
Molecular Characterization of Antimicrobial Peptide
Genes of the Carpenter Ant Camponotus floridanus
Carolin Ratzka1*, Frank Förster2, Chunguang Liang2, Maria Kupper1, Thomas Dandekar2,

Heike Feldhaar3, Roy Gross1

1 Department of Microbiology, Biocentre, University of Würzburg, Würzburg, Germany, 2 Department of Bioinformatics, Biocentre, University of Würzburg, Würzburg,

Germany, 3 Department of Animal Ecology I, University of Bayreuth, Bayreuth, Germany

Abstract

The production of antimicrobial peptides (AMPs) is a major defense mechanism against pathogen infestation and of
particular importance for insects relying exclusively on an innate immune system. Here, we report on the characterization of
three AMPs from the carpenter ant Camponotus floridanus. Due to sequence similarities and amino acid composition these
peptides can be classified into the cysteine-rich (e.g. defensin) and glycine-rich (e.g. hymenoptaecin) AMP groups,
respectively. The gene and cDNA sequences of these AMPs were established and their expression was shown to be induced
by microbial challenge. We characterized two different defensin genes. The defensin-2 gene has a single intron, whereas the
defensin-1 gene has two introns. The deduced amino acid sequence of the C. floridanus defensins is very similar to other
known ant defensins with the exception of a short C-terminal extension of defensin-1. The hymenoptaecin gene has a single
intron and a very peculiar domain structure. The corresponding precursor protein consists of a signal- and a pro-sequence
followed by a hymenoptaecin-like domain and six directly repeated hymenoptaecin domains. Each of the hymenoptaecin
domains is flanked by an EAEP-spacer sequence and a RR-site known to be a proteolytic processing site. Thus, proteolytic
processing of the multipeptide precursor may generate several mature AMPs leading to an amplification of the immune
response. Bioinformatical analyses revealed the presence of hymenoptaecin genes with similar multipeptide precursor
structure in genomes of other ant species suggesting an evolutionary conserved important role of this gene in ant
immunity.
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Introduction

Insects have evolved multiple innate defense mechanisms to

respond to microbial invasion [1,2,3,4]. Early protective measure

involves the ‘‘constitutive’’ immediate-acting defenses including

phagocytes and reactive oxygen species. At later time points, an

inducible immune response is mounted which mainly involves the

production of antimicrobial peptides (AMPs) [5,6]. It is believed

that this late-acting humoral response is required to kill those

bacteria that have survived the immediate host’s constitutive

defenses [5]. In 1981, the first AMPs were described from the

cecropia moth [7]. In the past two decades a multitude of AMPs

have been identified produced by many different organisms

ranging from animals to plants. Most AMPs have a low molecular

weight (,10 kDa), are membrane-active and display hydrophobic

and/or cationic properties. Based on structural characteristics,

insect AMPs can be divided into several groups, mainly a-helical

peptides (e.g. cecropin), cysteine-rich peptides (e.g. defensin),

proline-rich peptides (e.g. drosocin), and glycine-rich peptides (e.g.

hymenoptaecin) [8].

Several AMPs from Hymenopteran species have been reported

so far [9,10,11,12,13]. The few defensins known from Hymenop-

terans are short cationic peptides characterized by three stabilizing

disulfide bridges. These peptides appear to act primarily against

gram-positive bacteria by interference with acidic phospholipids of

the cytoplasmic membrane and the formation of voltage-depen-

dent channels [14,15]. They are synthesized as an inactive

precursor peptide with a signal- and a pro-sequence. Processing

of the precursors leads to the active peptides. Apis mellifera has two

structurally different defensin genes (defensin-1 and defensin-2) [16].

Defensin-1 is characterized by the presence of two introns and three

exons, whereat the last exon encodes a short C-terminal extension

known from bee defensins only. In contrast, defensin-2 possesses a

single intron [16]. Several defensin-2 genes of a variety of ant

species, including Formica, Lasius and Myrmica species, have been

described previously [12]. The comparison and determination of

codon substitution frequencies revealed positive selection in the

mature region of the ant defensins, while the signal- and pro-

regions of the AMPs appear to have evolved neutrally [12].

Hymenoptaecins are glycine-rich AMPs with activity against

gram-negative and gram-positive bacteria and have been reported
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so far from Hymenopterans only [17]. The reported antibacterial

effects of the A. mellifera hymenoptaecin suggest that its lethal

consequences against E. coli are secondary to sequential permea-

bilization of the outer and inner membranes of these gram-

negative bacteria [17]. The bee hymenoptaecins are endowed with

a signal- and a pro-sequence which after processing give rise to the

mature and active AMP [9,10,18]. In contrast, the two similar

hymenoptaecins from the wasp Nasonia vitripennis encode multi-

peptide precursors with an AMP-like region at the position

corresponding to the propeptide of bee hymenoptaecins [11,19].

