian Distributions Affect Gene Calling and
Functional Annotation

Having demonstrated that cancer gene expression data are not

normally-distributed, a critical question is the degree to which

these deviations from normality affect downstream, translational

analyses. Considerable effort in translational oncology has been

applied to identifying unique, genotypic subsets of tumors with

clinically-significant phenotypic correlations, so we focused our

Figure 5. Distribution Transformation. A Box-Cox transformation applied to the low-grade glioma dataset (left) results in a distribution that
more closely approximates a normal distribution (right). Note that the parent distribution was recentered to a zero mean to compensate for the
default mean of the Robust Multichip Normalization output of 7. This transformed distribution was then used to analyze distribution-dependent
effects on identification of differentially-expressed genes, functional annotation, and prospective molecular classification.
doi:10.1371/journal.pone.0046935.g005
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analysis of the analytic effects of non-Gaussian distributions in this

domain.

One common goal of translational investigation is to identify a

set of genes with differential expression between two, known or

suspected tumor subsets. We investigated this question by applying

a normal-transformation to the LGG dataset, using three different

algorithms to identify differentially-expressed genes between Class1

and Class 2 in both the parent and in the transformed data, and

then performing a semi-quantitative analysis of the resulting gene

lists.

The Bonferroni-corrected t-test identified 50 differentially-

expressed genes in the parent and 55 in the transformed

distribution and resulted in a distribution-dependent variability

of 12.5% (see Text S1, for additional discussion of this calculation)

(Table 4A). The extent to which this variability reflects the

parametric assumptions of the classifier is difficult to determine,

because the stringency of the Bonferroni correction results in a

small list of differentially-expressed genes. LIMMA [30], which is

considered more robust than basic and corrected t-tests despite its

fundamental assumption of normality, was also sensitive to

changes in the underlying data distribution, with an 11.1%

difference in gene calling noted between the parent and

transformed distributions (Table 4A, S6). Conversely, the

nonparametric KW test identified 1,801 differentially-expressed

genes, of which 1,800 (99.9%) were common to both lists

(Table 4A, S5). Although this simulation cannot definitively

demonstrate the superiority of nonparametric methods in gene

calling, the result suggests that the output of nonparametric

methods for identification of differential expression may be less

sensitive departures from normality in the underlying distribution

than their parametric counterparts. This may be logical, given the

nature of the assumptions (or the lack thereof) made by parametric

and nonparametric algorithms (respectively), but additional,

theoretical and applied investigations will provide clarity.

Nonparametric methods may not be sufficient, however, to

completely offset the effect of non-Gaussian distributions on gene

calling. SAM, a nonparametric algorithm [29], identified 759

differentially-expressed genes in the parent distribution and 478 in

the transformed distribution, with a distribution-dependent

variability of 37.2% (Table 4A, S4). Despite SAM’s classification

as a nonparametric test, these data suggest that the shape of the

underlying distribution has a measurable effect on the result of its

analyses. This degree of variability is noteworthy, particularly from

an algorithm that is considered to be among the most robust of the

nonparametric gene calling tools [29,40].

This simulation illustrates the potential effects of non-Gaussian

distributions on gene calling. More importantly, it provides direct

evidence against two common beliefs regarding gene expression

analysis: that ‘‘small’’ departures from normality are insignificant

to practical gene expression analyses and that ‘‘robust’’ gene

calling algorithms can compensate completely for these effects.

Non-Gaussian Distributions Affect Molecular
Classification

An important objective of translational oncology research is to

identify patterns of gene expression that distinguish phenotypical-

ly-significant subclasses of malignant disease. A common strategy

is to use gene expression profiles in conjunction with a priori

knowledge of the clinical phenotype of interest (e.g. prognosis,

response to therapy) to train molecular classifiers that are

subsequently capable of making phenotypic predictions for novel

tumors using gene expression data. This process is mathematically-

complex, and we performed a series of simulations to analyze the

extent to which these training and prospective classification

strategies may be affected by non-Gaussian data distributions.

