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Abstract

Melastatin-like transient receptor potential channel 2 (TRPM2) is an oxidant-sensitive and cationic non-selective channel that
is expressed in mammalian vascular endothelium. Here we investigated the functional role of TRPM2 channels in hydrogen
peroxide (H2O2)-induced cytosolic Ca2+ ([Ca2+]i) elavation, whole-cell current increase, and apoptotic cell death in murine
heart microvessel endothelial cell line H5V. A TRPM2 blocking antibody (TM2E3), which targets the E3 region near the ion
permeation pore of TRPM2, was developed. Treatment of H5V cells with TM2E3 reduced the [Ca2+]i rise and whole-cell
current change in response to H2O2. Suppressing TRPM2 expression using TRPM2-specific short hairpin RNA (shRNA) had
similar inhibitory effect. H2O2-induced apoptotic cell death in H5V cells was examined using MTT assay, DNA ladder
formation analysis, and DAPI-based nuclear DNA condensation assay. Based on these assays, TM2E3 and TRPM2-specific
shRNA both showed protective effect against H2O2-induced apoptotic cell death. TM2E3 and TRPM2-specific shRNA also
protect the cells from tumor necrosis factor (TNF)-a-induced cell death in MTT assay. In contrast, overexpression of TRPM2 in
H5V cells resulted in an increased response in [Ca2+]i and whole-cell currents to H2O2. TRPM2 overexpression also
aggravated the H2O2-induced apoptotic cell death. Downstream pathways following TRPM2 activation was examined.
Results showed that TRPM2 activity stimulated caspase-8, caspase-9 and caspase-3. These findings strongly suggest that
TRPM2 channel mediates cellular Ca2+ overload in response to H2O2 and contribute to oxidant-induced apoptotic cell death
in vascular endothelial cells. Down-regulating endogenous TRPM2 could be a means to protect the vascular endothelial cells
from apoptotic cell death.
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Introduction

Reactive oxygen species (ROS) are key factors in pathophys-

iology of vascular endothelial cells. Excessive production of ROS

damages the structure and function of endothelial cells, leading to

endothelial dysfunction [1], which may contribute to pathogenesis

of hypertension, diabetes, inflammation and atherosclerosis [1,2].

Evidence shows that ROS-induced endothelial dysfunction is often

preceded by an alteration of endothelial [Ca2+]i [3], which serves

as an important second messenger to trigger apoptosis and cell

death.

TRPM2 is a Ca2+-permeable nonselective cation channel. Its

main endogenous gating molecule is adenosine 59-diphosphoribose

(ADP-ribose) [4,5,6]. Binding of ADP-ribose to TRPM2 opens the

channel, allowing Na+ and Ca2+ to enter the cells. ADP-ribose

activation of TRPM2 is potentiated by [Ca2+]i, nicotinic acid

adenine dinucleotide phosphate and H2O2, which is a major ROS

[6,7,8]. In addition to its potentiation effect, H2O2 may directly

stimulate TRPM2 activity [9,10]. It has been shown that H2O2-

induced Ca2+ influx through TRPM2 contributes to ROS-induced

cell death in several cell types including neuons, hematopoietic

cells and TRPM2-overexpressing HEK293 cells [7,11,12,13].

TRPM2-S is an TRPM2 isoform.TRPM2-S exerts dominant-

negative effect on TRPM2 function, serving to inhibit H2O2-

induced [Ca2+]i rises and its associated cell death in TRPM2-

expressing cells [12]. In cultured rat neurons, both TRPM2-S and

TRPM2-specific siRNA were found to reduce H2O2-induced

[Ca2+]i rises and cell death [11]. Besides TRPM2, ROS could

activate other Ca2+ influx channels and stimulate intracellular

store Ca2+ release, contributing to Ca2+ overload and cell death

[14,15,16].

TRPM2 is abundantly expressed in vascular endothelial cells

[17,18]. However, to date, there is only one report studying the

role of TRPM2 in vascular endothelial cells [18]. In that study,

Hecquet et al. demonstrated that ROS-induced TRPM2 activa-

tion may contribute to an increased vascular permeability [18].

However, some important questions remained unsolved, includ-

ing: 1) whether TRPM2 activity plays a role in endothelial cell

death, and 2) whether inhibiting TRPM2 could protect endothe-

lial cells from ROS-induced cell death. In the present study, we

address these questions using a heart microvessel endothelial cell

line H5V [19]. Our results show that TRPM2 is a key molecule

involved in H2O2-induced endothelial cell death and that

inhibiting TRPM2 is an effective means to protect the endothelial

cells from H2O2-induced cell death.

PLOS ONE | www.plosone.org 1 August 2012 | Volume 7 | Issue 8 | e43186



Results

Involvement of TRPM2 Channels in H2O2-induced Ca2+

Influx in H5V Cells
H5V cells were bathed in a Ca2+-free solution (0Ca2+-PSS).

Application of H2O2 (3 mM) initiated a [Ca2+]i rise, presumably

due to H2O2-induced Ca2+ release from the intracellular Ca2+

stores (Fig. 1A). Ca2+ was then added to the extracellular bath,

causing another [Ca2+]i rise (Fig. 1A). This second [Ca2+]i rise was

mostly due to H2O2-induced Ca2+ influx. In the absence of H2O2,

the Ca2+ add-back to the bath only had very small effect on

[Ca2+]i level (Fig. 1B).