Here, we report the identification and molecular characteriza-

tion of three AMP genes from the carpenter ant Camponotus

floridanus. All ants are eusocial. Colonies of C. floridanus may

contain, up to several thousand individuals. Such huge and dense

colonies of genetically very similar organisms may pose specific

problems to hygiene issues and pathogen defense [20]. Most

interestingly, ants of this genus are exceptional in that they

generally lack the so-called metapleural gland, which is known

from other ants to be a major depository of antimicrobial

compounds [21,22]. Moreover, Camponotus and closely related

genera harbor an obligate intracellular endosymbiont in special-

ized cells, the bacteriocytes, in their midgut, which need to be

tolerated by the host’s defense mechanisms [23,24]. The recently

published genome sequence of C. floridanus and subsequent

bioinformatical analyses revealed the presence of two AMP genes

encoding defensins [25,26], which have significant similarities with

defensins known from other ant species [12,26,27]. In addition to

these defensin genes, a suppression subtractive hybridization

approach also detected the presence of a hymenoptaecin gene in C.

floridanus [28], which has not been annotated in the genome. In

order to gain a better insight into the antimicrobial repertoire of C.

floridanus, the present study aimed at the characterization of these

antimicrobial peptides on the molecular level and comparison to

AMPs encoded by other ant species. Most importantly, we show

that in comparison to bee hymenoptaecins the C. floridanus

hymenoptaecin gene is much longer and encodes a multipeptide

precursor with structural similarities to apidaecin precursors from

A. mellifera [17], the proteolytic processing of which possibly leads

to a massive amplification of the antimicrobial response [13,29].

Materials and Methods

Insect rearing and bacterial challenge
Founding queens of C. floridanus were collected in Florida near

Orchid Island in August 2001 and were then kept in a climate

chamber at Würzburg University as described before [30]. For

pathogen challenge, C. floridanus major workers were injected with

heat-killed Serratia marcescens (26105 cells/individual). At 24 h after

injection, midgut and fat body were collected and kept in

RNAlater (Ambion/Applied Biosystems, USA) until RNA prep-

aration.

DNA extraction and total RNA isolation
Total RNA from midgut and fat body of injected and naive

major workers was extracted using TRIzolH Reagent (Invitrogen,

Darmstadt, Germany) and purified through RNeasy mini kit

columns (Qiagen, Hilden, Germany) with on-column DNase

digestion (RNase-Free DNase Set, Qiagen) as described in the

manufacturer’s procedures. After purification, the RNA concen-

tration of each sample was measured by the NanodropH
spectrophotometer. RNA used in Northern blot analysis was

additionally checked by PCR for gDNA contamination. C.

floridanus genomic DNA was extracted from six larvae as described

before [31].

Sequencing of full-length cDNAs and genes
The complete sequences of the transcripts of interest were

obtained by 39 and 59 RACE, performed with the SMART RACE

cDNA Amplification Kit including the Advantage II PCR kit

(Clontech, Heidelberg, Germany). For defensin-1 and hymenoptaecin,

the nucleotide sequences of the 39- and 59- primers (GSP1 and

GSP2) were designed on the corresponding EST (GenBank Acc.

No. for EST from hymenoptaecin: HS410972 and for EST from

defensin: HS410966) obtained from a suppression subtractive

hybridization (SSH) experiment [28]. For defensin-2 RACE primers

were designed according to the C. floridanus genome sequence.

Primers used for RACE were Cfl_def-1-GSP1 and Cfl_def-1-

GSP2 for defensin-1, Cfl_def-2-GSP1 and Cfl_def-2-GSP2 for

defensin-2 and Cfl_hym-GSP1 and Cfl_hym-GSP2 for hymenoptaecin

(see Table S1). The first-strand cDNA used for 59 and 39-RACE

were produced by using 1 mg of total RNA from Serratia-injected

workers prepared for the SSH method, and using the primers

provided in the kit. Amplification of the RACE products was

carried out according to the manufacturer’s instructions.

Oligonucleotide primers were then designed from the obtained

RACE cDNA sequences and used for PCR amplification of the

full length cDNAs und genes. Primers used were Cfl_def-1_flsF

and Cfl_def-1_flsR for defensin-1, Cfl_def-2_flsF and Cfl_def-

2_flsR for defensin-2 and Cfl_hym_flsF and Cfl_hym_flsR for

hymenoptaecin (see Table S1).

In each case resulting PCR-products were purified with the

PCR Purification Kit (Qiagen), inserted into the plasmid vector

pGEM (Promega) and transformed into E. coli DH5a cells

(Invitrogen). The plasmids from several different clones were then

extracted for sequencing with the UltraPrep Kit (Molzym,

Bremen, Germany) according to the manufacturer’s instructions.

The sequences were generated by Seqlab (Sequence Laboratories

Göttingen) with the vector primers M13 forward (59-

GTTTTCCCAGTCACGAC-39) and M13 reverse (59-CAG-

GAAACAGCTATGAC-39).

Hymenoptaecin probes for Northern and Southern blot
analysis

In order to obtain specific C. floridanus hymenoptaecin probes for

hybridization experiments, the inserts from two subtracted

hymenoptaecin cDNA clones ([28], GenBank Acc. No. HS410972

and HS410975)) were amplified using PCR cycler and the Mol

Taq PCR system (Molzym). Primers used were as follows: for the

270 bp hymenoptaecin 59-probe: Cfl_hym_59F and Cfl_hym_59R;

for the 270 bp hymenoptaecin repeat-probe Cfl_hym_repF and

Cfl_hym_repR (see Table S1). PCR conditions were as follows:

denaturation at 95uC for 3 min followed by 32 cycles of

denaturation at 95uC for 15 s, annealing at 56uC for 15 s, and

extension at 72uC for 1 min. PCR products were purified with the

PCR Purification Kit (Qiagen).

Northern blot analysis
For verification of C. floridanus hymenoptaecin full length mRNA,

Northern blot analysis was performed. Total RNA from immune-

challenged and naive workers (25 mg per lane) was separated on a

1.0% formaldehyde agarose gel and transferred onto a nylon

blotting membrane (Amersham Hybond N+, GE Healthcare, UK).

