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Abstract

The future management of commercially exploited species is challenging because techniques used to predict the future
distribution of stocks under climate change are currently inadequate. We projected the future distribution and abundance
of two commercially harvested abalone species (blacklip abalone, Haliotis rubra and greenlip abalone, H. laevigata)
inhabiting coastal South Australia, using multiple species distribution models (SDM) and for decadal time slices through to
2100. Projections are based on two contrasting global greenhouse gas emissions scenarios. The SDMs identified August
(winter) Sea Surface Temperature (SST) as the best descriptor of abundance and forecast that warming of winter
temperatures under both scenarios may be beneficial to both species by allowing increased abundance and expansion into
previously uninhabited coasts. This range expansion is unlikely to be realised, however, as projected warming of March SST
is projected to exceed temperatures which cause up to 10-fold increases in juvenile mortality. By linking fine-resolution
forecasts of sea surface temperature under different climate change scenarios to SDMs and physiological experiments, we
provide a practical first approximation of the potential impact of climate-induced change on two species of marine
invertebrates in the same fishery.
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Introduction

The distributions of many marine species are strongly related to

environmental conditions, making them susceptible to both

medium- and long-term changes in abiotic conditions (e.g.

medium-term changes to El Niño cycles: [1]; and long-term

climate change: [2],[3]). Commercially exploited populations may

be particularly susceptible to changes in environmental conditions,

as many of the world’s fisheries stocks are over-exploited, with

benthic habitats also being damaged by fishing operations [4], and

consequently the capacity of their populations to withstand

multiple and interacting environmental changes is eroded [5].

Current projections suggest that multi-decadal increases in

ocean temperatures are likely to cause commercially harvested

species to become increasingly vulnerable to overfishing at lower

latitudes, where species are closer to thermal-tolerance limits and

have been forecast to undergo population declines [6]. Such

predictions are supported by observations of different populations

of the same fish species at high and low latitudes alternately

experiencing either population increase or decrease with historical

warming (e.g. Norwegian cod; [7],[8]). Current modelling and

empirical techniques can be used to predict the geographical range

of marine species at coarse scales [9,10] and in rare instances have

been used to detect present-day spatial abundance patterns at finer

resolutions (e.g. [11]). Yet, future projections of changes in range

and abundance have been limited by uncertainties arising from

choice of species distribution model (SDM) and global climate

model (GCM), a lack of consideration of model-selection

uncertainty, and a failure to integrate relevant biological detail

(e.g., species interactions, connectivity and dispersal). All of these

factors influence projections of species’ range movement and

extinction risk [12,13]. Therefore, efforts to address these model-

related uncertainties should lead to improvements in the capacity

to predict the abundance of commercially harvested species under

changing environmental conditions, and may enhance the

capability of management to ensure harvest can be maintained

into the future.

Research on the causes of and changes in the distribution of

marine species, to date, has been limited by a paucity of high-

resolution and broad-scale environmental data in the marine

realm [14,15]. In cases where climate-change impacts have been

assessed, they have mostly focused on bioclimatic envelop or single

species distribution model (SDM) approaches [14], sometimes

integrating demographic information [6]. While these approaches

can predict present-day distributions reasonably well, projections

of future distributions can vary widely among SDMs [16,17,18].
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Recent advances in multi-model ensemble techniques may provide

more robust and realistically bounded estimates of future

distributions [19], but have only recently been applied in marine

systems (e.g. [11]).

Further complicating such predictions are uncertainties in the

climate projections themselves. The degree of confidence that we

can place on future climate change projections depends on GCM

performance and uncertainties that need to be assessed rigorously,

via climate model evaluation [20]. GCMs are helpful in providing

physically realistic representations of global-climate dynamics [21],

yet they tend to provide less reliable descriptions of local and

regional climates [22], partly because processes that occur at scales

smaller than the GCM resolution (such as cloud and topographic

influences) cannot be modelled explicitly and must be parame-

terised [23].