A blocking antibody targeted against E3-region near the

permeation pore of TRPM2 channels was developed using the

strategy reported elsewhere [20]. The specificity of TM2E3 was

verified by immunoblots (Figs. 2A and B) and patch clamp

(Figs. 2C and D). TM2E3 could recognize the specific TRPM2

band in TRPM2-overexpressing HEK293 cells as demonstrated in

immunoblots (Figs. 2A and B). In the patch clamp study, TM2E3

(10 mg/ml, 1 hr pretreatment) could effectively block TRPM2-

mediated whole-cell currents in response to ADP-ribose in

TRPM2-overexpressing HEK293 cells (Figs. 2C and D). In

H5V cells, TM2E3 inhibited H2O2-induced Ca2+ influx, which

was the second [Ca2+]i rise in response to Ca2+ add-back (Figs. 2E

and F). A TRPM2-specific shRNA was designed. In immunoblots,

the TRPM2-specific shRNA could effectively reduce the expres-

sion of TRPM2 proteins in H5V cells (Figs. 3A and B). In [Ca2+]i
study, the TRPM2-specific shRNA markedly reduced the H2O2-

induced Ca2+ influx whereas TRPM2 overexpression significantly

augmented the Ca2+ influx to H2O2 in H5V cells (Figs. 3C and D).

These data suggest a key functional role of TRPM2 channels in

mediating H2O2-induced Ca2+ influx in H5V cells.

Involvement of TRPM2 Channels in H2O2-elicited Whole-
cell Current in H5V Cells
Whole-cell currents were measured by patch clamp. Extracel-

lular application of H2O2 (3 mM) caused an increase in whole-cell

currents in H5V cells (Fig. 4A). The H2O2-elicited whole-cell

currents displayed a linear current-voltage relationship, which is

typical of TRPM2 [4,7,18]. The H2O2-elicited whole-cell currents

were markedly attenuated in H5V cells that were pretreated with

TM2E3 (10 mg/ml, 1 hr) or transfected with TRPM2-specific

shRNA (Figs. 4B and D). In contrast, the currents increased in cells

that were overexpressed with TRPM2 (Figs. 4C and D). These

data indicate that TRPM2 accounts for a large part of H2O2-

elicited whole-cell currents in H5V cells.

Role of TRPM2 Channels in H2O2-induced Apoptotic Cell
Death in H5Vcells
Loss of metabolic activity in H5V cells was measured by MTT

assay. H2O2 treatment for 1 hr caused a reduction in metabolic

activity in a concentration-dependent manner. H2O2 concentra-

tion ranged from 1, 156, 312, 625, 1250, to 2500 mM (Fig. 5).

Overexpression of TRPM2 augmented the H2O2-induced loss of

metabolic activity, whereas TRPM2-specific shRNA partially

reversed the damaging effect of H2O2 (Fig. 5).

H2O2-induced apoptotic cell death of H5V cells was de-

termined by DNA fragmentation. H2O2 at 3 mM was able to

induce DNA fragmentation, indicated by appearance of a ‘‘lad-

der’’ pattern at ,180 bp interval (Fig. 6A). No such ladder

pattern was observed in the absence of H2O2 treatment or when

H2O2 concentration was lower (1 mM) (Fig. 6A). Prominently,

treatment of cells with TM2E3 or TRPM2-specific shRNA

reduced the DNA fragmentation in response to 3 mM H2O2

(Figs. 6B and C).

The role of TRPM2 channels in H2O2-induced apoptotic cell

death was morphologically confirmed by a fluorescent DNA-

binding agent DAPI staining. Representative nuclear morphology

of H5V cells were shown in Fig. 7A. Control cells without H2O2

treatment displayed clear-edged, uniformly stained blue nuclei.

After H2O2 treatment for 24 hr, nuclear condensation and nuclear

fragmentation, both of which are characteristic of apoptotic cells,

were observed in non-transfected H5V cells (Fig. 7B) and

scrambled-shRNA transfected H5V cells (Fig. 7C). The H2O2-

induced nuclear condensation appeared to be aggravated in

TRPM2-overexpressing cells (Fig. 7D). In contrast, H2O2-induced

nuclear condensation was remarkably reduced in cells stably

expressing TRPM2-specific shRNA (Fig. 7E).

Involvement of Caspases
Effect of H2O2 on the activity of caspase-3, caspase-8 and

caspase-9 was investigated. Treatment of H5V cells with H2O2

Figure 1. H2O2-induced Ca2+ influx in H5V cells A. Representative trace showing the [Ca2+]i responses to H2O2 and extracellular Ca2+ add-back
in H5V cells. Cells bathed in 0Ca2+-PSS were first challenged by 3 mM H2O2 followed by 2 mM extracellular Ca2+. The Ca2+ add-back induced an
additional [Ca2+]i rise, presumably due to Ca2+ influx (n = 4). B. Representative trace showing the [Ca2+]i response to extracellular Ca2+ add-back in the
absence of H2O2. The cells were bathed in 0Ca2+-PSS at the beginning, followed by 2 mM extracellular Ca2+ (n = 3).
doi:10.1371/journal.pone.0043186.g001

Role of TRPM2 in H2O2-Induced Cell Apoptosis
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(3 mM, 6 hrs) activated caspase-3 and caspase-8 based on the

elevation of caspase-3 and caspase-8 level in immunoblots (Fig. 8).

The H2O2 treatment caused a reduction of procaspase-9 level,

suggesting that H2O2 also activated caspase-9 (Fig. 8). In cells that

were transfected with TRPM2-specific shRNA, the effect of H2O2

on caspase level was much reduced (Fig. 8).