Membranes were prehybridized in roller bottles with 10 ml of

Amersham Rapid-hyp Buffer (GE Healthcare, UK) for 30 min at

65uC. The hymenoptaecin 59-fragment (see above) was radioactively

labelled with 60 mCi of [a-32P]-dATP with the DecaLabel Kit

(Fermentas, Germany) according to the manufacturer’s specifica-

tions. The labelled cDNA probe was purified with Illustra
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Microspin S-200 HR Columns (GE Healthcare, UK). Membranes

were rinsed and then washed two times for 15 min at 65uC in

50 ml of wash buffer (26 SSC, 0.1% SDS), sealed in saran wrap

and exposed to a storage phosphor screen (GE Healthcare, UK)

for 2 days. Screens were scanned on a Typhoon 9200 Variable

Mode Imager (GE Healthcare, UK) with a resolution of

50 microns.

Southern blot analysis
In order to characterize the C. floridanus hymenoptaecin gene locus,

Southern blot analysis was performed. Digested DNA from

immune-challenged and healthy workers (about 30 mg per lane)

was separated on a 1.0% agarose gel and transferred onto a nylon

blotting membrane (Amersham Hybond N+, GE Healthcare, UK).

Membranes were prehybridized in roller bottles with 10 ml of

hybridization buffer (0.5 M NaHPO4 (pH 7:4), 1 mM EDTA,

0.7% SDS) for 30 min at 65uC. The hymenoptaecin repeat-fragment

(see above) was labeled with Rediprime II DNA Labeling System

(Amersham) according to the manufacturer’s specifications. After

addition of the heat-denatured probe (5 min at 95uC, cooled down

on ice) hybridization was continued for 20 h at 62uC in a rotatory

oven. Membranes were rinsed and then washed two times for

30 min at 65uC in 20 ml of wash buffer (0.04 M NaHPO4

(pH 7:4), 1 mM EDTA, 0.5% SDS), sealed in saran wrap and

exposed to a storage phosphor screen (GE Healthcare, UK) for

2 days. Screens were scanned on a Typhoon 9200 Variable Mode

Imager (GE Healthcare, UK) with a resolution of 50 microns.

Expression and purification of recombinant Camponotus
hymenoptaecin

One of the putative mature Camponotus hymenoptaecins (Cfl-

hym) was amplified by PCR with oligonucleotides Cfl_hymN-

deI_F and Cfl_hymBamHI_R (see Table S1). The PCR product

was inserted into pET-15b vector (Novagen, Merck KGaA,

Darmstadt, Germany) at NdeI and BamHI sites with a thrombin

cleavage site (LVPRGS) for subsequent removal of the N-terminal

6xHis-Tag. The resulting pET-15b-Cfl-hym was transformed into

E. coli Rosetta 2(DE3)pRARE2 (Novagen, Merck KGaA) for

protein expression. Expression of the recombinant Cfl-hym

peptide was induced with 0.1 mM IPTG at an optical density of

0.5 at 600 nm. Cells were harvested after 5 h at 37uC and pelleted

by centrifugation. Cell pellets were stored at 280uC until further

purification.

Recombinant Cfl-hym peptide was purified from insoluble

inclusion bodies under denaturing conditions. All purification steps

were monitored by SDS-PAGE analysis using Tris-glycine gels.

Thawed cell pellets were resuspended in resuspension buffer

(100 mM NaH2PO4, 10 mM Tris-HCl, 8 M Urea, pH 8.0) and

lysed by gently vortexing. Cellular debris was removed by

centrifugation and the cleared lysate was mixed with 1 ml

PerfectPro Ni-NTA Agarose (5 Prime GmbH, Hamburg,

Germany). The lysate-resin mixture was then loaded on a column

and washed twice with wash buffer (the resuspension buffer

adjusted to pH 6.3). Finally, the fusion proteins were eluted by

elution buffers (the resuspension buffer adjusted to pH 5.9 and

subsequently pH 4.5). Suitable elution fractions were combined

and carefully dialyzed to a final dialysis buffer concentration of

400 mM NaCl, 1 M Urea, 20 mM Tris-HCl, 20% glycerol at

pH 7.4. In order to remove the N-terminal 6xHis-Tag, recombi-

nant peptides were digested with thrombin using the Thrombin

Cleavage Capture Kit (Novagen, Merck KGaA) according to the

manufacturer’s instructions. The cleaved peptide was concentrated

by ultrafiltration using Amicon Ultra-4 centrifugal filter devices

(Millipore, Schwalbach, Germany). For buffer exchange the

concentrated protein solution was diluted in dialysis buffer

(400 mM NaCl, 1 M Urea, 20 mM Tris-HCl, 20% glycerol at

pH 7.4) to a volume of 4 ml and subsequently concentrated again

as described above. This procedure was repeated four times.

Protein concentrations were measured using the method of

Bradford with bovine serum albumin as standard.

Inhibition zone assays
Inhibition zone assays were performed in order to determine

antibacterial activity of the purified Cfl-hym peptide. Microorgan-

isms used in the inhibition zone assays were E. coli D31 [32] as a

gram-negative bacterium and Bacillus subtilis as a gram-positive

bacterium. In each case 3–46105 bacteria were diluted in 3 ml

preheated Luria broth (LB) containing 0.75% agarose. The

mixture was spread out evenly on preheated LB agar plates. After

settling, blanc discs (Oxoid, Thermo Fisher Scientific, Schwerte,

Germany) were put on the agar plates and 4.5 nmol Cfl-hym

peptide (in dialysis buffer) were applied on top. Furthermore

dialysis buffer alone was applied as a negative control and 4 mg

kanamycin as a positive control. The plates were incubated at

37uC overnight. On the next day the clear zone of inhibition was

documented by photography.