Here, we use two species of commercially harvested abalone

with overlapping ranges, blacklip (Haliotis rubra) and greenlip (H.

laevigata), to demonstrate a novel correlative and experimental

approach for predicting the future distribution and abundance of

marine invertebrates. While present-day management of the

fishery is appropriate [24,25], forecast changes in key environ-

mental requirements may mean that fine-scale estimates of

population densities under future conditions will be required to

successfully manage the long-term persistence of abalone stocks. At

the moment climate change is not being considered in the fishery

management plans. We hypothesise that green and blacklip

abalone will respond differently to future ocean warming, because

the two species have different biological responses to temperature,

with blacklip exhibiting a lower optimal temperature than greenlip

(17.0uC vs. 18.3uC, respectively; [26]), but above a certain thermal

tolerance this difference is likely to disappear. While recently

developed SDMs have identified the most likely environmental

factors which drive population densities, including temperature

[11], there are currently no forecasts of how these populations will

change under future climates.

Thus, the objectives of this study were to: (1) project changes in

the range and abundance of H. rubra and H. laevigata in southern

Australia at decadal time slices under different climate-change

scenarios; (2) develop forecasts of sea surface temperature which

better account for inter-model variation in GCM projections,

downscaled to biologically relevant resolutions; and (3) determine

whether demographic processes need to be incorporated in models

by experimentally assessing juvenile mortality at projected

temperatures.

Materials and Methods

Species distribution models
Blacklip (Haliotis rubra) and greenlip (H. laevigata) abalone occur

on the southern coast of Australia and have overlapping

distributions (greenlip abalone occupying approximately the

central 2/3 of the distribution of blacklip [27]). For the specific

purpose of this study, a species’ range refers to its area of

occupancy within the study area, i.e. corresponding to the spatial

extent of the fishery in southern Australia. Distribution and

abundance data for both species within their ranges were collated

from multiple fisheries monitoring and regional biodiversity

surveys between 1980 and 2009. All surveys were done using

SCUBA on rocky substrate between 5–30 m depth across South

Australia (approximately 130–142uE). In previous work, we

modelled the present-day distribution and spatial abundance of

both species individually using SDMs [11]. To summarise (as

background to the current forecast-based paper), a multi-model

ensemble averaging technique was used to weight SDM projec-

tions. Generalized linear models (GLM) and boosted regression

trees (BRT) were used to generate the model-averaged forecasts of

abundance, because both techniques demonstrated good skill in

forecasting present-day occurrence and abundance patterns for H.

rubra and H. laevigata (see [11] for more comprehensive detail on

modelling abundance with these SDMs). We constrained model

development and training to the region with the most compre-

hensive abundance survey data available (South Australia). Out-

of-sample validation included an assessment of spatial transfer-

ability of model predictions; SDMs were validated using indepen-

dent data from similar surveys done across several hundred km of

coast to the east of the study area (approximately 142–147uE).

For both abalone species, the best primary predictors of

abundance were mean August (winter) sea surface temperature

(SST) and its standard deviation (a linear correlative relationship

for H. rubra, quadratic for H. laevigata), harvest intensity, water

depth and distance from the nearest boat launch point. While sea

bottom temperature may be slightly cooler than SST (,2uC at

depths less than 30 m [mean difference = 0.27uC]) in our study

region, bottom temperature was strongly correlated with SST

(r = 0.825) and was not a better predictor of abalone abundance

than SST [11]. Therefore, we chose to use SST as our primary

temperature predictor in the model. To determine whether

anticipated change in future SST can be expected to influence

the range dynamics of either abalone species, we developed

downscaled-decade forecasts of August SST (2010–2100), accord-

ing to different greenhouse gas emissions scenarios. All other

predictors were fixed to the values used for model fitting [11] for a

particular location.