We used a representative subset of 13 randomly-selected LGGs

as the training set for two ‘‘robust’’ molecular classifiers, the

parametric DA classifier and the nonparametric KNN classifier.

Each classification strategy was used in conjunction with both the

parent and the transformed data distributions, allowing the effects

of the shape of the distribution on the classification algorithm to be

examined. The results of this analysis (Figure 6) demonstrate a

20% difference in the resulting classification for DA and a 30%

difference for KNN when using the parent versus the transformed

data. These results suggest that the shape of the distribution has

measurable effects on molecular classifiers that are considered

‘‘robust’’ and that both parametric and nonparametric classifiers

may be sensitive to these effects.

It is important to note that the goal of this analysis was to

perform a semi-quantitative analysis of the differences in the

classifications attributable to the shape of the data distribution

rather than to compare the classification accuracy. While both

classifiers resulted in classifications that better fit our current

disease models when used in conjunction with the transformed

data, it is impossible to know if this truly represents an

improvement in accuracy without knowing with certainty that

our current disease models accurately reflect the true nature of the

disease. At present the classification scheme applied in this analysis

[5] remains only one potential model for subclassification of low-

grade gliomas, the ultimate accuracy of which remains to be

definitively determined. Notwithstanding, the primary purpose of

these simulations was to investigate the possibility of distribution-

depended differences in classification (regardless of the ultimate

accuracy), and we have illustrated that the potential for such

Figure 6. Distribution-Dependent Effects on Molecular Tumor
Subclassification. Two methods of prospective molecular classifica-
tion, the parametric Discriminant Analysis (DA, top) and the nonpara-
metric K-Nearest Neighbors classifier (KNN, bottom), were used in
conjunction with the parent and transformed low-grade glioma
expression datasets to study distribution-dependent effects molecular
tumor subclassification. Class 1 represents low-grade, 1p/19q-intact
gliomas, and Class 2 represents chromosome 1p/19q codeleted, low-
grade oligodendrogliomas. The topmost color bars represent the
known class of each sample (black boxes; red = Class 1, blue = Class 2).
The area below the color bars is a portion of the gene expression profile
(red = underexpressed, green = overexpressed). DA used in conjunction
with the parent (non-normal) distribution produces two misclassifica-
tions and KNN produces 3, while both methods used with the
transformed dataset result in accurate molecular subclassification.
doi:10.1371/journal.pone.0046935.g006
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differences exists for both parametric and nonparametric,

prospective, molecular classifiers.

Conclusions
Cancer gene expression profiles are not normally-distributed,

either on the complete-experiment or on the individual-gene level.

They exhibit complex, heavy-tailed distributions characterized by

statistically-significant skewness and kurtosis. The non-Gaussian

distribution of these data affects identification of differentially-

expressed genes, functional annotation, and prospective molecular

classification. These effects are not fully corrected by multiple-

testing and other ‘‘robust’’ modifications to t-test strategies,

including Bonferroni corrections or linear modeling (LIMMA).

The effects may be mitigated in some circumstances, although not

completely eliminated, by using nonparametric analytics. This

analysis therefore provides direct evidence refuting two, common

beliefs in translational cancer gene expression analysis: that,

‘‘small,’’ departures from normality in the expression data

distributions are insignificant in practice and that ‘‘robust’’ gene

calling algorithms can fully compensate for these effects.

Materials and Methods

Definitions
The term normal distribution will refer in this manuscript to the

special instance of the Gaussian distribution with mean (m) equal to

zero and standard deviation (s) equal to unity (also known as the

‘‘standard normal’’ or ‘‘standard Gaussian’’ distribution). The

term first central moment will be taken to mean the first moment, which

describes the mean of a distribution. All other references to higher-

order central moments will be used literally.

Analytic Model
We examined the distributions of cancer gene expression data

and investigated the translational implications of deviations from

normality. To increase the practical applicability of these results,

the experimental model has been structured to simulate the flow of

expression data through a prototypic analytic pipeline, similar to

those used in modern basic and translational gene expression

investigations. An overview of the pipeline, the statistical methods

used at each step, and the corresponding analyses of the data

distributions and their implications are presented in Figure 1.