Figure 2. Effect of TM2E3 on H2O2-induced Ca2+ influx in H5V cells and on ADP-ribose-activated whole-cell currents in HEK293
cells. A and B. Representative immunoblots (A) and data summary (B) probed with TM2E3 and anti-b-tubulin. Whole cell lysates were taken from
wild-type HEK293 cells (WT) and TRPM2-overexpresssing HEK293 cells (TRPM2 Overexpress). In B, the expression level of TRPM2 in WT was normalized
to 1. (n = 4), *P,0.05 compared with WT. C and D. Representative traces (C) and data summary (D) showing the effect of TM2E3 on the whole-cell
currents activated ADP-ribose. Recordings were made in HEK293 cells that were transfected with TRPM2 or empty plasmid. ADP-ribose (300 mM) was
included in pipette solution. Cells were hold at 2100 mV. (n = 426), *P,0.05 compared with TRPM2 group. E and F. Representative traces (E) and
data summary (F) showing the effect of TM2E3 on H2O2-induced Ca2+ entry in H5V cells. Cells were pretreated with TM2E3 (10 mg/ml) or Pre-immune
IgG (10 mg/ml) for 1 hr. The cells were first bathed in 0Ca2+-PSS, followed by 3 mM H2O2, and then 2 mM Ca2+ add-back. Maximal [Ca2+]i changes in
response to 2 mM Ca2+ add-back were shown in F. n = 5, *P,0.05 compared with Pre-immune IgG group.
doi:10.1371/journal.pone.0043186.g002
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Involvement of TRPM2 in TNF-a-induced Cell Death in
H5V Cells
TNF-a is an inflammatory cytokine that can trigger H2O2

formation in endothelial cells [21,22]. In MTT assay, treatment of

H5V cells with TNF-a (10 ng/ml, 36 hrs) caused a loss of cell

metabolic activity (Fig. 9). The TNF-a-induced cell death was

attenuated in cells that were treated with TM2E3 or TRPM2-

specific shRNA (Fig. 9).

Discussion

ROS-induced endothelial cell damage leads to several diseases

including hypertension, diabetes, inflammation and atherosclerosis

[1,2]. In the present study, we found that H2O2 could elicit [Ca2+]i
rises, induce whole-cell currents and trigger apoptotic cell death.

Blocking or suppressing TRPM2 markedly reduced the H2O2-

induced [Ca2+]i rises and whole-cell currents. More importantly,

blocking or suppressing TRPM2 inhibited the H2O2-induced cell

death in H5V endothelial cells. We also explored the involvement

of TRPM2 in TNF-a-induced cell death. TNF-a is an in-

flammatory cytokine that can potently induce intracellular ROS

formation in endothelial cells, leading to apoptotic cell death and

atherosclerotic development [21,22]. Our results also demonstrat-

ed the role of TRPM2 in TNF-a-induced endothelial cell death.

Taken together, these data for the first time demonstrated a key

role of TRPM2 in H2O2-induced cell death in vascular endothelial

cells and suggest an exciting possibility of targeting TRPM2 as an

option for protecting of endothelial cells from ROS-induced cell

damage.

With the use of TM2E3 and TRPM2-specific shRNA, we

demonstrated that TRPM2 mediates the [Ca2+]i responses to

H2O2 in H5V cells. Once Ca2+ influx through TRPM2 is

activated, resultant [Ca2+]i rises are expected to trigger oxidative

stress-induced cell death through a number of well-characterized

pathways including caspases cleavage and poly-ADP-ribose Poly-

merase (PARP) inactivation [23]. Three different approaches,

including MTT assay, DNA fragmentation and DAPI staining for

nuclear DNA condensation, were used to monitor the H2O2-

induced apoptotic cell death. MTT assay measures the loss of

metabolic activity of cells and is an early indicator for cell death

[24,25]. DNA fragment is a hallmark of apoptosis with cleavage of

chromatin DNA into internucleosomal fragments of 180 bp and

multiples thereof [26]. DAPI staining for nuclear DNA conden-

sation is another standard technique for apoptotic cell death [27].

In apoptotic cells, the integrity of the cell membrane is

compromised. Therefore, more DAPI enters the cells, resulting

Figure 3. Effect of TRPM2-specific shRNA on H2O2-induced Ca2+ influx in H5V cells. A and B. Representative immunoblots (A) and data
summary (B) showing the effectiveness of TRPM2-specific shRNA in suppressing TRPM2 expression in H5V cells. H5V cells were transfected with or
without TRPM2, scrambled-shRNA, or TRPM2-specific shRNA (n = 3 experiments), *P,0.05 compared with WT or scrambled-shRNA. C and D.
Representative traces (C) and data summary (D) showing the effect of TRPM2-specific shRNA on H2O2-induced Ca2+ entry in H5V cells. The cells were
first bathed in 0Ca2+-PSS, followed by 3 mM H2O2, and then 2 mM Ca2+ add-back. Maximal [Ca2+]i changes in response to 2 mM Ca2+ add-back were
shown in D. n = 5, *P,0.05 compared with scrambled-shRNA.
doi:10.1371/journal.pone.0043186.g003

Role of TRPM2 in H2O2-Induced Cell Apoptosis

PLOS ONE | www.plosone.org 4 August 2012 | Volume 7 | Issue 8 | e43186



in a stronger staining color of nuclear DNA. In the present study,

we found that H2O2 and TNF-a caused a loss of metabolic activity

in H5V cells as determined by MTT assay. H2O2 also caused

DNA fragmentation based on DNA ladder assay, and induced

nuclear DNA condensation in DAPI staining experiments.

Importantly, these apoptotic responses to H2O2 and TNF-a were

at least partially rescued by silencing TRPM2 expression with

TRPM2-specific shRNA or blocking TRPM2 with specific

antibody TM2E3. Effectiveness of TRPM2-specific shRNA was

remarkable. After TRPM2-specific shRNA treatment, there was

no apparent DNA ladder formation and nuclear DNA conden-

sation. Together, these data established a firm linkage between

TRPM2 and H2O2-induced apoptotic cell death in H5V cells.