Sea Surface Temperature projections
The SST data were extracted from satellite images focused on

southern Australia at a 4.6-km resolution (AVHRR Pathfinder

product version 5.0), for separate day and night passes. While sea

surface temperatures are often higher than those near the sea

bottom, AVHRR satellite derived SST data correlate well with

bottom temperatures [28]. Mean monthly day and night SST data

from 1985 to 2004 were used to calculate a 20-year monthly day/

night average for August and March SST [11]; a period that

closely resembles the baseline period used to validate GCMs

(1980–2000). Thin-plate–spline surface-smoothing techniques

were then used to downscale the coarse-resolution data to a

0.01u latitude/longitude grid-cell resolution [11]. The degree of

smoothness of the fitted function was determined by minimizing a

measure of predictive error of the fitted surface given by the

generalised cross validation [29]. Moreover, out-of-source sam-

pling on a subset of the Pathfinder data, specifically retained for

validation, was used to evaluate model fit (,60.5uC) [11].

MAGICC/SCENGEN 5.3 (http://www.cgd.ucar.edu/cas/

wigley/magicc), a coupled gas cycle/aerosol/climate model used

in the IPCC Fourth Assessment Report [30], was used to generate

future changes in August and March SST at the turn of each

decade (2010–2100) using an ensemble of five GCMs, chosen

according to their superior skill in globally forecasting March,

August and annual SST and their consistency with other GCMs

[20,31]. The skill of the full suite of GCMs used for the Fourth

Assessment Report (AR4) of the Intergovernmental Panel on

Climate Change (IPCC) can be assessed directly in MAGICC/

SCENGEN according to their ability to simulate observed

conditions using different variables, and different statistical-

validation metrics, over any user-specified region.

The comparison metrics that we used for validation of GCM

outputs were: (i) model bias (i.e., the difference between model and

observed spatial means averaged over a user-specified area); (ii)
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pattern correlation; and (iii) standard and centred root-mean-

square errors. Rather than using actual values of these various

statistics, we placed them on a level playing field by using only

model ranks for each statistic. Our key overall comparison metric

was the cumulative rank [31]. MAGGICC/SCENGEN also

allows for an outlier analysis to be computed which compares

future projections based on individual models with the average

projection of all other models. Although, GCM data from the

Coupled Model Intercomparison Project 3 (CMIP3) archived

GCM database (www-pcmdi.llnl.gov/) could be used to generate

ensemble averaged forecasts directly, a key features that makes

working within the MAGICC/SCENEGEN framework superior

is the way in which MAGICC/SCENEGEN standardises different

GCMs to align to user-specified selected climate sensitivities,

meaning inter-model differences in future climate forecasts can be

studied without being obfuscated by differences in climate

sensitivity [31].

The five best-ranked models were CCSM3, MIROC 3.2 (hires),

ECHAM5/MPI-OM, MRI-CGCM2.3.2 and GFDC-CM2.1

(model terminology follows that used in the CMIP3 model data

base). These five models were used to generate multi-model

averaged climate forecasts – change in average daily SST (uC) in

August and March (2.562.5u latitude/longitude grid cell resolu-

tion). With less than five models the results are more sensitive to

the number and choice of models, while for more than five models,

the additional information has a relatively small effect on the

average forecast [32]. Climate forecasts were generated according

to two emission scenarios: a high-CO2-concentration stabilising

Reference scenario (WRE750) and a more conservative Policy

emissions scenario, assuming substantive intervention (LEV1)

[33,34].

These climate anomalies were downscaled to an ecologically

relevant spatial scale (0.0160.01u longitude/latitude), using the

‘‘change factor’’ method, where the low-resolution change from a

GCM is added directly to a high-resolution baseline observed

climatology [35]. Bi-linear interpolation of the GCM data

(2.562.5u) to a resolution of 0.560.5u longitude/latitude was used

to reduce discontinuities in the perturbed climate at the GCM

grid-box boundaries [20]. While there is a range of alternative

approaches, the simple ‘‘change factor’’ approach that we

advocate is easily implemented in such a way that uncertainties

arising through the generation of the baseline layer and overlay

process can be easily documented.