Bioinformatical prediction of proteins in ant genomes
Gene prediction was performed for the published genomes of

the ant species C. floridanus, Atta cephalotes, Harpegnathos

saltator, Pogonomyrmex barbatus, Solenopsis invicta, Line-

pithema humile, and Acromyrmex echinatior using the gene

prediction pipeline maker (version 2.11-beta) [33]. Therefore, the

genomic contigs were prefiltered by BLASTX (version 2.2.24). All

contigs having hits against published hymenoptaecin or defensin

proteins were used for the gene prediction pipeline. The identified

C. floridanus cDNA sequences and all available protein sequences

from A. mellifera or other ants were used as EST and protein

evidence for the gene predictions. Augustus with its Nasonia model

was used for de novo gene predictor [34]. The obtained gene

predictions were manually curated.

Phylogenetic tree reconstruction for mature
hymenoptaecin peptides

The sequences for the cDNAs and proteins resulting from the

gene prediction and the real sequences obtained from C. floridanus

were analyzed by the ProP server (version 1.0) [35]. All cDNAs

were fragmented according to the cleavage sites predicted by ProP.

All obtained single domain cDNA fragments were aligned by

translator [36] with default settings and the resulting alignment

was cleaned by Gblocks [37] with the default settings from the

translatorX website. The phylogenetic tree was reconstructed by

PhyML (version 3.0.1) [38] under the GTR+I+G+F model with

100 bootstrap replicates as implemented in seaview (version 4.3.0)

[39]. Branches with a bootstrap support below 40 were combined

using iTOL [40] and the tree was drawn with the software FigTree

(version 1.3.1).

Phylogenetic tree reconstruction and tree reconciliation
for defensin peptides

For C. floridanus and S. invicta two defensin peptides were

predicted. Therefore, we added Ixodes scapularis to the sequence set

as outgroup (GenBank Acc. No.: XP_002436104.1) and the two A.

mellifera defensins defensin-1 (GenBank Acc. No.:

NM_001011616.2) and defensin-2 (GenBank Acc. No.:

NM_001011638.1). The whole sequence set was aligned by

MUSCLE (version 3.8.31) [41]. The tree was reconstructed by

Antimicrobial Peptides of Ants
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BioNJ [42]. Therefore, the observed amino acid frequencies were

used. Branches with a bootstrap support below 40 were combined

using iTOL [40]. The species tree for tree reconciliation was

derived from Brady et al. 2006 and Gadau et al. 2012 [43,44]. For

tree reconciliation the software Notung (version 2.6) [45,46] was

used. The gene tree and the reconciled tree were drawn using

FigTree (version 1.3.1).

Results

Cloning and sequence analysis of a hymenoptaecin
encoding cDNA of C. floridanus

The search for immune inducible genes in C. floridanus by a SSH

approach revealed the presence of a cDNA encoding a homologue

of hymenoptaecin, an AMP known from other hymenopteran

species [28]. The subsequent attempts to define the 59- and 39ends

of the cDNA resulted in complex patterns. As expected the

59RACE of the hymenoptaecin cDNA revealed one product.

However, the 39RACE resulted in several products of different

length. Further investigation of these products revealed that all

were hymenoptaecin derived 39RACE products with an identical

39UTR and a poly-A tail. The various molecules with different

length resulted from a 309-nucleotide sequence which was

repeated several times but in different copy number in the

different amplification products. To confirm the existence of these

deduced cDNAs the full length hymenoptaecin cDNAs were

amplified with primers binding near the 59and 39-ends. Several

clones with insert size varying from 681 bp to 2536 bp were

identified and analyzed (Fig. 1). All of the examined cDNA

sequences contained a constant 59- and 39end, embracing a region

of variable length containing one to six copies of the 309-

nucleotide repeat sequence. All putative precursor proteins

deduced from the different amplification products are composed

of a signal peptide of 19 amino acids (aa), a propeptide of 26 aa

and a mature peptide region of differing length in dependence of

the repeat number. The latter seems to be further processed into

multiple mature AMPs in accordance with the presence of

proprotein convertase cleavage sites Arg (R)/Lys (K), as predicted

by ProP 1.0 [35]. Several different hymenoptaecin peptide

variants could be deduced from the analyzed ESTs. Considering

all obtained cDNA sequences and the size of the major product,

we deduced a major hymenoptaecin mRNA (GenBank Acc. No.:

HQ315784) of 2536 bp containing an ORF of 2373 bp (781 aa)

corresponding to six repeats of the putative mature peptide

sequence. Each of the repeated units consists of a coding sequence

for the mature hymenoptaecin peptide, preceded by coding

regions for a spacer sequence (EAEP) and a putative proprotein

cleavage site (RR or KR) (Fig. 2). Further analysis of the deduced

mature peptides showed that all putative hymenoptaecin peptides

are 97 aa long and start with a glutamine (Q) at their N-terminus.

Only the first peptide of each precursor, the so called

hymenoptaecin-like peptide, displayed an exception consisting of

108 aa due to an N-terminal insertion (Fig. 2) and starting with a

glycine (G). In sum, the domain composition of the Camponotus

hymenoptaecin resembled the multipeptide precursor structure of

bee apidaecins [29].

Genomic organization of hymenoptaecin
As described above, by comparison of all possible repeat

versions from the sequenced hymenoptaecin cDNAs, we found a high

number of different deduced hymenoptaecin peptide variants.