We also investigated the downstream events following TRPM2

activation in the H2O2-induced endothelial cell apoptotic process.

Involvement of caspase-3, caspase 8 and caspase-9 was studied.

Caspsase-8 plays a central role in the extrinsic cell death pathways

involving transmembrane receptor-mediated interactions, whereas

caspase-9 is an important component in the intrinsic cell death

pathway [28]. Caspase-3 is downstream of caspase-8 and caspase-

9, and is activated by either initiator caspase (caspase-8 or caspase-

9) [28]. Caspase 3 then acts as the executioner caspases, leading to

the cell apoptosis [28]. Our data showed that H2O2 treatment

activated all three caspases (caspase-8, caspase-9 and caspase-3).

Importantly, suppressing TRPM2 by TRPM2-specific shRNA

could reduce the activation of all three caspases. These results

suggest H2O2, through its action on TRPM2, activates both

intrinsic and extrinsic apoptosis pathways, leading to activation of

caspases-3 and subsequent apoptosis. It is conceivable that

TRPM2-mediated Ca2+ entry plays a key role in the process.

However, note that TM2E3 and TRPM2-specific shRNA could

only partially inhibit the H2O2-induced [Ca2+]i rises. Further,

these two agents only partially rescued the endothelial cells from

H2O2-induced loss of metabolic activity in MTT assay. We reason

that there may exist some TRPM2-independent components that

were also sensitive to H2O2. Other potential ROS-sensitive Ca2+-

permeable channels have been reported. These include TRPC1

[29], TRPC3 and/or TRPC4 [30], TRPC5 [31], TRPC6 [32]

and TRPM7 [15]. Further studies are needed to clarify which

pathways and/or channels are also involved in H2O2-induced

[Ca2+]i rise and cell death in vascular endothelial cells.

We have used high concentration of H2O2 (3 mM) to induce

apoptotic cell death in H5V microvessel endothelial cells and

examined the role of TRPM2 in the process. It has been reported

that high concentration of H2O2 was necessary in order to shorten

the time for the terminal pathological events to occur [33] and to

study the electrophysiological and [Ca2+]i change as the acute

consequences of the oxidative stress [12,33]. Due to similar reason,

many previous studies also used high concentration of H2O2 to

study the acute effect of oxidative stress on endothelial cells

Figure 4. Effect of TRPM2-specific shRNA and TM2E3 on H2O2-elicited whole-cell current change in H5V cells. Representative whole-
cell current-voltage (I-V) relationships before and after H2O2 (3 mM) treatment in H5V cells transfected with scrambled-shRNA (A), TRPM2-specific
shRNA (B) and TRPM2 (C). Whole-cell currents were recorded using linear ramp protocol from 2100 mV to +100 mV with 100 ms duration. (D)
Maximal changes in inward currents in response to 3 mM H2O2 at 2100 mV. The changes were obtained by subtracting the current before H2O2

treatment from that after the treatment. n = 326, *P,0.05, compared with scrambled-shRNA or pre-immune IgG.
doi:10.1371/journal.pone.0043186.g004
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[34,35,36]. Another contributing factor for using high concentra-

tion of H2O2 was that, in most of our studies, H2O2 treatment was

carried out in culture media which contained serum. Serum, in

particular albumin, has a strong quenching effect that drastically

reduces levels of biologically active H2O2 [37]. We also tested the

effect of relatively low concentration of H2O2 (100 mM-1 mM).

However, at these concentration, H2O2 failed to induce [Ca2+]i
rises and cell apoptosis, suggesting that H5V cells were highly

resistant to H2O2. In experiments involving DNA fragmentation

and DAPI staining, the cells were incubated with H2O2 for

relatively long period of time (24 hr) before DNA fragmentation

and DAPI staining assays. As mentioned, H2O2 is rapidly

degraded in the presence of serum. The long period of time

before the assays was for development of the phenotypes (DNA

fragment and nuclear condensation) rather than a requirement for

long period of H2O2 treatment.

In conclusion, our study provides strong evidence for functional

role of TRPM2 in H2O2-induced apoptotic cell death in vascular

endothelial cells. In light of the role of oxidative stress in the

initiation and/or progression of vascular diseases, we believe that

TRPM2 channels may represent a potential therapeutic target for

the treatment of ROS-mediated endothelial dysfunction and

vascular diseases.

Materials and Methods

Cell Culture
A mouse heart endothelioma (H5V) cell line, a generous gift

from Professor P. Huber [38], was derived from murine

embryonic heart endothelium. H5V cells are a commonly used

model for endothelial cell research [39,40]. H5V cells and

HEK293 cells were cultured in Dulbecco’s modified Eagle

medium (DMEM) (Gibco, invitrogen, USA) supplemented with

10% Fetal Bovine Serum (Gibco, invitrogen, USA) and a combi-

nation of penicillin-streptomycin (Gibco, Invitrogen, USA) at 37uC
in a 5% CO2 atmosphere.

