
A Peak-Clustering Method for MEG Group Analysis to
Minimise Artefacts Due to Smoothness
Jessica R. Gilbert1*, Laura R. Shapiro1*, Gareth R. Barnes2

1 School of Life and Health Sciences, Aston University, Birmingham, United Kingdom, 2 The Wellcome Trust Centre for Neuroimaging, University College London, London,

United Kingdom

Abstract

Magnetoencephalography (MEG), a non-invasive technique for characterizing brain electrical activity, is gaining popularity
as a tool for assessing group-level differences between experimental conditions. One method for assessing task-condition
effects involves beamforming, where a weighted sum of field measurements is used to tune activity on a voxel-by-voxel
basis. However, this method has been shown to produce inhomogeneous smoothness differences as a function of signal-to-
noise across a volumetric image, which can then produce false positives at the group level. Here we describe a novel
method for group-level analysis with MEG beamformer images that utilizes the peak locations within each participant’s
volumetric image to assess group-level effects. We compared our peak-clustering algorithm with SnPM using simulated
data. We found that our method was immune to artefactual group effects that can arise as a result of inhomogeneous
smoothness differences across a volumetric image. We also used our peak-clustering algorithm on experimental data and
found that regions were identified that corresponded with task-related regions identified in the literature. These findings
suggest that our technique is a robust method for group-level analysis with MEG beamformer images.
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Introduction

The use of magnetoencephalography (MEG) as a research tool

for brain-imaging in both normal and clinical populations is

burgeoning. With advances in signal processing, beamforming has

gained traction as a meaningful approach to source-localization in

MEG. In beamforming, a weighted sum of field measurements is

used as a spatial filter to tune an estimate of neural activity

(i.e.,power) in a pre-specified time and frequency band window on

a voxel-by-voxel basis. This produces a whole-brain volumetric

image of signal power change which can be used for group-level

analyses.

One problem in conventional MEG group analysis is that

individual beamformer images are not homogeneously smooth;

the images are information rich around strong sources, yet very

smooth elsewhere [1,2]. These smoothness differences have been

found to range over two orders of magnitude within an image [3].

This inverse relationship between source strength and smoothness

can lead to unpredictable effects at a group-imaging level. For

example, at moderate signal strengths, artefactual group effects

can occur. These arise because the true peaks within each source

reconstruction have broad maxima (and sidelobes) whose shapes

differ across participants. Through the overlap of these smooth

maxima (or their sidelobes), secondary, apparently disconnected

peaks can arise at a group level. A related problem of non-isotropic

or inhomogeneous smoothness has been studied in the context of

fMRI to correct for cluster size statistics in cases where, for

example, the underlying isotropic image has been inhomogen-

eously resampled onto a cortical surface [4,5]; indeed, similar

solutions have been proposed for MEG [2,6]. These solutions

based on random field theory assume that voxel-to-voxel co-

variance can be summarized by local smoothness measures.

However, the relationship between two image voxels in MEG is

not just a function of their proximity (as in fMRI/PET), but also of

the orientation of the dipole at that location, and therefore

covariant voxels are not necessarily part of the same contiguous

cluster. This is an inevitable problem in MEG source reconstruc-

tion where a large number of voxel estimates are made from

a small number of channels.

In this paper, we try to step around this reconstruction problem

by compressing the volumetric image to a point list of local

maxima, which in turn simplifies the statistics. This is advanta-

geous as one often ultimately wishes to interrogate individual

participant beamformer estimates of electrical activity, which have

been shown to be only truly reliable at the image peaks [3] (note

that a similar approach has been used previously for a dipole fit

analysis [7]; see discussion section for a full comparison). In brief,

we assume that, under the null hypothesis, rank-ordered (e.g., by

power) image peaks across participants will be no more closely

grouped than any random selection of peaks.

The paper is divided into three sections. In the first section, we

describe the peak-clustering algorithm and define a method for

correcting for multiple comparisons when testing over a range of

peaks for group-level effects. In the second section, we compare

our peak-clustering algorithm against SnPM using simulated data.