Therefore we addressed the question whether this diversity was

caused by the existence of multiple hymenoptaecin genes in the C.

floridanus genome or by alternative splicing of large transcripts from

a single gene. To solve this question, we amplified the hymenoptaecin

gene(s) by PCR using conditions for the amplification of large

fragments using the Cfl_hym_fls forward and reverse primers (see

Table S1). Similar to the amplification of the hymenoptaecin cDNAs

the PCR with gDNA yielded a ladder of amplified products

ranging from 1500 bp to 3356 bp in length (Fig. 1). Comparing

gDNA to mRNAs, we located one phase 0 intron of 820 bp in size,

which is present after the codon coding for histidine number 39

(Fig. 3). As no other introns were found, the observed variation in

repeat numbers cannot be explained by alternative splicing of

exons coding for the repeats. Therefore, we investigated the

question, whether hymenoptaecin variants may be encoded by a

multigene family. In Southern Blot analysis of Bsu15I-digested

DNA from multiple insects a fragment of about 2.9 kb in size

hybridized with a cDNA probe derived from the repeat sequences

(Fig. 4). The size of this fragment was consistent with that expected

from digestion of the main PCR-product containing six repeats.

Since no other signal was found, this result suggests that

hymenoptaecin is encoded by a single gene which harbours six

repeated sequence motifs (Fig. 3). This is also confirmed by

Northern Blot analysis which resulted in a major band of the

expected size of the mature transcript and a larger minor band

which probably represents the unspliced primary transcript, since

its size perfectly matches the predicted size (Fig. 4). In sum, our

data suggest the existence of a single C. floridanus hymenoptaecin gene

(GenBank Acc. No.: HQ315784) and we suppose that the above

described variable repeat numbers after PCR amplification were a

technical artefact caused by the tandem repeats.

Antibacterial activity of recombinant C. floridanus
hymenoptaecin

The 6xHis-tagged hymenoptaecin fusion protein (Cfl-hym) of

12.7 kDa was expressed in an insoluble form in E. coli Rosetta

Figure 1. PCR amplification of full length hymenoptaecin gene
and cDNA. The PCR-products from gDNA (lane 1) and cDNA (lane 2)
were separated on a 1.2% agarose gel alongside molecular size markers
(lane M, GeneRuler 1 kb DNA Ladder, Fermentas) and analyzed with
EtBr staining. The major bands correspond to the full length
hymenoptaecin gene- (3356 bp lane 1) and cDNA-product (2536 bp,
lane 2). The minor bands are technical artefacts with variable repeat
numbers caused by the tandem repeats.
doi:10.1371/journal.pone.0043036.g001
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2(DE3)pRARE2 (Novagen, Merck KGaA) and thus had to be

purified under denaturing conditions. In order to keep the peptide

soluble after digestion and refolding steps, dialysis buffer (contain-

ing 1 M Urea and pH 7.4) was most suitable. The antibacterial

activity of the purified Cfl-hym peptide was tested against gram-

negative E. coli D31 and gram-positive Bacillus subtilis with

inhibition zone assays. Dialysis buffer alone was included as a

negative control. Under the experimental conditions Cfl-hym was

only active against E. coli D31 (Fig. 5).

Phylogenetic analysis of hymenoptaecin peptides and
comparison of the different hymenoptaecin multipeptide
precursors

The recently established genome sequences of six different ant

species revealed the presence of at least one AMP belonging to the

hymenoptaecin family in each ant species [25,47,48,49,50]. For

some of the ant species hymenoptaecin proteins were annotated.

First we used these predicted proteins and found unusual domain

compositions. Additionally, some of the proteins show a lack of

crucial elements like recognition sequences for signal- and

propeptides. Therefore, we investigated the predicted proteins

on genome level using the published genome drafts. On genome

level we could identify the problems which lead to the wrong

prediction results. The sequence region, which apparently codes

for the hymenoptaecin peptide(s) in the species Atta cephalotes,

Linepithema humile, Pogonomyrmex barbatus and Solenopsis invicta seems

to span contig boundaries, which were filled with N’s during the

scaffolding. This is based on the general problem to assemble short

read sequences from next generation sequencing methods through

regions with repetitive sequence elements. Three different

hymenoptaecin precursor proteins were predicted for the genome

of the ant species Acromyrmex echinatior (GenBank Acc. No.:

EGI65977, EGI65978 and EGI65979) [48]. However, from the

analysis of the A. echinatior genome we could deduce one putative

hymenoptaecin multipeptide precursor, which combines the three

predicted ones due to missing stop codons between the predicted

proteins. The obtained hymenoptaecin peptide region of this

precursor is extremely long and codes for 23 putative mature

hymenoptaecin peptides (Fig. 6F). The two annotated hymenop-

taecin precursor proteins from Harpegnathos saltator seemed to be

plausible and contain either four (GenBank Acc. No.: EFN79831)

or six (GenBank Acc. No.: EFN79832) mature AMPs, respectively.

Fig. 6 shows a schematic comparison of the domain structures of

hymenoptaecins from different hymenopteran species. Interest-

ingly, the deduced hymenoptaecin precursor proteins from ant

species are all multidomain proteins with remarkable similarities to

the multipeptide precursor of C. floridanus hymenoptaecin. They

have varying numbers of hymenoptaecin domains (HDs), which

are all flanked by the putative spacer region EAEP (EANP for

Harpegnathos) and processing sites RR (or RxxR, as predicted by

ProP 1.0). Our phylogenetic analysis of the hymenoptaecins based

on the existing set of proteins suggests an intra-species accumu-

lation of the single domains within the proteins (Fig. 7, see also

Fig. S1).