[Ca2+]i measurement
H5V cells (non-transfected or those stably transfected with

TRPM2, scrambled-shRNA or TRPM2-specific shRNA) were

prepared and loaded with fluorescence dye Fura-2/AM (Molec-

ular Probes, Inc., NJ) for observing their Ca2+ responses to H2O2

(VWR International Ltd., England). Briefly, cells were seeded on

circular glass plates at 37uC overnight supplemented with culture

medium. As for fluorescence dye loading, cells were incubated

for an hour in dark at room temperature with 10 mM of Fura-2/

Figure 5. TRPM2-mediated loss of cell metabolic activity in
response to H2O2 in H5V cells. H5V cells that were stably
transfected with empty vector, TRPM2-specific shRNA or TRPM2 were
treated with indicated concentrations of H2O2 (1, 156, 312, 625, 1250,
2500 mM, respectively) for 1 hr. Cell metabolic activity was assessed by
MTT assay. The data were expressed as the percent of metabolic activity
in the absence of H2O2. n = 6 per group, *P,0.05 compared with Empty
Vector.
doi:10.1371/journal.pone.0043186.g005

Figure 6. Role of TRPM2 in H2O2-induced H5V cell apoptosis as assessed by DNA fragmentation. A. Dose-dependent effect of H2O2 on
DNA fragmentation. H5V cells were treated without indicated concentration of H2O2 for 24 hr. DNA was extracted and analyzed by agarose gel
electrophoresis. Molecular weight standard (M.W. Std) was shown. B. Inhibitory effect of TM2E3 on H2O2-induced DNA fragmentation. Cells were
pretreated with pre-immune IgG (labeled as Ctrl) or TM2E3 (labeled as M2) for 2 hr before treatment of indicated concentration of H2O2 for 24 hr. C.
Effect of TRPM2-specific shRNA on H2O2-induced DNA fragmentation. Cells were transfected with scrambled-shRNA or TRPM2-specific shRNA. No
DNA fragmentation was observed in cells transfected with TRPM2-specific shRNA. n= 3 per group.
doi:10.1371/journal.pone.0043186.g006
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AM and 0.02% Pluronic acid F-127 in normal physiological

saline solution (N-PSS), which contained in mM: 1 CaCl2,

140 NaCl, 5 KCl, 1 MgCl2, 10 glucose, and 5 Hepes at pH 7.4.

The circular discs containing the endothelial cells were then

pinned in a specially designed chamber. Before experiments, cells

were maintained in 0Ca2+-PSS for 2 min. 0Ca2+-PSS contained

in mM: 140 NaCl, 5 KCl, 1 MgCl2, 10 glucose, and 5 Hepes at

pH 7.4. All agents were applied directly to the bath along the

side of the chamber, followed by pipetting gently up and down

for a few times to allow quick diffusion to cells. Experiments were

performed at room temperature. Fluorescence signals were

recorded by a fluorescence imaging system (Olympus, Japan).

If needed, the cells were pretreated with TM2E3 (10 mg/ml) or

preimmune IgG (10 mg/ml) at 37uC for 2 hrs. Fura-2 fluores-

cence signals were recorded by a fluorescence imaging system

(Olympus, Japan) with dual excitation wavelength at 340 nm and

380 nm, from which we obtained a ratio of fluorescent intensity

of 340 nm to 380 nm (F 340/380). Then, [Ca2+]i was calculated

according to the ratio, using a Ca2+-fluorescence curve de-

termined by Ca2+ standards obtained from molecular probes.

The calibration solutions contains 10 ml each of 11 prediluted

10 mM K2EGTA/CaEGTA buffers containing 0, 1.0, 2.0, 3.0,

4.0, 5.0, 6.0, 7.0, 8.0, 9.0 and 10.0 mM CaEGTA (free Ca2+

ranging from 0 mM to 39 mM). All the solutions contain 100 mM

KCl and 30 mM MOPS, pH 7.2.

DNA Fragmentation Assay
The method was followed from Schwerdt’s group [41]. Cells in

culture medium were collected by brief centrifugation. Then the

cells were harvested in cell lysis buffer (5 mM Tris, 20 mM EDTA

pH 8.0, 0.5% Triton X-100), incubated in ice for 30 min and

centrifuged at 16,000 g for 20 min at 4uC. 50 mg/ml proteinase K

was added into the supernatant and incubated for 60 min at 37uC.
40 mg/ml RNase A were added and incubated for 60 min at

37uC. DNA was extracted by adding the same volume phenol/

chloroform/isoamylalcohol (25:24:1). After shaking and centrifu-

gation at 3,420 g for 30 min, the upper phase was collected. One

tenth volume 3 M sodium acetate (pH 5.2) and two volumes ice

cold (–20uC) ethanol were added, and the samples were turned

over for several times and left overnight at –20uC. After

centrifugation at 16,000 g for 20 min at 4uC, pellet was washed
with 70% ice cold ethanol and dried. DNA concentration was

measured at 260 nm in a spectrophotometer. DNA ladder was

visualized in 2% agarose gel.

MTT Assay
MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium

bromide) was used to measure cell metabolic activity. Briefly,

H5V cells that were stably transfected with empty vector

pcDU6C, TRPM2-specific shRNA or TRPM2 were treated with

indicated concentrations of H2O2 in culture media for 1 hr, or

treated with TNF-a (10 ng/ml) for 36 hrs. Cells were further

incubated with 250 mg MTT in phenol red free media for 2 hrs.

Cells were then lysed by 10% (w/v) sodium dodecyl sulfate and

purple formazan was dissolved by absolute isopropanol. The

absorbance was read at OD570. Cell metabolic activity was

expressed as percentage of no H2O2 (or TNF-a)-treated control.

TNF-a mouse recombinant protein was purchased from Rock-

land, Gilbertsville, PA.