Abalone range projections
To better understand the potential impact of forecast changes in

August SST on the range and abundance of abalone, we used our

already established ensemble SDM modelling approach [11] to

project the spatial abundance of H. rubra and H. laevigata at the

turn of each decade (2010–2100). We present forecast change in

abundance (number of individuals per 100 m2), and mean percent

change in abundance above a minimum threshold of 20

individuals/100 m2, for both H. rubra and H. laevigata for 2100.

The 20 individuals/100 m2 threshold was chosen because this is

the minimum density needed to maintain the rates of recruitment

required to sustain catches [36,37]. We also map changes in

potential fishing grounds for H. rubra and H. laevigata in 2100

according to both emission scenarios.

Juvenile mortality - experimental methods
To test whether realised range expansion was likely to be

reduced by elevated March SST, the effects of elevated

temperature on juvenile H. laevigata mortality was experimentally

tested. Mortality of juvenile abalone was recorded in a laboratory

experiment spanning one month to match the monthly average

temperature used in model projections. Two temperatures were

used in the experiment, 17uC and 20uC, as they represent the

lower and upper March temperature categories across the current

distribution of H. laevigata; densities decline above and below these

thresholds (see results below). Experiments were done on H.

laevigata because juveniles were readily available (KIAB aquacul-

ture, Kangaroo Island, South Australia) and data were available

for H. rubra [38].

Experiments were conducted in 44 L aquaria with water

constantly recirculating from a 200 L reservoir beneath each

tank. There were 4 replicate aquaria per temperature and 8

replicate individual abalone per tank. A pump moved water from

the reservoir at a constant flow rate of 200 L hr21 to the tank. To

maintain good water quality (i.e. nutrients and salinity), 50% of the

water in each set-up was replaced weekly with fresh seawater.

Light was provided in a 12:12 light dark cycle by pairs of

fluorescent lights above each tank. Each light had one ‘‘grow light’’

which incorporated the UV spectrum (SylvaniaH Gro-lux) and one

‘‘daylight’’ (LuxlingH Daylight deluxe). Each tank contained rocks

covered in coralline crusts and turf-forming algae to represent a

natural environment. Abalone were fed a 1–3 mm formulated feed

(EP Aquafeeds, Lonsdale, South Australia) every second day

(17:00 hrs). Any unconsumed feed was removed from tanks the

following morning (09:00 hrs). All tanks were aerated, with a

constant flow of 10 L min21. Temperature levels remained

constant throughout the treatment period. Elevated temperature

(20uC60.5uC) was controlled using Aqua One aquarium heaters.

Ambient temperature (17uC60.5uC) was controlled by recirculat-

ing water through chilling units (TECO-Ravenna). Experiments

were done in a constant temperature laboratory to ensure no

external inputs created temperature fluctuations and temperature

was measured daily to ensure treatment levels were achieved.

Results

Under the Reference scenario (WRE 750; higher-CO2-emission

stabilisation), August (winter) SST is predicted to consistently

increase over the next century to be ,1.1uC higher by 2100 (Fig.

S1a). Under the Policy emissions scenario (LEV1) which assumes

strong greenhouse-gas mitigation, however, average August SST

in the study region is projected to increase by ,0.46uC by 2080

and then reduce to ,0.44uC above 1994 temperatures by 2100

(Fig. S1a). Warming will not be spatially consistent across the study

area, however, with temperatures being between 0.87–1.77uC and

0.37–0.85uC higher in 2100 than 1994 for the Reference and

Policy scenarios, respectively.

SDM future projections indicate that under the Reference

scenario, both species are predicted to increase in abundance in

response to increased August SST, albeit blacklip to a greater

degree. Under this scenario, blacklip abundance is predicted to

increase by up to 2.5 individuals m22 across approximately the

western two-thirds of their distribution in South Australia, while

areas of substantial increases in abundance of greenlip abalone

(approximately 2.5–3 indiv. m22) were more restricted to the

south-eastern part of their range (Fig. 1). Elevated August SST can

be expected to increase blacklip harvestable biomass by .40% by

2100 under this Reference scenario (Fig. S1b). In contrast, the

more geographically restricted increase in forecasted abundance

for greenlip abalone resulted in a relatively small projected

increase in harvestable biomass by 2100, approximately 15%

above present day levels (Fig. 1). Under the lower emission Policy

scenario, SDM projections indicate that neither species of abalone

will show substantial changes in abundance by 2100 (Fig. 1). This

Predicting Future Fishing Grounds
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small predicted increase from current-day abundance would

translate into little change in the harvestable biomass by 2100,

with only marginal increases above a critical sustainable harvesting

density (0.2 reproductive adults m22) of approximately 20% and

,10% for blacklip and greenlip, respectively (Fig. S1b).