In the third section, we utilize our algorithm to test for group-level

effects in experimental data.
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Methods and Results

Peak Clustering Algorithm
To compare the distribution of the M top-ranked image peaks

(per person) over a group of participants against any random

selection of peaks, we used the following algorithm. (The matlab

code is available from the corresponding author on request.):

1. Rank order the image peaks for each participant and store their

corresponding locations. Since the test is based on rank order, the

user must specify an interest in positive or negative peaks. The

data presented in this manuscript used normalized t-tests between

conditions to create images.

2. Take the coordinates of the top M peaks from each of N

participants. Construct the smallest possible ellipsoid that contains

a single peak from each participant. The issue here is that the top

peak in participant 1 may be at the same location as the 3rd peak in

participant 3, etc. By selecting from M peaks, one trades off the

precise peak order against spatial resolution (see later).

3. Establish if this ellipsoid is smaller (in terms of the major radius)

than one would expect by chance. The computation of this radius

under the null hypothesis is done by randomly assigning ranks to

peak locations and repeating step 2 a large number of times (e.g.,

500 in this paper). This produces a distribution of radii which one

would expect due to chance (if peak rank were not important).

To give a simple example, how likely is it that the image

maxima for ten participants (N=10, one peak so M=1) are within

1 cm of one another? To answer this, one can compute how close

the image maxima will be by chance by simply taking a random

image peak from each participant and repeating this process to get

a null distribution of ellipsoid radii. Now one computes the same

size metric using ranked peaks from each participant, then reads

off the number of randomly drawn ellipsoids that are smaller than

this (e.g., p,0.01).

Ellipsoid computation. For a given number of participants

(N) and peaks (M), a k-means clustering procedure was iteratively

used to derive M separate ellipsoids (ideally each of N points) from

N*M points. Clusters were trimmed such that each set contained

at maximum one point per participant (selecting the point closest

to the centroid). At the end of the iterative procedure (typically 30

iterations), one is left with a set of the smallest (based on standard

deviation of the point list) clusters for varying numbers of

participants (from a user specified minimum up to a maximum

of N). For these point lists, ellipsoid axes were computed from the

eigenvectors and the standard deviation in each direction (and

hence the 95 percentiles) computed from the corresponding

eigenvalues.

Correcting for Arbitrary Number of Peaks
The peak clustering algorithm requires some a-priori selection

of the parameter M, or the number of top-ranked peaks to

consider in the analysis. Typically, therefore, it is necessary to test

a range of values of M, and hence there is a corresponding

multiple comparisons penalty. In this section, we examine the

dependence of our results on this parameter and propose an

approximate heuristic for dealing with it in the future.

Figure 1 shows the dependence of the 95th percentile of the

confidence radius (R) (maximum radius (in mm) of the ellipsoid

defining the confidence volume) on M for positive peaks in our

experimental data analysis (see below for more information on the

experimental study). Statistics are automatically produced for all

subgroups from N=5–10 participants but only N=5, 7, and 10

are shown here for clarity. Intuitively, the smaller the number of

subjects (N), the smaller an ellipsoid will be by chance (e.g., in the

Figure 1. Dependence of the confidence radius on parameter M. The relationship between the number of peaks used (M) and the 95%
significant (maximum) radius of the confidence ellipsoid (in mm) for subgroups of N = 5 (blue), 7 (green) and 10 (red). Intuitively, the larger the N, the
larger the size of the cluster one would expect to occur by chance. In contrast, the larger the number of peaks per subject (M) considered, the easier it
will be to reach a given cluster size, hence the 95% threshold decreases as more peaks are included in the analysis.
doi:10.1371/journal.pone.0045084.g001
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case of just 2 subjects, one could imagine that some peaks will be

almost adjacent by chance).