TRPM2-specific shRNA, TRPM2 and Transfection
A 19-nt short hairpin RNA (shRNA) sequence against mouse

TRPM2 gene was designed. The synthesized sequence (mouse)

was: AACCTTAGCTCATGGATTC. The sequence was cloned into

a self-constructed shRNA expression vector pcDU6C [42]. The

pcDU6C contains a U6 RNA polymerase III promoter and

a blasticidin resistance gene. The insertion of shRNA sequence

was verified by DNA sequencing using ABI autosequencer (Perkin

Elmer). Scrambled shRNA was from Santa Cruz, USA. H5V cells

were transfected with empty vector pcDU6C or those containing

TRPM2-specific shRNA, or the scrambled shRNA using an

electroporation protocol. Under the selection pressure of 3 mg/ml

blasticidin (Gibco, invitrogen, USA), the stable cell lines expressing

either the TRPM2-specfic shRNA or the scrambled shRNA were

established in about 10 days. Human TRPM2 cDNA (Gen-

BankTM accession number AB001535), a generous gift from

Barbara A. Miller [12], was stably overexpressed in H5V cells or

HEK293 cells under Geneticin (400 mg/ml) (Gibco, invitrogen,

USA) selection.

Figure 7. Role of TRPM2 in H2O2-induced H5V cell apoptosis as
assessed by DAPI staining. Shown were nuclear morphology as
detected by DAPI (1 mg/ml) staining (blue) under fluorescence
microscope. A. Wild-type H5V cells without H2O2 treatment. B-E. After
24 hr treatment with 3 mM H2O2 for wild-type H5V cells (B), scrambled-
shRNA-transfected H5V cells (C), TRPM2-overexpressing H5V cells (D)
and TRPM2-specific shRNA-transfected H5V cells (E). White arrows
indicate the nuclei with condensed chromatin and fragmented nuclear
bodies. n = 6 per group. UV wavelength, 340 nm; Exposure time,
200 ms.
doi:10.1371/journal.pone.0043186.g007
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Electrophysiology
Whole-cell membrane currents were performed at room

temperature (21–25uC). HEK293 cells or H5V cells were kept in

standard Ringer’s solution containing in mM: 145 NaCl, 2.8 KCl,

1 CaCl2, 2 MgCl2, 10 Glucose, 10 HEPES (pH 7.2, adjusted with

NaOH). Pipette-filling solutions contained in mM: 145 Cs-

glutamate, 8 NaCl, 1 MgCl2, 10 Cs-BAPTA, 10 HEPES

(pH 7.2, adjusted with CsOH), and if appropriate, 300 mM
ADP-ribose (Sigma, USA). [Ca2+]i was buffered to 100 nM with

10 mM BAPTA and 3.6 mM CaCl2. Patch pipettes with a re-

sistance of 3–5 MV. Pipette and membrane capacitance were

automatically compensated. For H2O2 series, H2O2 (3 mM) was

added into the bath solution after establishment of whole-cell

configuration. Data were acquired with ‘PulseFit’ software

controlling an EPC-9 amplifier (HEKA Elektronik, Lambrecht

Pfalz, Germany). Cells were clamped at 0 mV. For HEK293 cells,

whole-cell currents were recorded at the holding voltage of

2100 mV. The currents were sampled at 25 kHz and filtered at

1 kHz. For H5V cells, whole-cell currents were recorded in linear

ramp protocol from 2100 mV to +100 mV with 100 ms duration

immediately before H2O2 and 3–5 min after H2O2 in order for

the currents to reach their peaks. Data were analyzed with PulseFit

8.7 software (HEKA).

Western Blotting
Whole-cell lysates were extracted with protein extraction buffer,

which contained in mM: 50 Tris-HCl, 150 NaCl, 50 NaF, and

1.5% Nonidet P-40, 0.5% sodium deoxycholate, pH 7.5, with

addition of the protease inhibitor cocktail tablets (Roche). Protein

concentrations were determined by Bradford assay. 40 mg proteins
were loaded onto each lane and separated on either 8% SDS/

PAGE gel after boiled in SDS loading buffer. Proteins were

transferred to a PVDF membrane, and the membrane was then

immersed in a blocking solution containing 5% non-fat milk and

0.1% Tween 20 in PBS for 1 hr at room temperature with

constant shaking. The incubation with the primary antibody

against TRPM2 (1:3000) or TM2E3 (10 mg/ml) was carried out

overnight at 4uC in PBS containing 5% non-fat milk and 0.1%

Tween 20. Immunodetection was accomplished with horseradish

peroxidase-conjugated secondary antibody (1:5000), followed by

ECLTM Plus Western blotting detection system (Amersham,

England). Immunoblots with anti-b-tubulin antibody were used

Figure 8. Effect of TRPM2-specific shRNA on H2O2-induced caspase activation in H5V cells. A. Representative immunoblots showing
H2O2-induced activation of caspase-3, caspase-8 and caspase-9. H5V cells were transfected with or without scrambled-shRNA or TRPM2-specific
shRNA. Left panels, before H2O2; right panels, 6 hr after 3 mM H2O2. Caspase-3 and caspase-8 activation was indicated by elevation of cleaved
caspase-3 (active form, 17 kDa) and caspase-8 (active form, 25 kDa) after H2O2, while caspase-9 activation was illustrated by reduction of procaspase-
9 (45 kDa). (B-D) Data summary showing the inhibitory effect of TRPM2-specific shRNA on H2O2-induced activation of caspase-8 (B), caspase-9 (C)
and caspase-3 (D). The caspase expressional level in cells expressing TRPM2-specific shRNA was normalized to 1. n = 4 per group, *P,0.05 compared
with TRPM2 shRNA.
doi:10.1371/journal.pone.0043186.g008
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to confirm that an equal amount of proteins was loaded onto each

lane. The band intensity was analyzed by ImageJ 1.42q (Wayne

Rasband, USA). Active caspase-8 polyclonal antibody and active

caspase-3 polyclonal antibody were purchased from Biovision, CA,

USA. Pro-caspase-9 antibody was purchased from Genway

Biotech, CA, USA.