Cloning and sequence analysis of C. floridanus defensins
The SSH approach performed to identify immune inducible

genes as well as the screening of the genome sequence resulted in

the identification of two different sequences coding for defensin-

like AMPs in C. floridanus. Phylogenetic analysis allocated these

Figure 2. Alignment of HLD (hymenoptaecin-like domain) and all HDs (hymenoptaecin domains) from the same C. floridanus
hymenoptaecin multipeptide precursor protein. Grey boxes indicate conserved residues. The insertion in the hymenoptaecin-like domain (top)
is clearly visible.
doi:10.1371/journal.pone.0043036.g002

Figure 3. Structure of the C. floridanus hymenoptaecin gene locus. (A) Schematic structure of the hymenoptaecin gene containing a single
intron within the region coding for the hymenoptaecin propeptide. The deduced multipeptide precursor peptide consists of a signal-sequence (Pre,
grey hatched box) and a pro-sequence (Pro, white hatched box), followed by a hymenoptaecin-like domain (HLD, light grey box) and six repeated
hymenoptaecin domains (HD 1–6, dark grey boxes). The hymenoptaecin domains are flanked by the two putative processing sites EAEP (white boxes)
and RR (black boxes). (B) The nucleotide and deduced amino acid sequence of a hymenoptaecin repeat unit are shown and the putative processing
sites are boxed.
doi:10.1371/journal.pone.0043036.g003
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sequences as homologues to defensin-1 and defensin-2 from A.

mellifera (Fig. 8).

59RACE and 39RACE of the defensin-1 cDNA suggested a full

length mRNA sequence of 535 bp (GenBank Acc. No.:

JN989495), which was verified by amplification with primers near

the 59- and 39-ends. The deduced C. floridanus defensin prepropep-

tide is 102 amino acids (aa) long, including a signal peptide of 17

aa and a propeptide of 40 aa, followed by a mature peptide of 44

aa, as predicted by ProP 1.0 [35]. The subsequent cloning of the

corresponding defensin gene revealed the presence of three exons

(64, 229 and 13 bp) and two introns (399 and 360 bp). The first

intron is a phase 1 intron, which is located within the codon of

glutamic acid number 22. The second intron is a phase 2 intron at

the alanine residue number 98 following a so-called CXC motif

characteristic for defensins (Fig. 9A).

In contrast, the defensin-2 gene contains only two exons (97 and

194 bp), which are separated through one phase 1 intron

(1043 bp) located within the codon of threonine number 33

(Fig. 9B). The full length mRNA sequence of defensin-2 (GenBank

Acc. No.: JQ693412) is 1238 bp long and encodes a prepropeptide

of 97 aa consisting of a signal peptide of 18 aa, a propeptide of 36

aa and a mature defensin peptide of 43 aa, as predicted by ProP

1.0 [35].

Phylogenetic analysis of defensin peptides
The comparison of the deduced amino acid sequences of the C.

floridanus defensins with other ant defensins suggests a duplication

event in the last common ancestor (LCA) of the bee A. mellifera and

the ant species (Fig. 10). Nevertheless, almost all ant species have

lost one of their defensin proteins. Only C. floridanus and S. invicta

possess two defensins. Moreover, most of the proteins forming a

clade with the A. mellifera defensin-1 were formerly described as

defensin-2 homologues. Therefore, these proteins should be

renamed to defensin-1 (Fig. 8, see also Fig. S2). Furthermore, an

additional duplication event of defensin-1 peptide seems to have

taken place in the LCA of Lasius niger, C. floridanus and Formica

aquilonia, due to the grouping of the defensin-1 proteins in the

phylogenetic tree (Fig. 8), which does not represent the species tree

(Fig. 10). Nevertheless, the species lost either their defensin-1a (C.

floridanus) or their defensin-1b (L. niger and F. aquilonia; Fig. 10).

Discussion

AMPs are essential components of the insect immune system.

Here we describe the identification and initial characterization of

AMP genes of the ant C. floridanus encoding two defensins and a

hymenoptaecin. Our results, taken together with the genome

sequence of this social insect, indicate that these are the only three

genes in C. floridanus encoding AMPs. Thus, similar to A. mellifera, a

tendency to reduce the immune gene repertoire was suggested for

ant species possibly due to hygiene measures on the colony level

[13,20].

Characterization of C. floridanus hymenoptaecin
In the recently published genome sequence of C. floridanus the

hymenoptaecin gene escaped detection possibly due to sequencing

problems of this gene carrying multiple direct repeats [25].

However, two contigs (AEAB01001738.1 and AEAB01001739.1)

were found which harbour the 59- and 39- ends of the gene (Fig. 3).

Since no other contigs encoding DNA sequences resembling the

hymenoptaecin gene were discovered, the genomic data also supports

the existence of a single hymenoptaecin gene, thus confirming that the

above described variable repeat numbers after PCR amplification

were a technical artefact caused by the tandem repeats. The

characterization of the hymenoptaecin revealed a very peculiar

modular composition of the deduced peptide(s) as compared to

hymenoptaecins of other Hymenoptera. The hymenoptaecins

known from other hymenopterans such as A. mellifera [9] and B.

ignitus [10] show significant sequence homology to the hymenop-

taecin domains repeated several times in the multipeptide

precursor of the C. floridanus hymenoptaecin, suggesting structural

and functional similarities. The A. mellifera hymenoptaecin is 93 aa

long, including a 2-pyrrolidone-5-caboxylic acid at the N-

terminus, which is derived from glutamine [17]. With the

exception of the first so-called hymenoptaecin-like domain, the

six deduced mature C. floridanus hymenoptaecins are 97 aa long

and all start with a glutamine residue. Therefore, an amino-

terminal blocking by forming 2-pyrrolidone-5-carboxylic acid is

very likely also for the C. floridanus hymenoptaecin peptides. One of

the putative mature hymenoptaecin peptides was overexpressed in

E. coli and shown to exhibit moderate antibacterial activity. The

possibility of an amino-terminal blocking might further increase

the antibacterial potency of Cfl-hym peptides.