The parameter M determines the trade-off between the

importance assigned to rank order and the importance assigned

to tight clustering of peaks across participants. If there is high

importance assigned to rank order (smaller M), then relatively

larger clusters of peaks across participants will be acceptable

(although these may have little anatomical consistency). However,

if the effect in question does not reach the top M peaks in most

participants, it will be completely missed by the analysis. By

contrast, if M is set to be too large, then the inclusion of many

superfluous (i.e., low rank) peaks will mean that a very tight spatial

distribution is required to distinguish a functionally meaningful

cluster from one occurring by chance. This is an analogous

problem to the choice of image smoothing parameters in fMRI,

and analogously the choice depends on the question asked. As

a starting point, we propose a simple heuristic to choose a value of

M which balances dependence on peak rank against cluster size. If

we take the knee of the curve in Figure 1 to represent some

optimal balance between dependence on peak magnitude (small

M) and anatomical consistency across participants (small R), we

can compute a parameter J which quantifies the distance of the

curves from the knee,

J~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2zR2

p

where M and R are the number of peaks and the confidence

radius respectively. Now plotting J against M gives a curve with

a clear minimum (see Figure 2). For each sub-group (N), crosses on

the curve indicate that at least one significant (p,0.05) cluster was

found for this choice of M when analyzing positive peaks.

Importantly, and giving some validiation of our choice of heuristic,

these significant excursions predominate around the minimum of

the function.

The next problem is how to set an appropriate significance

level. There is a single univariate null hypothesis–that the peaks

are clustered by chance. However, as we change (increase) M, we

are re-testing the same hypothesis with different subsets of data.

Hence, a multiple comparisons penalty is necessary. One simple

solution would be to only examine the function minima at each

value of N. One problem here is that the minima are relatively flat

and the smoothness depends on the number of random

permutation steps performed, which is processing intensive. Also,

one can see from Figure 2 that each subgroup curve N has

a different optimal M value (the larger the number of participants

in the group, the larger the optimal number of peaks).

Another possibility is to consider the range of M which defines

this minimum. This approach does not rely on the identification of

minima (so it is more robust) and can be computed for all N at

once. However, there is a multiple comparisons penalty. It is

important to note, however, that a completely new (i.e.,

independent) set of data is only introduced each time the number

of peaks is doubled.

Making a Bonferroni correction, the significance level should be

decreased by a factor each time the number of peaks is doubled.

This means that the test wise error rate to give a family wise error

rate of 0.05 is based on the following Bonferroni correction:

pcorr~
0:05

(log2
Mend
Mstart

� �
)z1

where log2 is log to the base 2, pcorr is the corrected significance

level and Mstart and Mend define the range of M we pre-specify an

interest in. The circles and squares around the crosses in Figure 2

show the two significant ellipsoids found after multiple compar-

isons correction for the range of peaks tested (for Mstart = 2 and

Mend = 30).

Measuring Algorithm Performance: Simulated Data
In order to test algorithm performance against some ground

truth we simulated a single dipolar source across a group of

participants. The same single sphere head model and sensor

locations were used for each simulated participant. System white

noise was simulated at 10 fT/sqrt (Hz) over a bandwidth of 80 Hz.

Data for 10 participants were simulated, differing only in the

simulated source location and white noise realization. In each

simulated participant, a random seed location was generated,

drawn from a Gaussian distribution of standard deviation 5 mm,

centered on MNI location x= 52, y =229, z = 13. The nearest

canonical mesh location [8] to this seedpoint and the correspond-

ing surface normal were used to set the location and orientation of

the single simulated dipole in each participant. Our simulated

sources were normal to the cortical mesh, but as location was

jittered, both source location and orientation changed over

participants. The dipolar source was driven with a 40 Hz sinusoid

over a period of 200 ms (sample rate = 200 Hz). The source was

active for 30 of 60 epochs and a linearly constrained minimum

variance (LCMV) beamformer was used to produce a volumetric

beamformer image of the change in power in the 0–300 ms, 0–

80 Hz band in terms of a normalized difference (or pseudo-t)

image [9] on a 10 mm grid. The beamformer has been described

extensively [2,3,9,10], and an abbreviated version is presented

here.