DAPI Staining
4,6-diamidino-2-phenylindole, dilactate (DAPI, dilactate) re-

agent (Invitrogen, USA) was used to detect the DNA condensation

after H2O2 treatment. Cells were first seeded with 60–70%

confluence on coverslips in DMEM supplemented with 10% Fetal

Bovine Serum and a combination of penicillin-streptomycin at

37uC in a 5% CO2 atmosphere overnight. Cells were grown to

approximately 90% confluence. 3 mM H2O2 was then added to

the cells. After 24 hr, the cells were then washed with PBS for

three times. Subsequently, coverslips were mounted on a micro-

scope glass slide and stained with 1 mg/ml DAPI reagent for

approximately 30 minutes in dark. The cells were then washed

with PBS for three times. The morphology of cell nuclei was

examined at wavelength of 340 nm under a fluorescence micro-

scope (Olympus, Japan). The objective magnification is 206.The

exposer time is 200 ms for all groups.

Statistics
Data are expressed as mean6standard error (S.E.). Statistical

significance was determined by paired or unpaired Student’s t-test.

For multiple comparisons, one-way ANOVA was used to de-

termine statistical significance. *P,0.05 was considered to be

statistically significant.

Acknowledgments

We thank Dr. Tjong YW for manuscript editing.

Author Contributions

Conceived and designed the experiments: XQY. Performed the experi-

ments: LS WYW. Analyzed the data: LS HYY WYW. Contributed

reagents/materials/analysis tools: XQY RAL YH. Wrote the paper: LS

XQY RAL. Edited and revised the manuscript: XQY RAL YH.

References

1. Feletou M, Vanhoutte PM (2006) Endothelial dysfunction: a multifaceted

disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol 291:

H985–1002.

2. Li JM, Shah AM (2004) Endothelial cell superoxide generation: regulation and

relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp

Physiol 287: R1014–1030.

3. Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in

cardiovascular diseases. J Hypertens 18: 655–673.

4. Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, et al. (2001) ADP-ribose

gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif

homology. Nature 411: 595–599.

5. Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, et al. (2001)

Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293: 1327–

1330.

6. Sumoza-Toledo A, Penner R (2011) TRPM2: a multifunctional ion channel for

calcium signalling. J Physiol 589: 1515–1525.

7. Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, et al. (2002) LTRPC2

Ca2+-permeable channel activated by changes in redox status confers

susceptibility to cell death. Mol Cell 9: 163–173.

8. Kolisek M, Beck A, Fleig A, Penner R (2005) Cyclic ADP-ribose and hydrogen

peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol

Cell 18: 61–69.

9. Wehage E, Eisfeld J, Heiner I, Jungling E, Zitt C, et al. (2002) Activation of the

cation channel long transient receptor potential channel 2 (LTRPC2) by

hydrogen peroxide. A splice variant reveals a mode of activation independent of

ADP-ribose. J Biol Chem 277: 23150–23156.

10. Naziroglu M, Luckhoff A (2008) A calcium influx pathway regulated separately

by oxidative stress and ADP-Ribose in TRPM2 channels: single channel events.

Neurochem Res 33: 1256–1262.

11. Fonfria E, Marshall ICB, Boyfield I, Skaper SD, Hughes JP, et al. (2005)

Amyloid beta-peptide(1–42) and hydrogen peroxide-induced toxicity are

mediated by TRPM2 in rat primary striatal cultures. Journal of Neurochemistry

95: 715–723.

12. Zhang W, Chu X, Tong Q, Cheung JY, Conrad K, et al. (2003) A novel

TRPM2 isoform inhibits calcium influx and susceptibility to cell death. J Biol

Chem 278: 16222–16229.

13. Zhang W, Hirschler-Laszkiewicz I, Tong Q, Conrad K, Sun SC, et al. (2006)

TRPM2 is an ion channel that modulates hematopoietic cell death through

activation of caspases and PARP cleavage. Am J Physiol Cell Physiol 290:

C1146–1159.

14. Hu Q, Zheng G, Zweier JL, Deshpande S, Irani K, et al. (2000) NADPH

oxidase activation increases the sensitivity of intracellular Ca2+ stores to inositol

1,4,5-trisphosphate in human endothelial cells. J Biol Chem 275: 15749–15757.

15. Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, et al. (2003) A key role for

TRPM7 channels in anoxic neuronal death. Cell 115: 863–877.

16. Poteser M, Graziani A, Rosker C, Eder P, Derler I, et al. (2006) TRPC3 and

TRPC4 associate to form a redox-sensitive cation channel. Evidence for

expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells.

J Biol Chem 281: 13588–13595.

17. Brown RC, Wu L, Hicks K, O’Neil RG (2008) Regulation of blood-brain barrier

permeability by transient receptor potential type C and type v calcium-

permeable channels. Microcirculation 15: 359–371.

18. Hecquet CM, Ahmmed GU, Vogel SM, Malik AB (2008) Role of TRPM2

channel in mediating H2O2-induced Ca2+ entry and endothelial hyperperme-

ability. Circ Res 102: 347–355.

19. Garlanda C, Parravicini C, Sironi M, De Rossi M, Wainstok de Calmanovici R,

et al. (1994) Progressive growth in immunodeficient mice and host cell

recruitment by mouse endothelial cells transformed by polyoma middle-sized

T antigen: implications for the pathogenesis of opportunistic vascular tumors.

Proc Natl Acad Sci U S A 91: 7291–7295.

20. Xu SZ, Zeng F, Lei M, Li J, Gao B, et al. (2005) Generation of functional ion-

channel tools by E3 targeting. Nat Biotechnol 23: 1289–1293.