Data Acquisition
Five publicly-available gene expression datasets derived from

five unique, primary human cancer types were analyzed, including

brain (glioblastoma), breast (adenocarcinoma), colon (adenocarci-

noma), gastric (adenocarcinoma), and ovarian (adenocarcinoma)

cancers, each representing the largest available dataset meeting

inclusion criteria (Table S9). These five datasets were downloaded

from the Gene Expression Omnibus [23].

To control for potential effects of cross-platform and cross-assay

variability, all included expression data were assayed using the

AffymetrixH Human Genome U133A-Plus 2.0 array. Because the

five datasets contained a variable number of arrays, sample size-

related bias was controlled by setting the experimental sample size

to 180 for each group (corresponding to the smallest of the 5

datasets). A total of 180 samples for each of the five cancer types

were therefore selected at random from the parent datasets. These

five sets of 180 samples (a total of 900 samples) comprised the

experimental datasets. A sixth, smaller dataset containing expres-

sion data for 23 low-grade gliomas was also used for analyses of

gene calling, functional annotation, and tumor classification. This

dataset has been previously generated by our group and comprises

at least two molecular tumor subclasses, thereby facilitating this

analysis [5].

Similarly, gene expression data from normal corresponding

tissues, assayed with the U133A-Plus 2.0 array, were analyzed and

used as the normal controls in the Log-subtraction-based analyses.

Data Processing
To simulate typical analytic workflow of a translational

molecular oncology investigation, raw expression data were

normalized using the RMA method [24] with the RMA Express

software package [41]. This method consists of three steps:

background adjustment, quantile normalization, and summariza-

tion. To control for the possibility of bias introduced by the RMA

method, the same source data was also independently normalized

using the DChip algorithm [25], with default parameters, and the

effects of these two normalization methods were compared (see

Results). All normalized data were represented in Log2 converted

form.

Remaining consistent with a prototypic translational analysis

workflow, we next calculated expression ratios for each feature

(relative to normal expression) using Log-subtraction. The gene

expression profiles for normal tissue corresponding to each tumor

type were calculated by averaging three, comparable gene

expression profiles from the appropriate normal tissue, and the

average value was Log2-converted and then subtracted from the

Log2-converted expression of the corresponding feature in each

tumor sample. This is standard practice in many semi-quantitative

gene expression analyses; see the Text S1 for further details.

Distribution Analysis
A mathematical analysis of the first four central moments was

performed for each of the sample distributions. Differences

between the observed values of the central moments and those

of the theoretical normal distribution were calculated. Testing for

statistical significance of these differences was accomplished by

comparing the values from the expression data sets to those of a

simulated normal distribution of 107 elements (m= 0.000,

s= 1.001, skew = 20.025, kurtosis = 0.272, range = 29.54–5.36).

Means were compared using both parametric and nonparametric

tests (student’s t-test and KW), variances were compared using the

F-test, and skew and kurtosis were compared using standard error

and Fisher’s coefficients of skewness and kurtosis [42]. Addition-

ally, both the one-sample and two-sample Kolmogorov-Smirnov

(KS) test [43] (a= 0.05) were used to compare the sample

distributions to the theoretical or simulated normal distribution,

and the KS statistic was tested for significance using the p-value of

the KS calculation (Figures 2, S1, S2; Tables 1, S1).

Empiric Curve Fitting
Curve fitting was performed on all ten Log2-subtracted datasets

(five normalized with RMA and the identical five normalized with

D-Chip) by first constructing expression density histograms for

each of the datasets and then by empiric fitting and parameter

estimation for each of 57 potential distributions (Table S2).