The beamformer is simply a spatially filtered expression of the

MEG sensor data.

y tð Þ~W
T
h m tð Þ

where W is a vector of weighting coefficients and m(t) is the

measurement vector at time t. To obtain the weighting coefficients,

power is minimized over the covariance window subject to the

constraint of unit gain at a specified coordinate h:

W
T
h Hh~1

where H is the forward solution for an equivalent current dipole

(ECD) at coordinates and orientations specified by the vector h.
The solution to the equation is:

W
T
h ~ HT

h C
{1Hh

� �{1
HT

h C
{1

where C is the covariance matrix of the measurements calculated

over the specified covariance window (Tcov). The 2 (i.e., single-

sphere) or 3 (i.e., multiple spheres) orthogonally oriented

components of W at each location can be estimated independently

to produce a vector beamformer. In this case, we used a scalar

beamformer in which optimal source orientation at each voxel was

estimated through the method of Sekihara et al. [11]. A

normalized source power estimate can be obtained over any test

period (within the covariance window) through the estimation of

the sensor level covariance matrix Ctest over this period, and an

estimate of the sensor noise etest (in this case, we used identity)

matrix over this period:

Peak-Clustering Method for MEG
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Ptest,h~
WT

h CtestWh

WT
h etestWh

We should note that in the experimental data analysis stage, we

used the proprietary software (SAM) to analyze the data [9]. This

computes separate covariances (and hence weights) for both active

and passive periods. In the simulation stage, however, we

computed a single covariance matrix (based on both active and

passive periods), but as there was only white noise in the passive

period, this should have marginal effect on the power difference

calculation (see discussion).

Different participant groups were constructed by drawing 8 of

these 10 images randomly twenty times. For each participant

group, we used SnPM (multiple participant, one sample t-test,

variance smoothing 25 mm) to identify significant (family wise

error = 0.05) positive effects across the normalized power differ-

ence images. Using the peak clustering algorithm, we used the

same data to look for clusters within the top 5 image peaks that

were smaller than one would expect by chance (i.e., M=5 peaks,

N= 8 participants). For each simulated group, we compiled a list

of the significant local maxima (p,0.05 corrected) in the SnPM

images and a list of the centers of the peak-clusters deemed

significant. We classed a hit as a peak/ellipse center closer than

20 mm to the initial MNI seed location and a miss to be any

significant peak or ellipsoid center outside this range. The peaks

were defined by local image maxima identified using the SPM

function spm_max based on 18 neighbors. This means that two

local maxima can be as close as a single (non-maximal) voxel

apart.

Measuring Algorithm Performance: Experimental Data
We assessed the performance of our peak-clustering algorithm

on experimental data. In our experiment, ten right-handed

volunteers (Mean Age= 29.4 years, range= 20–36 years; 2 males)

gave written informed consent following Aston University ethical

guidelines and participated in the MEG study. The protocol was

approved by the Aston University Institutional Review Board and

complied with all guidelines expressed in the Declaration of

Helsinki. Briefly, participants (N= 10) performed a superordinate-

level categorization task on pictures of objects drawn from 3 living

and 3 nonliving categories (see Figure 3). A total of 78 pictures

were selected, half of which depicted a living object and half

a nonliving object. Each picture was shown twice, half with

a congruent label and half with an incongruent label. Therefore,

a total of 156 trials were shown during the scan. The order of trial

presentation was randomized across participants. We recorded

neuromagnetic data at a 600 Hz sampling rate with a bandwidth

of 0–150 Hz using a CTF 275 MEG system (VSM MedTech Ltd.,

Canada) composed of a whole-head array of 275 radial 1st order

gradiometer channels housed in a magnetically shielded room

(Vacuumschmelze, Germany). Synthetic 3rd gradient balancing

was used to remove background noise on-line. Fiducial coils were

placed on the nasion, left preauricular, and right preauricular sites

of each participant. These coils were energized before each run to

localize the participant’s head with respect to the MEG sensors.