21. Kim HJ, Park KG, Yoo EK, Kim YH, Kim YN, et al. (2007) Effects of PGC-

1alpha on TNF-alpha-induced MCP-1 and VCAM-1 expression and NF-

kappaB activation in human aortic smooth muscle and endothelial cells.

Antioxid Redox Signal 9: 301–307.

22. Deshpande SS, Angkeow P, Huang J, Ozaki M, Irani K (2000) Rac1 inhibits

TNF-alpha-induced endothelial cell apoptosis: dual regulation by reactive

oxygen species. FASEB J 14: 1705–1714.

23. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the

calcium-apoptosis link. Nat Rev Mol Cell Biol 4: 552–565.

Figure 9. Role of TRPM2 in TNF-a-induced cell death in H5V
cells. H5V cells that were stably transfected with scrambled-shRNA or
TRPM2-specific shRNA. These cells were exposed to 10 ng/ml of TNF-
a for 36 hrs. In another series, wild-type H5V cells were pretreated with
TM2E3 (10 mg/ml) or Pre-immune IgG (10 mg/ml) for 2 hrs before TNF-
a challenge. The cell metabolic activity was assessed by MTT assay. The
data were expressed as the percent of metabolic activity in the absence
of TNF-a. n = 6 per group, *P,0.05 compared with scrambled-shRNA
(for TRPM2-shRNA) or Pre-immune IgG (for TM2E3).
doi:10.1371/journal.pone.0043186.g009

Role of TRPM2 in H2O2-Induced Cell Apoptosis

PLOS ONE | www.plosone.org 9 August 2012 | Volume 7 | Issue 8 | e43186



24. Fonfria E, Marshall IC, Benham CD, Boyfield I, Brown JD, et al. (2004)

TRPM2 channel opening in response to oxidative stress is dependent on
activation of poly(ADP-ribose) polymerase. Br J Pharmacol 143: 186–192.

25. Wogulis M, Wright S, Cunningham D, Chilcote T, Powell K, et al. (2005)

Nucleation-dependent polymerization is an essential component of amyloid-
mediated neuronal cell death. J Neurosci 25: 1071–1080.

26. Zhang JH, Xu M (2000) DNA fragmentation in apoptosis. Cell Res 10: 205–
211.

27. Kapuscinski J (1995) DAPI: a DNA-specific fluorescent probe. Biotech

Histochem 70: 220–233.
28. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol

35: 495–516.
29. Marasa BS, Rao JN, Zou T, Liu L, Keledjian KM, et al. (2006) Induced TRPC1

expression sensitizes intestinal epithelial cells to apoptosis by inhibiting NF-
kappaB activation through Ca2+ influx. Biochem J 397: 77–87.

30. Jia Y, Zhou J, Tai Y, Wang Y (2007) TRPC channels promote cerebellar

granule neuron survival. Nat Neurosci 10: 559–567.
31. Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, et al. (2006) Nitric

oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2:
596–607.

32. Graham S, Ding M, Ding Y, Sours-Brothers S, Luchowski R, et al. Canonical

transient receptor potential 6 (TRPC6), a redox-regulated cation channel. J Biol
Chem 285: 23466–23476.

33. Smith MA, Herson PS, Lee K, Pinnock RD, Ashford ML (2003) Hydrogen-
peroxide-induced toxicity of rat striatal neurones involves activation of a non-

selective cation channel. J Physiol 547: 417–425.

34. Waxman AB, Mahboubi K, Knickelbein RG, Mantell LL, Manzo N, et al.

(2003) Interleukin-11 and interleukin-6 protect cultured human endothelial cells
from H2O2-induced cell death. Am J Respir Cell Mol Biol 29: 513–522.

35. Doan TN, Gentry DL, Taylor AA, Elliott SJ (1994) Hydrogen peroxide activates

agonist-sensitive Ca(2+)-flux pathways in canine venous endothelial cells.
Biochem J 297 (Pt 1): 209–215.

36. Zheng Y, Shen X (2005) H2O2 directly activates inositol 1,4,5-trisphosphate
receptors in endothelial cells. Redox Rep 10: 29–36.

37. Kouoh F, Gressier B, Luyckx M, Brunet C, Dine T, et al. (1999) Antioxidant

properties of albumin: effect on oxidative metabolism of human neutrophil
granulocytes. Farmaco 54: 695–699.

38. Gory-Faure S, Prandini MH, Pointu H, Roullot V, Pignot-Paintrand I, et al.
(1999) Role of vascular endothelial-cadherin in vascular morphogenesis.

Development 126: 2093–2102.
39. Telo P, Breviario F, Huber P, Panzeri C, Dejana E (1998) Identification of

a novel cadherin (vascular endothelial cadherin-2) located at intercellular

junctions in endothelial cells. J Biol Chem 273: 17565–17572.
40. Urayama K, Guilini C, Messaddeq N, Hu K, Steenman M, et al. (2007) The

prokineticin receptor-1 (GPR73) promotes cardiomyocyte survival and angio-
genesis. FASEB J 21: 2980–2993.

41. Schwerdt G, Freudinger R, Schuster C, Weber F, Thews O, et al. (2005)

Cisplatin-induced apoptosis is enhanced by hypoxia and by inhibition of
mitochondria in renal collecting duct cells. Toxicol Sci 85: 735–742.

42. Leung PC, Cheng KT, Liu C, Cheung WT, Kwan HY, et al. (2006) Mechanism
of non-capacitative Ca2+ influx in response to bradykinin in vascular endothelial

cells. J Vasc Res 43: 367–376.

Role of TRPM2 in H2O2-Induced Cell Apoptosis

PLOS ONE | www.plosone.org 10 August 2012 | Volume 7 | Issue 8 | e43186