In contrast to the A. mellifera hymenoptaecin the C. floridanus

hymenoptaecin has a complex precursor organization. A compa-

Figure 4. Southern blot (A) with C. floridanus genomic DNA
using a 32P-labelled hymenoptaecin fragment corresponding to
one of the repeats as a probe. Genomic DNA (35 mg per lane) was
digested with EcoRI (lane 1) and with Bsu15I (lane 2), separated by gel
electrophoresis and hybridized with the above mentioned DNA
fragment. Northern blot (B) with total RNA of C. floridanus using a
32P-labelled cDNA fragment corresponding to the 59end of the
hymenoptaecin gene as a probe. Total RNA (25 mg per lane) was
isolated from midgut and fat body of major workers injected with heat-
killed Serratia marcescens (26105 bacteria/ant) in the haemocoel
(lane 1) or untreated animals (lane 2). The major band corresponds to
the spliced mature transcript, while the minor band very likely is the
unspliced precursor. The position of molecular size markers is indicated
on the left side of each figure. All hybridizing bands have the expected
molecular size.
doi:10.1371/journal.pone.0043036.g004

Figure 5. Antibacterial activity of 4.5 nmol recombinant Cfl-
hym peptide (A) against E. coli D31. Dialysis buffer alone (B) was
applied as a negative control and 4 mg kanamycin (C) as a positive
control.
doi:10.1371/journal.pone.0043036.g005
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rable precursor organization is known for the N. vitripennis

hymenoptaecin, which encodes three AMP-like peptides, including

one with similarity to the hymenoptaecin domains of C. floridanus

[19]. Overall, the C. floridanus hymenoptaecin precursor structure

is more similar to the multipeptide precursor structure of

apidaecins, consisting of several repeated units [29]. As for

apidaecin precursors we assume that the mature hymenoptaecin

peptides are released by a three step mechanism, which is similar

to maturation procedure of the yeast alpha-mating factor, since the

repeats are flanked by repeating -X-A- (or -X-P-) sequences [51].

The initial processing is probably mediated by the KEX2-encoded

endoprotease, which cuts at the C-terminus of the basic dipeptides

Arg/Lys (RK) or Arg/Arg (RR) [52]. The next step is the C-

terminal maturation via the KEX1-encoded carboxypeptidase,

which removes both basic residues [53]. The last step is the N-

terminal maturation of the spacer-mature peptides by a dipeptidyl

aminopeptidase that removes E/D-A/P dipeptides [51]. Homo-

logues of the respective enzymes are present in C. floridanus

(GenBank Acc. No. EFN61704 to CAA96915 (E-value: 3E-35),

EFN64345 to CAA96143 (E-value: 7E-94) and EFN67964 to

NP_014862 (E-value: 5E-55)).

Despite the similarities in the multipeptide precursors, the C.

floridanus hymenoptaecin differs from the A. mellifera apidaecin with

regard to the gene structure. The latter one consists of several

exons, each encoding a functional and distinct apidaecin peptide

[13]. In contrast the hymenoptaecin mature peptide regions are

encoded by a single exon only. This intronless gene structure

prohibits the possibility of generating different transcripts by splice

variation. Nevertheless, the multipeptide precursor structure of the

Camponotus hymenoptaecin gene would allow the amplification of the

antibacterial response despite the presence of only a single gene, as

it was already suggested for apidaecins [29]. Furthermore, we also

find surprisingly high sequence variability in our pooled samples.

This high level of individual sequence variation has also been

described for apidaecin exons from different bees [13,29].

Phylogenetic analysis of hymenoptaecin peptides
The genome sequences of other ant species [25,47,48,49,50]

revealed the presence of at least one gene locus encoding a

hymenoptaecin precursor with similar domain structure as the C.

floridanus hymenoptaecin. The presence of such multidomain

Figure 6. Schematic structure of the hymenoptaecin precursors from different hymenopteran species: A) Apis mellifera (GenBank Acc.
No.: NP_001011615) or Bombus ignitus (GenBank Acc. No.: ACA04900); B) Nasonia vitripennis: (GenBank Acc. No.: NP_001165829 XP_001607881); C)
Harpegnathos saltator 1 (GenBank Acc. No.: EFN79831); D) Harpegnathos saltator 2 (GenBank Acc. No.: EFN79832); E) Camponotus floridanus (GenBank
Acc. No.: HQ315784); F) Acromyrmex echinatior (hymenoptaecin multipeptide precursor deduced from genome draft). The various domains are
marked as follows: signal-sequence (grey hatched box), pro-sequence (white hatched box), hymenoptaecin-like domain (HLD, light grey box),
hymenoptaecin domains (HD 1–6, dark grey boxes), proline-rich AMP-like peptide (AMP 1–2, white dotted boxes). The hymenoptaecin domains are
flanked by the putative processing sites EAEP (EANP for Harpegnathos) (white box) and RR (or RxxR) (black box).
doi:10.1371/journal.pone.0043036.g006