Total head displacement was measured after each run and could

not exceed 5 mm for inclusion in the source analyses. Prior to

scanning, participants’ head shapes and the location of fiducial

Figure 2. Peak amplitude and anatomical consistency trade-off. A plot of the heuristic J~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2zR2

p� �
to optimize the balance between

peak magnitude and anatomical consistency across subjects. J increases for large numbers of peaks (where there is a very tight distance threshold (R)
on how close the peaks must be) and also increases when M is small due to the corresponding decrease in anatomical specificity (due to increase in
threshold R shown in Figure 1). Alternatively, one can choose to test a range of M (2–30 in this case), produce significant clusters (for each M; shown
by crosses), and then correct for multiple comparisons. After multiple comparison correction (for M), two significant clusters were found which are
denoted by the circles and squares around these points. These are the same two clusters identified in our experimental data.
doi:10.1371/journal.pone.0045084.g002
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coils were digitized using a Polhemus Isotrak 3D digitizer (Kaiser

Aerospace Inc.). These were then coregistered to high-resolution

T1-weighted anatomical images for each participant acquired with

a 3-Tesla whole-body scanner (3T Trio, Siemens Medical Systems)

using in-house coregistration software.

Data for each participant were edited and filtered to remove

environmental and physiological artefacts. A LCMV beamformer

was then used to produce 3-dimensional images of cortical power

changes [9]. We utilized a wide frequency band (1–80 Hz) to

compute source power from 120–220 ms after stimulus onset (i.e.,

a 100 ms window surrounding the M170), directly contrasting

living (‘active’) to nonliving (‘control’) target objects. Spectral

power changes between the ‘active’ and ‘control’ periods were

calculated as a pseudo t-statistic [9]. Each participant’s data were

then normalized and converted to Talairach space using statistical

parametric mapping (SPM99, Wellcome Department of Imaging

Neuroscience, London, UK, http://www.fil.ion.ucl.ac.uk/spm)

for group-level comparisons.

We used SnPM (multiple participant, one sample t-test,

variance smoothing 6, 12, and 24 mm) to identify significant

(family wise error = 0.05) positive effects across the normalized

power difference images. We also used our peak-clustering

algorithm to test over a range of M values from M=2 through

40 (we utilized only positive peaks in the analysis), which means

that in order to maintain a family wise error rate of 0.05, our test

wise error rate was adjusted to p= 0.0094. After multiple

comparisons correction, we were left with a number of significant

clusters of peaks (see Table 1). The remaining volumes decreased

in size spatially as M increased so if the same region was identified

as showing a significant difference across a range of M values, we

selected the region for reporting purposes that yielded the largest

N. In some cases, several M values yielded the same N. We then

chose the volume for reporting purposes that had the smallest

spatial extent (in terms of the major radius).

Simulation Results
Figure 4 (top) shows the number of hits and misses summed over

the 20 participant groups for the two methods. At moderate SNR,

the number of misses for SnPM is much higher than for the peak-

clustering approach. This is due to extra peaks appearing in the

SnPM images due to artefacts of smoothness. Figure 4 (bottom)

shows binarized (thresholded at p,0.05 corrected) SnPM signif-

icance images summed over the 20 groups (and then normalized to

the maximum count). That is, the maps show the spatial

distribution of significant regions and the grey scale shows their

relative frequency (over groups). For moderate source strengths

(i.e., 10–20 nAm), one can see the appearance of extra significant

clusters, which give rise to the inflated miss rate. Note that these

misses are not false positives in the statistical sense, but simply

image features that persist over participants due to the source

reconstruction method. The peak-clustering approach is immune

to these extra features as there are no consistent local maxima in

these vicinities across participants. In this particular example, the

peak-clustering approach is also more sensitive (i.e., a maximum of

20 hits reached before SnPM). Note, however, that in this case we

have prior knowledge of how many of the top peaks to consider.

Experimental Results
The SnPM analysis did not identify any regions showing

significant positive power differences when using 6 or 12 mm

variance smoothing. However, a single region centered in right

anterior middle to superior temporal gyrus (Talairach coordinates

of center = 48, 3, 218) was identified when we set variance

smoothing to 24 mm (see Figure 5). The peak-clustering analysis of

positive peaks identified two separate regions showing greater

power for living objects (see Figure 5). The region with the largest

N was centered in left inferior occipital gyrus, and using the top 8

positive peaks in each image, 7 of our 10 participants were found

to have a peak falling within the region (major radius = 22.3 mm,

mean value = 1.84). In addition to this region, when using the top

15 positive peaks in each image (i.e., a less stringent magnitude

criterion), 6 of our 10 participants were found to have a peak

falling within a region in right anterior superior temporal gyrus

(major radius = 12.4 mm, mean value = 1.7). This region over-

lapped with the region identified in the SnPM analysis.

