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Abstract

We argue that algorithmic modeling is a powerful approach to understanding the collective dynamics of human behavior.
We consider the task of pairing up individuals connected over a network, according to the following model: each individual
is able to propose to match with and accept a proposal from a neighbor in the network; if a matched individual proposes to
another neighbor or accepts another proposal, the current match will be broken; individuals can only observe whether their
neighbors are currently matched but have no knowledge of the network topology or the status of other individuals; and all
individuals have the common goal of maximizing the total number of matches. By examining the experimental data, we
identify a behavioral principle called prudence, develop an algorithmic model, analyze its properties mathematically and by
simulations, and validate the model with human subject experiments for various network sizes and topologies. Our results
include i) a 1=2-approximate maximum matching is obtained in logarithmic time in the network size for bounded degree
networks; ii) for any constant Ew0, a (1{E)-approximate maximum matching is obtained in polynomial time, while
obtaining a maximum matching can require an exponential time; and iii) convergence to a maximum matching is slower on
preferential attachment networks than on small-world networks. These results allow us to predict that while humans can
find a ‘‘good quality’’ matching quickly, they may be unable to find a maximum matching in feasible time. We show that the
human subjects largely abide by prudence, and their collective behavior is closely tracked by the above predictions.
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Introduction

The modeling and prediction of collective human behavior has

been one of the key challenges of social sciences for several

decades. As early as 1947, Herbert Simon argued that information

processing constitutes the core of human decision-making [1]. A

corollary of his argument is that human decision-making processes

can be modeled algorithmically. However, such algorithmic model-

ing and prediction is challenging, considering that collective

decision-making processes are driven by both individual attitudes

and collective dynamics, and often involve social interchange and

mutual agreement.

This paper argues that despite the inherent complexity of

human social interactions, it is possible to isolate basic behavioral

principles, formulate mathematical models, and predict collective

dynamics, using an algorithmic approach. As a simple example of

this approach, in the context of a distributed coordination game

on networks (i.e., the maximum matching game), we present an

algorithmic model of human behavior that is based on simple

principles of local interaction and that is able to capture complex

collective coordination.

Our approach is similar in spirit to the one in physics where

particle systems and cellular automata described by simple rules

are known to generate complex behaviors, such as phase

transitions and universal computability [2–5]. However, our

algorithmic modeling approach embeds individual interaction

behavior as part of a distributed computing system and leads to

computational complexity analysis.

Our work is influenced by the work of Kearns et al. [6] who

studied the effect of network topology on subjects’ ability to color a

graph, and by subsequent work in the context of distributed

coloring and consensus games [7–10]. However, our focus is on

algorithmic modeling and analysis, rather than on observing the

effect of network topology on performance.

We have conducted over 250 experiments with human subjects

on a pool of over 80 networks with up to 24 nodes each, ranging

from simple networks to more complex stochastic models

including preferential attachment [11,12] and small-world net-

works [13]. Our experimental set-up is simple. Subjects are

represented by nodes of a network with edges representing

potential matches. In our experiments, human subjects are

connected over a virtual network and interact with their neighbors

through a computer interface, see Figure 1. Subjects can form and

destroy pairs with their neighbors, and each subject can be part of

a single pair at a time. Subjects are given only local information

about their immediate neighbors, and can only interact with them.
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They are able to propose to match with a neighbor and accept a

proposal from a neighbor. While matched, a subject can also make

a proposal to or accept a proposal from another neighbor; in both

cases, the existing match would automatically be broken.

Moreover, a subject can only have a single outstanding proposal

at a time. Therefore, at any time, a subject can either be part of a

matched pair, or not be matched and have at most a single

outstanding proposal. Subjects are equally incentivized to achieve

a maximum matching, namely to form the maximum number of

disjoint mutual pairs, without regard to whom is matched with

whom. Specifically, they are given an equal monetary reward for

each game where a maximum matching is found within the

allotted time.

To better understand this setup, consider the following

metaphor: imagine that incoming graduate students are pairing

up with faculty members. Further imagine that every member of

the department prefers every graduate student to have one adviser

and every adviser to have one graduate student, and only certain

faculty and graduate students share interests. Communication is

limited so that individuals can only tell if members with whom

they share an interest are already matched. Each member of the

department is now a node, the edges represent shared interest, and

individuals can then propose to work with members with whom

they share an edge.