Optimal bin widths were calculated using the Freedman-Diaconis

method [44]. Goodness-of-fit was assessed using the KS test

(a= 0.05) and by examining the probability-probability (PP) plot of

the empirical versus the theoretical cumulative density functions

(CDF) and the quantile-quantile (QQ) plot of the observed versus

expected distribution quantiles. The three best-fit distributions for

each dataset were primarily determined based upon rank of the

KS coefficient. When this index was not adequately representative

or when approximate equivalence existed, the best-fit PP and QQ

plots were used as tie-breakers (Figures 4, S3, S4, S5, S6; Table 3).
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Gene Calling and Functional Annotation Analysis
A semi-quantitative analysis of the effects of the non-Gaussian

distributions of the dataset on gene calling and sub-classification

within a single tumor type was performed using previously-

published gene expression data from a set of low-grade gliomas

[5]. This dataset comprises 23 LGGs, and previous investigations

have suggested the presence of at least two distinct, molecular

subgroups within this dataset, corresponding to a set of chromo-

some 1p/19q codeleted oligodendrogliomas and a set of 1p/19q

intact low-grade gliomas [5].

A central moments analysis was conducted (as above) on this

dataset, again suggesting that it was not normally-distributed (data

not shown). A systematic, Box-Cox transformation [28] was then

applied to the Log2-subtracted dataset in order to better fit the

data to a normal distribution, and a central moments analysis was

again performed to verify that the transform had significantly

improved the normality of the distribution (Figure 5).

Next, a series of identical classification and gene calling

procedures was performed on the pre- and post-transformation

datasets and the results were compared to estimate, in a semi-

quantitative fashion, the effects of the shape of the underlying

distribution on identification of differentially-expressed genes,

functional annotation, and molecular classification. We used the a

priori definition of the two, genotypically- and phenotypically-

distinct tumor subsets contained within the LGG dataset to define

two classes [5], arbitrarily designated as Class 1 for the intact

gliomas and Class 2 for the codeleted oligodendrogliomas. We

applied four different statistical tests to identify genes with

statistically-significant differences between the two subsets: one

nonparameric method, the two-class, unpaired student’s t-test with

a standard Bonferroni correction for multiple testing (p,0.01)

[45]; two nonparametric methods, the two-class, unpaired SAM

[40] test (with false discovery rate [FDR = 0]) and the two-class

KW [46] test (with a Benjamini-Hochberg correction

[FDR,0.05]); and a linear modeling strategy (LIMMA) [30],

a= 0.05), a Bayesian approach based on a moderated t-test that

assumes normality but is considered robust [31]. These tests were

applied to both the parent (untransformed) dataset and the (Box-

Cox)-transformed dataset, and the results were compared to

identify potential differences in identification of differentially-

expressed genes affected solely by the shape of the distribution. A

summary of the results of this analysis is presented in Table 4, and

the detailed results are given in Tables S3, S4, S5, S6. Functional

annotation of the gene sets derived from one parametric method

(SAM) and one nonparametric method (KW) for gene calling was

performed using DAVID [32,33] to identify statistically-overrep-

resented (Bonferroni-corrected p,0.01) GO [34,35] and KEGG

[36] terms in each of these lists. The functional annotation results

were compared semi-quantitatively (Tables 4B, S7, S8).

Molecular Classification Analysis
The effect of the distribution on the accuracy of prospective,

molecular classification algorithms was tested using a DA classifier

and a KNN classifier. The DA [47] classifier is a multi-step

algorithm that first applies an ANOVA analysis to select genes that

should be near optimal for partitioning the unknown samples

based upon permutations of gene expression in the training set.

Next, a multivariate partial least squares method is used for gene

dimensional reduction. This is followed by a polychotomous

discriminant analysis. The KNN model [48] was applied using a 2-

class, 4-neighbors model. Both strategies are considered robust

tools for classification.