Discussion

We have presented a peak-clustering algorithm for group-level

analysis with MEG beamformer images. Our algorithm deter-

mines whether a range of image peaks (M) is closer than expected

by chance. We compared the peak-clustering algorithm perfor-

mance to a more traditional group imaging method (SnPM) and

found the algorithm to be robust to artefacts of smoothness that

can give rise to erroneous MEG beamformer group effects. There

is an important distinction here between false positives due to type

1 error and the effects we are trying to correct for. Both SnPM and

the peak-clustering algorithm have, by definition, the correct type

1 error rate (as it is set in both cases by permutation). Neither is

there a problem with SnPM. The issue we are trying to correct for

here is one of source reconstruction, where a small number of data

channels are projected into a large number of voxels, resulting in

images which are very smooth in certain regions. It is therefore

a way of pruning away redundant information from beamformer

images to reduce the likelihood that these smooth and information

sparse regions of source space contribute to the group effect.

Our approach is similar to a dipole fit analysis approach used

previously [7]. In the Litvak paper, the focus was on identifying the

differences between experimental conditions through the permu-

tation of condition labels to create sensor-time and dipole fit

clusters. By comparing this null (e.g., in terms of distances between

dipole clusters) to the true distribution, the authors were able to

put a significance level on how likely the conditions were to be the

same. The main differences between the Litvak technique and our

own are that we shuffle peak rank rather than data labels, and we

do not have a theoretical source model (e.g., 1 or 2 dipoles) but are

Figure 3. Example experimental data trial. During study 1, participants were shown a 1000 ms red fixation cross, followed by a 300 ms category
probe. After a variable (1000, 1050, or 1100 ms) delay interval, participants were shown a target object for 800 ms.
doi:10.1371/journal.pone.0045084.g003
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looking for consistency over images which may contain large

numbers of sources. That said, the same approach of shuffling data

labels (rather than peak rank) to generate the null could also be

used here to make inferences on whether the ellipsoids due to

separate stimulus conditions were any larger than that due to their

mixture.

As mentioned previously, in the algorithm we are effectively

trying to compensate for the few (i.e., channel) to many (i.e., voxel)

mapping in M/EEG volumetric source reconstruction. This

problem is exacerbated in beamformer analyses because of the

dependence of spatial resolution not only on system sensitivity, but

also on source power [1,2]. An additional problem not addressed

here is that in the SAM implementation used for the experimental

data (i.e., CTF version), different covariance matrices are used to

construct different beamformer weights for different task labels (in

contrast to a single set of weights for all tasks, cf. [2]). That is, the

statistical image is a test between two non-stationary images. For

the purposes of this study, the distinction is not important because

either way the images are inhomogeneous. We are not proposing

a new or improved inversion algorithm, simply a method by which

some of the smoothness inhomogeneities (due to any volumetric

reconstruction) can be discarded. Also, for our beamformer

analysis, we used no regularization. This gives maximum spatial

resolution at the expense of noisy images and time-series estimates.

It would also give rise to the maximum number of peaks per

image. A higher regularization constant would reduce the number

of peaks, removing some that were potentially just due to sensor

noise, but potentially risk discarding signal peaks. At some ideal

level, one would expect the highest ratio of signal to noise peaks

[12]. We do know that there can be a maximum N channels minus

1 nulls in the beamformer image [10]; so, for a simple (i.e.,

unregularized) power image one would expect approximately the

same number of local maxima.