Our algorithmic model is based on a simple property that we

call ‘‘prudence’’ and that emerges from the analysis of a first set of

experimental data. This property states that individuals do not break

existing matched pairs unless they receive an alternative proposal by an

unmatched neighbor. Based on this property, we propose a simple

distributed algorithm, analyze its performance, validate the model

with additional experimental results, and predict outcomes. The

prudence property is reminiscent of the notion of risk aversion, a

relevant topic in the economics literature [14,15].

We now briefly summarize our findings. Throughout the paper

we use the graph-theoretic terminology, according to which a

matching is a set of edges without common nodes. The size of a

matching is the number of edges in it. A maximum matching is a

matching with the largest size. For 0vcƒ1, a matching is a c-

approximate maximum matching if its size is within a factor of c
from that of a maximum matching. A matching M is maximal if it

is not a proper subset of any other matching, i.e., for any new edge

added to it, it is no longer a matching. Figure 2 depicts an

approximate and a maximum matching of a network. We show

that the convergence time to the maximum matching in computer

simulations of the prudence algorithm fits well the experimental

data (after scaling by a constant factor), see Figures 3 and 4. By

computer simulations we also predict that convergence to a

maximum matching is slower on preferential attachment networks

than on small-world networks, see Figure 5. This prediction is

validated by our experiments with human subjects. It is also in

agreement with the experimental results by Kearns et al. [6]

regarding the coloring problem, and with the theoretical results by

Montanari and Saberi [16] regarding the spread of innovation in

networks. On the theoretical side, we analyze the dynamics of the

prudence algorithm and show that for all graphs of bounded

degree a 1=2-approximate maximum matching is reached quickly, on

average in O( log n) rounds, where n refers to the number of nodes

in the network (Theorem 1); and for all graphs a (1{E)-approximate

maximum matching is reached in polynomially many rounds with

high probability (Theorem 2). We also show that there are

instances (called ‘‘bad’’ graphs) for which reaching a maximum

matching requires exponential time with high probability when

starting from a set of configurations (called ‘‘bad’’ matchings)

which constitute almost all possible configurations (Theorems 3

and 4). These results show that in the worst case there is an

exponential gap between reaching a good matching (i.e., an

approximate maximum matching whose cardinality is close to a

maximum matching) versus the best (i.e., perfect) matching. The

experimental data shows (consistently with the theoretical analysis)

that human subjects always find a ‘‘good’’ matching quickly, while

they can take much longer to improve the solution to a maximum

matching, see Figure 6. In particular, on the bad graph, human

subjects could not converge to a maximum matching in the

allotted time.

Related Literature
The experimental study of human strategic behavior over

networks is a topic of great current interest in the literature. The

work by Kearns and others on network coloring and consensus

games [6–10] has been particularly influential. Judd et al. [17]

investigated how subjects choose between playing either a

dominant or a submissive role in a network game, documenting

the importance of fairness. Kearns et al. [18] performed

experiments on network formation games when there is a cost

for creating links. Suri and Watts [19] conducted experiments in

which individuals connected over networks play local public good

games. Wang et al. [20] studied multi-player prisoner’s dilemma

games in which subjects can propose and delete links to other

players, showing that partner selection increases cooperation.

Brautbar and Kearns [21] introduced a network formation game

in which players need to maximize their clustering coefficients.

Compared to these previous works, we focus on isolating

Figure 1. Computer interface. The subject is matched with the node
on the right and is being requested by three unmatched nodes.
doi:10.1371/journal.pone.0041900.g001

Figure 2. Approximate and maximum matching. Left: an
approximate maximum matching of size 5 on a network with 12 nodes
(matching edges are represented in bold red, matched nodes are
colored, unmatched nodes are white). Right: a maximum matching of
size 6 on the same network (note that the maximum matching is also a
perfect matching, as all nodes are matched).
doi:10.1371/journal.pone.0041900.g002
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behavioral principles of human interaction (in the context of

maximum matching games) and using these principles to

formulate algorithmic predictions of outcomes.

As social interaction naturally induces strategic behavior, our

work is also closely related to game theory. Indeed, several authors

proposed game theoretical models of human interaction over

social networks. Topics vary from diffusion and contagion over

networks [16,22,23] to strategic information retrieval [24,25],

models of segregation [26] and bargaining over networks [27], to

mention a few. The main element that distinguishes our work from

the game theory literature is that we focus on the algorithmic

processes involved in strategic thinking and the ensuing collective

dynamics rather than on equilibria. Moreover, our algorithmic

model is motivated and supported by experimental data.