Overall, the SDMs predict expansion of potential fishing

grounds for both species by 2100 based on predicted increases

to August SST (Fig. 2). Blacklip fishing grounds would be gained

across much of their range in South Australia, with greater

expansion under the Reference scenario (Fig. 2). Expansion would

be less for greenlip abalone and there would also be a loss of a

small area of fishing grounds in the western part of South Australia

(Fig. 2).

The present-day density of both species of abalone varies with

summer (as well as winter) maximum monthly temperature across

their current distribution. Density is greater in locations

(1 km61 km grid cells) where average March SST exceeds

17uC, but then declines substantially in locations where March

temperatures are at or above 20uC (Fig. 3 a & b). In the laboratory

experiment, mortality of juvenile greenlip abalone was over 10

times greater at 20uC (mean 6 SE; 58.12%68.6) than at 17uC
(3.1%63.1) (one-way ANOVA: F1,6 = 35.96, p = 0.001). This

result is supported by the mean March SST at the distribution

edges of both species for the same period used to train the SDMs.

Mean temperatures at the north-eastern and north-western

distribution limits of blacklip were 23.6uC and 19.9uC, respec-

tively, with greenlip being 19.2uC and 19.0uC, respectively.

Within a large proportion of the study area (,33%), average

March temperatures are currently at or below 17uC with less than

20% of the area having temperatures at or above 20uC (Fig. 4a).

Under the Reference scenario, the majority of the current

distribution of both species is predicted to be at or above 20uC
(,78% and ,86% for green- and blacklip, respectively), with only

a small percentage of their distribution at or below 17uC (,5%

and ,2%, respectively; Fig. 4a). Of the locations (1 km61 km grid

cells) which the SDMs predicted would show expansion of abalone

populations, ,94% and 86% are predicted to have average

March SST of at or above 20uC by 2100 for green- and blacklip,

respectively (Fig. 4b).

Discussion

We predict, based on correlative SDM projections, that both

blacklip and greenlip abalone could increase in abundance and

expand into new locations in response to warming winter

temperatures under both high and low high CO2 concentration

stabilisation scenarios. However, projections of temperatures in

warmer months (March), viewed in conjunction with experimental

data, suggests that much of the predicted area of population

expansion would be too hot, thus limiting realised range expansion

through elevated juvenile mortality. Thus, to accurately predict

the potential future distribution of species, we need to understand

physiological responses of species across all of their life stages [39]

Figure 1. Forecast change in the abundance (number of individuals per 100 m2) of Haliotis rubra (blacklip abalone) and H. laevigata
(greenlip abalone) by 2100 based on projections of August SST according to two climate change emissions scenarios: a high CO2

concentration stabilising scenario (WRE750) and a heavy mitigation Policy option (LEV1).
doi:10.1371/journal.pone.0046554.g001
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and develop modeling techniques that can make the best use of

this information.

By using SDMs coupled to downscaled multi-model ensemble

averaged climate projections we were also able to identify that

there will be species-specific responses to warming, with blacklip

populations predicted to expand across their South Australia but

greenlip ones to a lesser degree, only expanding in the eastern part

of the South Australian fishery. These predictions of range

expansion are not isolated to abalone. Increasing winter temper-

atures in the North Sea over the past three decades correlated well

with the northward movement of a range of taxonomically diverse

species, including deep-sea fish [9], intertidal [3,40] and subtidal

invertebrates [41] and their algal habitats [42]. Our models

suggest an increase in winter temperatures could allow both

blacklip and greenlip abalone to increase abundance within their

distribution in South Australia, as well as expand into unoccupied

habitat. However, the SDMs did not incorporate the concomitant

increase in March SST (because March SST was not a strong

predictor of present-day abundance; [11]), yet projections of these

warmer temperatures suggest that the majority of the predicted

area of population expansion would be too hot, thus limiting

realised range expansion (Figure 4).