For both approaches, the Bonferroni-corrected t-test (p,0.01)

was first used to eliminate genes whose expression did not differ

significantly from control. Next, a training set consisting of 8

samples randomly selected from Class 1 and 5 from Class 2 (13

total) was used to train the classifier, which was then tested against

a novel set known to contain 7 Class 1 and 3 Class 2 tumors (10

total). These classification strategies were applied to both the

parent and to the transformed distributions, and the classification

results were compared in a semi-quantitative fashion (Figure 5). To

eliminate potential bias associated with the initial, t-test-based gene

selection, the process was repeated for the KNN clustering with

SAM replacing the t-test in the analytic model (Figure S7).

Supporting Information

Figure S1 Distribution analysis for Log2 (unsubtracted)
data normalized using the Robust Multichip Average
(RMA) method. The source data for these graphs are the Log2

(unsbtracted) datasets. Bin widths have been set between 190–250

to improve visualization. Red curves represent the best-fit normal

distribution. The primary image gives the histogram with the

superimposed theoretical normal curve. The inset presents the

quantile-quantile (QQ) plot, where deviation from the line (y = x,

black) illustrates deviation of the empiric from the theoretical

normal distribution. A: Brain; B: Breast; C: Colon; D: Gastric; E:

Ovarian.

(TIF)

Figure S2 Distribution analysis for Log2 (unsubtracted)
data normalized using the DChip method. The source data

for these graphs are the Log2 (unsbtracted) datasets. Bin widths

have been set between 190–250 to improve visualization. Red

curves represent the best-fit normal distribution. The primary

image gives the histogram with the superimposed theoretical

normal curve. The inset presents the quantile-quantile (QQ) plot,

where deviation from the line (y = x, black) illustrates deviation of

the empiric from the theoretical normal distribution. A: Brain; B:

Breast; C: Colon; D: Gastric; E: Ovarian.

(TIF)

Figure S3 Distribution Fitting. Distribution fitting for the

breast cancer dataset for RMA (top) and DChip (bottom)

normalized data. The three best-fit curves are superimposed on

the histogram, and the normal distribution curve is included for

comparison. The specific parameters for the best-fit distributions

are given. The inset displays the quantile-quantile (QQ) plot for

the best-fit and normal distributions. These charts demonstrate

that multiparameter distributions capable of modeling skewness

and kurtosis better characterize the data than the standard

Gaussian (normal) distribution.

(TIF)

Figure S4 Distribution Fitting. Distribution fitting for the

colon cancer dataset for RMA (top) and DChip (bottom)

normalized data. The three best-fit curves are superimposed on

the histogram, and the normal distribution curve is included for

comparison. The specific parameters for the best-fit distributions

are given. The inset displays the quantile-quantile (QQ) plot for

the best-fit and normal distributions. These charts demonstrate

that multiparameter distributions capable of modeling skewness

and kurtosis better characterize the data than the standard

Gaussian (normal) distribution.

(TIF)

Figure S5 Distribution Fitting. Distribution fitting for the

gastric cancer dataset for RMA (top) and DChip (bottom)

normalized data. The three best-fit curves are superimposed on

the histogram, and the normal distribution curve is included for

comparison. The specific parameters for the best-fit distributions
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are given. The inset displays the quantile-quantile (QQ) plot for

the best-fit and normal distributions. These charts demonstrate

that multiparameter distributions capable of modeling skewness

and kurtosis better characterize the data than the standard

Gaussian (normal) distribution.

(TIF)

Figure S6 Distribution Fitting. Distribution fitting for the

ovarian cancer dataset for RMA (top) and DChip (bottom)

normalized data. The three best-fit curves are superimposed on

the histogram, and the normal distribution curve is included for

comparison. The specific parameters for the best-fit distributions

are given. The inset displays the quantile-quantile (QQ) plot for

the best-fit and normal distributions. These charts demonstrate

that multiparameter distributions capable of modeling skewness

and kurtosis better characterize the data than the standard

Gaussian (normal) distribution.