Finally, matching theory has received notable attention

throughout the decades, both in the context of game theory and

economics [28–31], and in the development of algorithms for the

maximum matching problem [32–36]. We point out that our

simplified setup constitutes a simplification of the richness and

heterogeneity of the ties in real social networks, as the subjects

have no preference over each other, all the ties are equivalent, and

interaction has no cost. However, such a simplified model leads to

a tractable analysis and to the formulation of a general principle of

collective behavior.

Methods

The experiments included the interaction of the participants

through a computer interface, and were conducted in accordance

with the ethical standards specified in the 1964 declaration of

Helsinki. Written consent was granted before participation in the

experiments. Our institutional review boards approved this study

(UCSD IRB approval 111213SX, US Army Human Research

Protection Office ARO-HRPO Log A-17038).

The Matching Games
Before formulating our algorithmic model, we conducted four

sessions of experiments, each with a different pool of sixteen

undergraduate students connected over a virtual network.

Subsequently, to validate our model, we ran an additional session

of experiments with a pool of twenty four subjects on a set of

networks that included small world and preferential attachment

networks. In each of the first four sessions the subjects were asked

to solve the matching game on a pool of over 70 networks. All

networks admitted a perfect matching, namely a maximum matching

with no unmatched nodes. We considered networks classified into

four groups: bipartite networks admitting a unique perfect

matching, bipartite networks admitting multiple perfect match-

ings, non-bipartite networks admitting a unique perfect matching,

non-bipartite networks admitting multiple perfect matchings.

Figure 3. Affinity between humans’ and algorithm’s performance, 16-node networks. The performance of the human subjects (red points
joined by continuous line) and of the algorithm (blue points) over eight bipartite 16-node networks (triangles) and eight non-bipartite 16-node
networks (circles) are plotted. The experiment was run multiple times on each network and the average behavior is reported. The x-axis shows the
indexes of the networks sorted by increasing average time required to reach a maximum matching. Bipartite networks are labeled from 1 to 8, while
non-bipartite networks are labeled from 9 to 16. The y-axis shows the average time (in seconds) required to reach a maximum matching for humans,
while the average number of rounds of the algorithm is scaled by a constant factor.
doi:10.1371/journal.pone.0041900.g003
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Within each group, networks were randomly generated. As a

remark, a bipartite network is a network whose nodes can be

divided into two disjoint sets V1 and V2 such that every edge

connects a vertex in V1 to one in V2. If this property does not hold,

we say that the network is non-bipartite. Subjects sat in front of

workstations for the entire two-hour duration of the session and

had no eye-contact with each other. For each matching game, a

network was chosen, subjects were randomly assigned to its nodes,

and each subject interacted with its neighbors by making or

accepting proposals to form matched pairs using the interface

shown in Figure 1. Each subject could control the node in the

center of the screen and could only see its neighbors and, among

those, distinguish which of them were currently matched (marked

in dark green). A subject could make proposals or accept proposals

by selecting a neighbor with a mouse click, and could only have

one outstanding proposal at a time to form a matched pair (circled

in yellow). While subjects knew whether a neighbor is matched or

unmatched, they did not have direct knowledge of any outstanding

requests to their neighbors other than their own. If two neighbors

selected each other, a pair was formed (a bright green link

appeared between them) which could be broken when one of the

partners selected another neighbor. As a remark, since a pair was

formed when two subjects selected each other and each subject

could make a single selection at a time, each subject could be part

of a single pair at a time (with one of its neighbors).

If a perfect matching was found within the time limit of five

minutes, the game was declared solved and each participant was

rewarded by $.50 or $1 depending on the session, otherwise the

game ended with no reward. The number of games in an

experimental session was not fixed, but games were run for the

two-hour duration of the session. Therefore, the number of games

and the cumulative reward in a session depended on the

performance of the participants, providing an additional incentive

to coordinate.

The networks used in this first set of experiments can be divided

into four classes: bipartite, non bipartite, unique perfect matching,

multiple perfect matchings. Two one-tailed Welch’s t-tests

confirmed the hypotheses that it is harder for humans to complete

the matching game on non-bipartite than on bipartite networks (p-

value v0:001); and that non-bipartite networks with unique

perfect matching are more difficult to solve than non-bipartite

networks with multiple perfect matchings (p-value v0:001). No

statistically significant difference was found between the comple-

tion time of bipartite networks with unique and with multiple

perfect matchings. We believe that this depended on the small

network size of sixteen nodes and we did not explore larger

bipartite networks further.