Reproductive output and survival of recruits are key factors that

determine the range of a species. In our case study, August (winter)

temperature had the largest (positive) influence on the distribution

of both species of abalone [11], which is expected to increase in

response to a low-, as well as high-CO2 concentration stabilizing

scenario, promoting range expansion, albeit to a lesser degree for

the more conservative emission Policy scenario. While recognising

that the techniques we employed were correlative, we can

Figure 2. Changes in potential fishing grounds for Haliotis rubra (blacklip abalone) and H. laevigata (greenlip abalone) in 2100 based
on projections of August SST according to two climate change scenarios: a high CO2 concentration stabilising scenario (WRE750)
and an alternative scenario that assumes strong mitigation (LEV1). Potential fishing grounds are defined based on a minimum abundance
of 20 individuals/100 m2.
doi:10.1371/journal.pone.0046554.g002

Predicting Future Fishing Grounds
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speculate regarding possible elements of causation underpinning

the model projections. The most likely mechanisms for the SDMs

predicting population expansion under future warming would be

increases in both reproductive potential of the adults and survival

of recruits in winter. Both species of abalone used in this study

show a linear relationship between the rate of gonad development

and temperature between 12–18uC [43], leading to a greater

reproductive output and development of larvae [44], promoting

faster settlement and increased chance of survival. Concurrently,

higher winter and spring temperatures improve survival in

juveniles of many species of mollusc (e.g. scallops, [41]; abalone,

[45], [46]).

It is unlikely, however, that the trend in global warming will be

consistent among the seasons [47], and the same warming that

may increase the reproductive output and recruitment of abalone

in winter may also drive them above thermal tolerances in

summer. This context dependence has been recognised in

temperate oceans of the northern hemisphere; warming of the

ocean off the Norwegian coast in spring increases growth and

survival of juvenile cod, while warmer temperatures in summer

increase metabolic costs and reduces growth [8]. Further, this

relationship is likely to vary with latitude, as most species tend to

be more susceptible to increasing temperatures in lower latitudes

because they are closer to their physiological limits (e.g. [7].

Under current seasonal temperature ranges, the summer

maximum temperature in the study region is below the thermal

maxima of both species [26]. However, projections of March

(warmer) sea surface temperatures suggest that the majority of the

areas of predicted population expansion for both species would be

above 20uC (Figure 4b). Water temperatures .20uC in laboratory

experiments (greenlip, this study; blacklip, [38]) caused a 10-fold

increase in juvenile mortality. While temperature close to the sea

bed would be lower than that of the sea surface, potentially

reducing mortality below that seen in experiments at 20uC, this is

offset by mortality tending to be higher in the natural environment

than experimental studies [48]. Additionally, mean March SST at

the current distribution limits of greenlip abalone (19.2uC and

19.0uC) support the idea that increasing March water tempera-

tures may counter the biological benefits of increasing winter

temperatures. This interpretation is supported by the current

densities of both species, which are low in areas with average

March SST above 20uC (Figure 3).

Since abundance-type model projections are often used to

inform fisheries managers of sustainable commercial catches, it is

important that projection uncertainties are explored and, where

possible, minimized. Our SDMs predict both an expansion into

unoccupied habitats and an increase in the density of individuals

within current fishing grounds, which could be interpreted as

increased harvest in these locations or greater population densities

at current harvest levels. In other abalone species years of higher

temperature anomalies (increases) have meant greater catches

because of greater recruitment [49]. However, because a large

proportion of the populations of both species in South Australia

Figure 3. Box plots of the density of (a) greenlip and (b)
blacklip abalone within their current distribution in South
Australia, categorised according to average March Sea Surface
Temperatures. Note the decrease in density of individuals for both
species at 20uC and above.
doi:10.1371/journal.pone.0046554.g003