(TIF)

Figure S7 Distribution-Dependent Effects on Molecular
Tumor Subclassification Based on Two Different Meth-
ods of Gene Calling. Two different gene calling methods, the

student’s t-test (top) and the Significance Analysis for Microarrays

(SAM, bottom) were used to verify that the gene calling method

used in conjunction with the K-Nearest Neighbors classifier

(KNN). Both analyses use the parent (untransformed) low-grade

glioma expression datasets. Class 1 represents low-grade astrocy-

tomas, and Class 2 represents chromosome 1p/19q codeleted,

low-grade oligodendrogliomas. The topmost color bars represent

the known class of each sample (black boxes; red = Class 1,

blue = Class 2). The area below the color bars is a portion of the

gene expression profile (red = underexpressed, green = overex-

pressed). Both gene calling algorithms lead to identical results,

indicating that this is not the primary reason for the observed

differences in molecular classification (see Figure 6).

(TIF)

Table S1 Central Moments Analysis using Log2 (unsub-
tracted) data. Results of the central moments analysis for each

of the five tumor types, using each of two normalization methods.

RMA = Robust Multichip Average. * = t-test 2 class unpaired,

Wilcoxon Rank-Sum vs. simulated ** = f-test # = Standard Error

of Skewness (Fisher’s Skewness Index) {= Standard Error of

Kurtosis (Fisher’s Kurtosis Index) {= p-value [95% CI] w= p-

value.

(XLS)

Table S2 Empiric Distributions. Categorized list of the 57

empiric distributions tested in the curve fitting analysis.

(XLS)

Table S3 Differentially-Expressed Genes between Low-
Grade Glioma Class 1 and Class 2, as identified by the
student’s t-test. Affymetrix ID is the unique probeset identifier

of the gene. The second column indicates whether each gene is

present in the lists from both the parent (untransformed) and

transformed (Box-Cox) distributions.

(XLS)

Table S4 Differentially-Expressed Genes between Low-
Grade Glioma Class 1 and Class 2, as identified by

Significance Analysis for Microarrays (SAM). Affymetrix

ID is the unique probeset identifier of the gene. The second

column indicates whether each gene is present in the lists from

both the parent (untransformed) and transformed (Box-Cox)

distributions. FDR = False Discovery Rate.

(XLS)

Table S5 Differentially-Expressed Genes between Low-
Grade Glioma Class 1 and Class 2, as identified by the
Kruskal-Wallis test. Affymetrix ID is the unique probeset

identifier of the gene. The second column indicates whether each

gene is present in the lists from both the parent (untransformed)

and transformed (Box-Cox) distributions. FDR = False Discovery

Rate.

(XLS)

Table S6 Differentially-Expressed Genes between Low-
Grade Glioma Class 1 and Class 2, as identified by
linear modeling (LIMMA). Affymetrix ID is the unique

probeset identifier of the gene. The second column indicates

whether each gene is present in the lists from both the parent

(untransformed) and transformed (Box-Cox) distributions.

(XLS)

Table S7 Functional Category Enrichment Analysis
(SAM). Functional category (GO and KEGG) enrichment

analysis for the list of genes differentially-expressed between low-

grade glioma Class 1 and Class 2, as identified by the Significance

Analysis for Microarrays (SAM) algorithm. Only categories with a

Bonferroni-corrected p-value,0.01 are included. The GO or

KEGG term is given in the left column, and the second column

indicates whether each gene is present in the lists from both the

parent (untransformed) and transformed (Box-Cox) distributions.

Descriptive statistics are given at the bottom of the list.

(XLS)

Table S8 Functional Category Enrichment Analysis
(KW). Functional category (GO and KEGG) enrichment analysis

for the list of genes differentially-expressed between low-grade

glioma Class 1 and Class 2, as identified by the Kruskal-Wallis test.

Only categories with a Bonferroni-corrected p-value,0.01 are

included. The GO or KEGG term is given in the left column, and

the second column indicates whether each gene is present in the

lists from both the parent (untransformed) and transformed (Box-

Cox) distributions. Descriptive statistics are given at the bottom of

the list.

(XLS)

Table S9 Datasets. These are the cancer gene expression

datasets used in this analysis. GEO indicated data take from the

Gene Expression Omnibus.

(XLS)

Text S1

(DOC)
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