The Algorithmic Model
One of the main behavioral properties that emerged from the

experimental data is that matched players may break their current

matching only if they have been requested by an unmatched

neighbor. In particular, in 30% of the games no player ever

violated this rule at any time during the game. In the remaining

games, over 93% percent of the moves were in agreement with this

rule. Therefore, this property led to the following modeling

assumption:

Assumption 1 (Prudence) A matched node does not break its

current matched pair if it does not receive any request from other neighbors.

Two remarks are in order. First, note that this behavioral rule is

peculiar to the matching problem since each player needs to

choose a partner but also needs to be chosen. Second, notice that a

matched subject with unmatched neighbors has some incentive to

behave non-prudently and break the current match, because the

subject can infer from the status of its neighbors that the perfect

matching is not reached yet. However, experimental data shows

that this rarely happens.

For each node u, let f (u) indicate u’s current preference. In

other words, f (u) is the unique node to which u has currently

proposed to. f (u) will be null if u does not have a current proposal.

If two neighbors u and v currently prefer each other (i.e., u~f (v)
and v~f (u)), then consider them matched and the edge e~fu,vg
as part of the matching. Assume that each node knows if a

neighbor is matched or unmatched.

Given the prudence property, we model the algorithmic

behavior of humans using the PRUDENCE algorithm shown

in Table 1. The algorithm is specified by the implementation of

two functions, called MATCHEDCHOOSE(u) and

UNMATCHEDCHOOSE(u), which are placeholders for the

behavior that node u would follow depending on whether u is

matched or unmatched. We consider a synchronous setting, in

which time is divided into rounds, and at the beginning of each

round each node observes its status and the status of its

neighborhood and then decides on an action to take.

In the following we provide a canonical implementation

of the functions UNMATCHEDCHOOSE(u) and

MATCHEDCHOOSE(u) consistent with the prudence property.

UNMATCHEDCHOOSE(u) does not change the current value

of f (u) with probability p, while with probability 1{p accepts the

proposal from a neighbor uniformly at random from among the

neighbors v with f (v)~u if any; if there is no neighbor v with

f (v)~u, then it proposes to a node uniformly at random from

Figure 4. Affinity between humans’ and algorithm’s perfor-
mance, 24-node networks. The performance of the human subjects
(red points joined by continuous line) and of the algorithm (blue points)
over different 24-node networks are plotted. In particular, small-world
networks (triangles), a ring network (diamonds), and preferential
attachment networks (circles) were tested. The experiment was run
multiple times on each network and the average behavior is reported.
The x-axis shows the indexes of the networks sorted by increasing
average time required to reach a maximum matching. The y-axis shows
the average time (in seconds) required to reach a maximum matching
for humans, while the average number of rounds of the algorithm is
scaled by a constant factor.
doi:10.1371/journal.pone.0041900.g004
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among the unmatched neighbors if any; otherwise it proposes to a

node uniformly at random from among all the matched neighbors.

In other words, unmatched nodes prefer neighbors who requested

them over other unmatched neighbors, and unmatched neighbors

over matched neighbors. As for matched nodes,

MATCHEDCHOOSE(u) accepts a proposal from a neighbor

uniformly at random from among the neighbors v with f (v)~u

(note that u’s current partner is one of them). We remark that the

simulations’ performance and the fit with the experimental data

was practically insensitive to the value of p chosen in the run of the

algorithm.

Results

Mathematical Results
In this section we present our analytical results regarding the

convergence behavior of the PRUDENCE algorithm. In particular,

our results describe how well the algorithm performs in finding a

large matching and the time it takes in terms of the number of

rounds required. Due to space constraints, we only present proof

sketches here. Complete details of the proofs are deferred to the SI.

We define a matching at round t as the set of matched edges at

the beginning of round t of the algorithm. We first claim that the

prudence property implies that the size of the matching does not

decrease with time. The proof is immediate and it is omitted.

Claim 1 The size of the matching at round t is non-decreasing as t

increases.