Figure 4. The percentage of South Australian waters at
different mean-March temperatures. (a). Grey bars show current-
day temperatures across the entire area, while the white and black bars
show the percentage of the current distributions of greenlip (white
bars) and blacklip abalone (black bars),at predicted temperatures for
2100 under the high-CO2 Reference scenario and (b) the percentage of
predicted abalone distributions (based on SDMs using August SST)
which would be at different March temperatures in 2100. The current
day temperatures (grey bars) are the same for both (a) and (b). Also
note for both (a) and (b) the increase percentage of the area at or above
20uC, meaning that these predicted distributions may not be realised.
doi:10.1371/journal.pone.0046554.g004
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are likely to experience March SST above 20uC in the future

(Figure 4), we expect that any positive effect of warmer winters on

abalone abundance would be nullified by a concomitant increase

in March temperatures causing greater juvenile mortality. As such,

the SDM projections may represent an overestimation of the

potential expansion of abalone into new fishing grounds, with any

realised range expansion being substantially less.

By downscaling multi-model-averaged climate forecasts to a fine

resolution and generating annual projections, we improved

forecasts of the influence of climate change on green and blacklip

abalone range and abundance (i.e., through more robust forecasts

of SST at local spatial- and short temporal-scales [50]). Recent

laboratory research (greenlip, this study; blacklip, [38]), however,

shows the importance of explicitly incorporating demographic

processes (e.g. juvenile mortality and recruitment) into climate

impact assessments. We suggest that predictions of the effect of

future climate on abalone range dynamics would be strengthened

by using a simulation framework that couples SDM forecasts to

structured spatial population models (e.g. Figure 5). A caveat is

that these sorts of models are data intensive, requiring a strong

understanding of the population dynamics of the focal species

(typically linked to long-term monitoring programmes, including

Figure 5. Schematic diagram of a hybrid-modelling approach to identify potential climate-driven changes in the distribution and
abundance of commercially harvested species, and to test different fisheries management scenarios. The modelling steps that have
been completed are located above the dotted line. The next step is to couple this approach with spatially explicit stochastic-demographic models, to
capture some of the complexities and uncertainties underlying biological mechanisms driving species distribution and abundance patterns in
response to forecasts of future climate change and harvest pressure.
doi:10.1371/journal.pone.0046554.g005
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measurements of vital rates), as well as high-resolution distribu-

tional data [51] which needs to be ground-truthed to validate the

accuracy of underlying distribution models. In this respect,

commercially harvested species provide a good test case because

the intensive study of their biology over many years generally

makes this data available.

In this case study, the environmental conditions which best

predicted the distribution and abundance of abalone in the SDMs

under current conditions (August SST) may not accurately predict

future populations if concomitant warming of summer tempera-

tures reduces the realised distribution. Thus, robust forecasts of

fisheries species need to incorporate metapopulation processes,

such as spatially and temporally variant recruitment rates [52].

While other marine studies have found similar results on large

scales [e.g. 3096309 grids; 6], we provide an important advance

towards predictions on a scale that is relevant to management of

fisheries (i.e. 1 km61 km grids).

Supporting Information

Figure S1 (a) Forecasts of mean August sea surface temperature

across the study area based on two climate change scenarios: a

high CO2 concentration stabilising scenario (WRE750) and a

more conservative scenario, assuming heavy CO2 mitigation

(LEV1). The mean SST in the study area for 1994 (baseline for the

forecasts) is also shown. Error bars show the standard deviation

within the study area. Note that the WRE750 data points have

been offset for clarity. (b) Forecast mean precent change in the

abundance of Haliotis rubra (blacklip abalone) and H. laevigata

(greenlip abalone) above a minimum threshold of 20 individuals/

100 m2, according to a high CO2 concentration stabilization

Reference scenario (WRE 750) and a heavy mitigation Policy

option (LEV1).
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