The algorithm requires a parameter that defines the number of

top-ranked peaks to consider (M) for each participant. This

parameter has important implications for cluster size. Since the

algorithm first computes chance volume sizes using a random

selection of peaks, using a small number of peaks can produce

a large cluster size for the null distribution. Rather than arbitrarily

determining the number of peaks for the algorithm to consider, we

developed a heuristic that balances peak rank against cluster size

that requires the user to test over a range of M values and use

a Bonferroni correction for multiple comparisons. For example, to

maintain a family wise error rate of 0.05 when testing over 38 P-

values (i.e., 2–40), the test wise error rate becomes 0.0094. It is

important to note that the choice of M can be made based on

simulations or on the data themselves, as long as an appropriate

multiple comparisons correction is made. For this reason we had

expected the algorithm to be more conservative than volumetric

approaches (like SnPM), but by only dealing with the image in its

compressed point-list form, rather than all voxels, we have also

considerably reduced the multiple comparison correction neces-

sary. This may explain why, counter to our expectation, the

algorithm picked out significant features in the experimental

dataset that were not apparent in (the volume corrected) SnPM

tests.

In our experimental study, participants were required to

perform a superordinate-level categorization task on pictures of

living and nonliving objects. The SnPM analysis yielded mixed

results based on the variance smoothing used. When using both 6

Table 1. Experimental Results.

Location BA N M
Coordinates of
Center (x, y, z)

Volume
(mm3)

Major Radius
(mm)

Mean
Value p-value

Left Inferior Occipital Gyrus 19

6 5 237, 283, 210 7,777 22.8 1.95 0.00

7 6 235, 285, 214 16,488 28.4 1.91 0.01

5 8 249, 273, 29 458 17.4 1.71 0.01

6 8 234, 285, 29 2,352 15.7 1.99 0.00

7 8 240, 281, 27 4,891 22.3 1.84 0.01

6 9 234, 285, 29 2,352 15.7 1.99 0.00

6 10 234, 285, 29 2,352 15.7 1.99 0.01

6 11 234, 285, 29 2,352 15.7 1.99 0.00

6 12 234, 285, 29 2,352 15.7 1.99 0.01

5 13 235, 285, 26 1,227 11.6 1.99 0.00

5 14 235, 285, 26 1,227 11.6 1.99 0.01

Right Superior Temporal Gyrus 38

5 11 49, 3, 214 406 12.6 1.78 0.00

5 12 49, 3, 214 406 12.6 1.78 0.01

5 13 49, 3, 214 406 12.6 1.78 0.01

6 15 49, 5, 214 1,839 12.4 1.70 0.01

6 16 49, 5, 214 1,839 12.4 1.70 0.01

The two regions identified by our peak-clustering algorithm as showing a significant group-level difference between living (active) and nonliving (control) objects from
120–220 ms using a wide frequency band (1–80 Hz) (Note: the analysis included only positive peaks). Here, we show the 11 ellipsoids centered in left inferior occipital
gyrus and the 5 ellipsoids centered in right superior temporal gyrus (arranged by increasing M values). Note that the highlighted ellipsoids (bold) are the regions used
for reporting purposes. BA = Brodmann area. N =number of participants (out of 10) having a peak within the volume. M=number of peaks used to identify the region;
p = corrected p-value.
doi:10.1371/journal.pone.0045084.t001
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and 12 mm, no regions survived statistical significance. However,

when using 24 mm, a single region in right anterior middle to

superior temporal gyrus showed significantly greater power for

living than nonliving objects. Using the peak-clustering algorithm,

we also found a significant cluster of activity in right anterior

superior temporal gyrus, overlapping with the region identified by

the SnPM analysis. In addition, we identified a region in left

inferior temporal gyrus showing greater power for living than

nonliving objects, which we did not find in our SnPM analysis. In

order to determine whether the SnPM analysis yielded a peak in

left inferior temporal gyrus that simply did not survive whole-brain

correction, we looked at the t map produced in our SnPM analysis.