Figure 7. Phylogenetic analysis of hymenoptaecin domains
from different ant species. Shown is the unrooted tree of the single
domains of the hymenoptaecins of the ant species, N. vitripennis, and A.
mellifera. The proteins were cleaved at the sites predicted by ProP,
followed by the alignment by translatorX. The tree was reconstructred
by PhyML with a GTR+I+G+F model with 100 bootstrap replicates. The
domains of the species with a complete hymenoptaecin protein form
clades and are named as groups according there genus name and are
indicated by their grey background. The domains which are outside
these groups result from missing data from the predicted genes. The
gene models are incomplete due to long N-stretches in the genomic
sequences based on the scaffolding process. Nevertheless, the distinct
groups formed by the complete proteins suggest an intra-species
mechanism for the accumulation of the single domains.
doi:10.1371/journal.pone.0043036.g007
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hymenoptaecins in all ant species indicates an ancient origin of this

gene structure early in the evolution of ants. However, the genome

sequences indicate problems during the assembly and the gene

prediction step of the genome projects and only a few sequences

seem to be complete. All investigated complete hymenoptaecin

peptide regions are encoded by a single exon only, which is

evidence for exon duplication [54]. Our preliminary phylogenetic

analysis of mature hymenoptaecin peptides suggests that the

duplication event occurred independently in each species after

separation (Fig. 7). Ongoing studies will reveal the full length

hymenoptaecin precursor sequences from other ant species by

direct sequencing and will deliver insights into the evolutionary

history of the hymenoptaecin protein family in ants.

Phylogenetic analysis of ant defensin peptides
Bioinformatical prediction of defensins revealed the presence of

at least one defensin gene in all investigated ant genomes with

homology to defensin-1 or defensin-2 from A. mellifera (Fig. 8). We

show that C. floridanus and S. invicta encode both defensin genes.

Therefore, we suggest that the LCA of the ants and A. mellifera

encoded both defensins. Based on the assumption that the genomes

of L. niger, F. aquilonia, and M. scabrinodis contain only the published

defensin genes, the reconciled gene tree (Fig. 10) exhibits many gain

and loss events. Multiple duplication and loss events indicate a

high adaptive potential and evolutionary plasticity of the

antimicrobial peptides in ants. The C. floridanus mature defensin-

1 and defensin-2 peptide sequences are well conserved with other

ant defensins. However, the defensin-1 gene comprises three exons

and two introns, in contrast to other characterized ant defensin

genes [12,27], which have two exons and one intron. Interestingly,

a similar intron-exon composition is also known for other

hymenopteran defensin-1 genes, e.g. from A. mellifera [16], B. ignitus

[10] and N. vitripennis [11], while the Drosophila defensin gene does

not carry any intron at all [55]. In contrast to other insect

defensins, the bee defensin-1 has an extra stretch of 11 amino acids

at its C-terminus, which encodes an additional C-terminal a-

helical domain [9]. The C. floridanus defensin-1 has a short C-

terminal extension of three amino acids in length. The precursors

of the bee defensins have an extra amino acid, a glycine (G), at

their C-termini, which seem to be amidated as suggested in the

mature A. mellifera defensin [9]. As the deduced C. floridanus

defensin-1 also ends with a G, it mayas well be amidated.

Figure 8. Phylogenetic analysis of defensins from different ant species. All defensin sequences were aligned by MUSCLE and a BioNJ-tree
with 100 bootstrap replicates was calculated. Branches with a bootstrap support below 40 were removed. Other bootstrap values are indicated. The
genes for the gene tree were generated using the gene prediction pipeline maker and hand curated. The gene tree was rooted at the defensin from
Ixodes scapularis (GenBank Acc. No.: XP_002436104.1). The A. mellifera defensin-1 forms a clade with proteins formerly described as defensin-2, which
gives a first indication that they could be renamed accordingly. However, some of the proteins form a clade with the A. mellifera defensin-2.
Moreover, two species S. invicta and C. floridanus, own both defensins. Therefore, we suggest a duplication event at the LCA of A. mellifera and the
ant species.
doi:10.1371/journal.pone.0043036.g008

Figure 9. Schematic structure of the defensin genes from C. floridanus. (A) The gene encoding defensin-1 (GenBank Acc. No.: JN989495) is
composed of three exons and two introns. The first intron is located within the region coding for the propeptide and the second is located within the
region coding for the mature defensin peptide. (B) The gene encoding defensin-2 (GenBank Acc. No.: JQ693412) contains only one intron, which is
also located within the propeptide coding region. Both deduced precursor peptides consist of a signal-sequence (Pre, grey hatched box) and a pro-
sequence (Pro, white hatched box), followed by the mature defensin peptide (Def, grey box).
doi:10.1371/journal.pone.0043036.g009
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According to this the mature C. floridanus defensin-1 is 3 amino

acids longer than all other known ant defensins and it is so far the

only known ant defensin which has an additional exon that is

lacking from most other insects [56]. Further investigations will

reveal, if this C-terminal extension can also be found in defensins

from other ant species or if it is a special feature of C. floridanus.

Conclusions
The data reported here in combination with the recently

published ant genome sequences indicate that the hypothesis of a

reduced immune gene repertoire in social insects cannot easily be

adopted for ant species. The genome drafts of C. floridanus and H.

saltator [25] suggest indeed a comparable low number of genes

encoding AMPs. However, this low number may to a certain

extent be counteracted by the amplification of hymenoptaecin

domains which are encoded as large precursor proteins with

multiple bioactive domains. Sequence variations in the mature

peptides may also lead to diversification of the immune response.

Furthermore, P. barbatus even has more AMP genes than A.

mellifera [50]. Detailed analyses of the complete antimicrobial

repertoire from different ant species will deliver a better

classification of the individual defense capabilities of these social

insects.
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