We found a cluster of activity centered in left inferior temporal

gyrus (peak value = 2.95), which suggests that left inferior temporal

gyrus would be significant if we performed a region-of-interest

analysis (rather than a whole-brain analysis) using roughly 7

independent voxels (or ROIs). This would be in accord with our

explanation that the peak clustering analysis has a less stringent

multiple comparisons penalty, as it considers only a limited

number of image peaks per subject (indeed for these analyses there

Figure 4. Data simulation findings. Top panel shows the total number of significant local maxima over 20 simulated subject groups (with a single
simulated source) identified using SnPM (dotted) and the peak clustering method (solid) as source magnitude is increased. Local maxima within 2 cm
of the simulated source are defined as hits and those greater than 2 cm misses. Note that both methods consistently identify the correct source
location at high SNR (20 hits, 0 misses) but that SnPM tends to produce a large number of artefactual significant regions at moderate SNR. This error
rate is due to the smoothness of the beamformer images that gives rise to statistically significant overlapping side-lobes. These effects are shown in
the lower panel, where maps of the percentage of significant voxels (from the 20 groups) are shown in the glass-brain.
doi:10.1371/journal.pone.0045084.g004
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were 8 peaks per participant). Both of these regions we would

expect to be active based on previous neuroimaging studies which

have suggested that the inferior temporal/occipital gyri are

important for form recognition, and that reliance on visual form

is more important for living than nonliving objects [13,14]. In

addition, studies have also suggested that the anterior superior

temporal gyri are important for object recognition, including

making fine-grained distinctions amongst objects [15]. Several

studies have also suggested that identifying living objects requires

greater fine-grained discrimination than nonliving objects, perhaps

due to greater structural (and semantic) similarity among living

than nonliving things [16,17].

As with many non-parametric techniques, the peak clustering

method sacrifices some sensitivity for an increase in robustness,

and requires that some feature of interest (here, each peak) is

identifiable in the majority of individuals. This would not be the

case in standard random or fixed effects models in which sub-

threshold effects in the individual can be picked up in the group.

Allowing the algorithm to identify smaller subgroups is a matter

for debate. In some cases, the objective identification of subgroups

might be a useful feature of the algorithm. Forcing the algorithm

to be selective to only those regions in every participant that have

a local maximum makes it extremely conservative. Once could

also argue that a group effect is meaningless if one does not include

the whole group. Yet, in classical volumetric approaches, random

effects analysis allows some heterogeneity in the effects over the

population. As long as the values of N (e.g., N= 9 for a group of

10) are reported then the reader can make his/her own inference

on the strength of the finding (e.g., an effect in 90% of the

participants). Also, the technique will not be sensitive to truly

spatially extended regions of electrical activity that are not

artefacts of smoothness, as only the peaks within each image are

considered in the analysis.

In sum, we have found that our peak-clustering technique offers

a number of advantages over current group-level analysis

approaches with MEG. The method is immune to inhomogeneous

smoothness introduced by imperfect volumetric M/EEG source

reconstruction and exacerbated in beamformer implementations,

and indeed it makes no assumptions about the underlying image

properties. In addition, the null distributions of source locations

are constructed from the data itself and the randomization testing

takes into account the multiple comparisons problem (for a given

M). As the test is based on rank, it should be relatively robust to

physiological artefacts and as a default we would leave the artefact

identification until the post-hoc analyses. For example, eyeball

artefacts should result in significant clusters in the eyes. Subgroup

statistics are also available, so, for example, bounds for any 5 of N

participants having significantly clustered peaks can automatically

be tested. Finally, by providing confidence intervals on peak

location, the technique would be well suited to situations in which

one would like to make some spatial inference concerning peak

location. For example, whether peaks from a particular subject

group derive from a specific cortical location.
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Figure 5. Experimental data findings. A) The region in right anterior middle to superior temporal gyrus identified by the SnPM analysis as
showing significantly greater power for living compared with nonliving objects. B) The two regions identified by the peak-clustering algorithm as
showing significantly greater power for living compared with nonliving objects. Red= Inferior Occipital Gyrus; Blue = Superior Temporal Gyrus. The
sagittal images show the approximate slice locations (z coordinates are given below each slice) shown on the corresponding axial image (at right,
blue lines, arranged inferior to superior) on a template brain.
doi:10.1371/journal.pone.0045084.g005
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