We then observe that the behavior of the PRUDENCE algorithm

can be described by a Markov chain over matchings. A transition

from a matching M to a matching M ’ is made by selecting an edge

e~fu,vg such that at least one among u and v is unmatched, and

setting M ’~Mze if u,v are both unmatched, and

M ’~Mze{e’ if exactly one of u and v is matched in M and

e’ is the matching edge. This Markov chain is reversible when

restricted to matchings of the same size. Since the Markov chain is

memory-less and has positive probability of reaching a maximum

matching, we conclude that the PRUDENCE algorithm enjoys self-

stabilization.

Claim 2 The PRUDENCE algorithm is a self-stabilizing algorithm.

Our first theorem says that a 1=2-approximate matching will be

reached quickly in networks with bounded degree.

Theorem 1 In any bounded-degree graph on n nodes, the expected

number of rounds for the PRUDENCE algorithm to reach a 1=2-

approximate matching is O( log n).

The key idea of the proof is to show that, in expectation, the

‘‘distance’’ in terms of number of matched pairs to the smallest

maximal matching shrinks by a constant factor in each round of the

PRUDENCE algorithm. Since it is well known that any maximal

matching is a 1=2-approximation of the maximum matching, the

result then follows.

We remark that the assumption of having bounded degrees is

necessary as there are unbounded degree graphs in which a

polynomial number of rounds is required with high probability to

achieve a 1=2-approximation. However, in this case, a polynomial

number of rounds is also enough to achieve any constant

Figure 5. Algorithm’s asymptotic performance. Prudence algorithm’s performance with respect to the network’s size for the ‘‘bad’’ graph Gn

(black diamonds), for preferential attachment model (green squares), small-world model (red triangles). For each generative model and network size
we generated 100 networks and run the algorithm 1000 times on each. The average behavior is reported. The x-axis shows the network size, and the
y-axis shows the average number of rounds required by the algorithm to converge to a maximum matching.
doi:10.1371/journal.pone.0041900.g005
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approximation: indeed, as the next theorem states, the Prudence

algorithm provides a PTAS (polynomial time approximation

scheme) for the maximum matching problem. Given a graph G, D
denotes its maximum degree.

Theorem 2 For any graph G of n nodes, Ew0 and c§1=2, the

PRUDENCE algorithm reaches a (1{E)-approximate matching in
c

E
nD2=E

rounds with probability at least 1{ exp ({cE2n=2).

The theorem implies that, for any constant Ew0, a matching

whose size is within a (1{E) fraction of the size of the maximum

matching is reached in polynomial time. For bounded-degree

graphs, this result also holds for E~V(1= log n), implying that in

this case a maximum matching can be reached in polynomial time.

To prove the theorem, we track the progress of the algorithm

towards an approximate maximum matching, using the concept of

an augmenting path. An augmenting path is a path of odd length

which alternates between matched and unmatched edges and

whose extreme edges are unmatched. It turns out that there is a

close connection between the size of a shortest augmenting path in

a matching and how close the matching size is to the size of a

maximum matching. More specifically, we use the following

lemma due to Hopcroft and Karp [32].

Lemma 1 Consider any matching M that does not admit augmenting

paths of odd length k or smaller. Then, the size of M is at least a fraction

kz1

kz3
of the size of a maximum matching.

Hence, to prove Theorem 2, we need to show that short

augmenting paths (for a suitably chosen k) are solved in a short

amount of time. It is useful to consider a particle analogy to

understand the process that eliminates short augmenting paths.

We consider each unmatched node as a particle. Particles move

around the graph from node to node as nodes change their status

between matched and unmatched states dictated by the random

choices in the algorithm. There are exactly two particles along an

augmenting path, situated at the extreme nodes. To understand

how an augmenting path gets shorter and eventually vanishes, we

consider how the two particles move closer to each other along the

path.

Figure 6. Experimental performance, 24-node networks. Performance of the experimental subjects on networks of 24 nodes. The plot shows
the time to reach a perfect matching of size 12 (red), an approximate matching of size 11 (a 0:92–approximate matching, in blue) and a matching of
size 6 (a 1=2–approximate matching, in green). Results for single games are reported. The x-axis shows the indexes of the games sorted by increasing
solving time, while the y-axis shows the time in seconds. The right-most four games on the red plot did not converge to a maximum matching and
correspond to three instances of the ‘‘bad’’ graph Gn and to one instance of the preferential attachment network.
doi:10.1371/journal.pone.0041900.g006

Table 1. The algorithm.

if unmatched

Set f (u)/UNMATCHEDCHOOSE(u)

else if matched and A neighbor v s.t. f (v)~u

Set f (u)/MATCHEDCHOOSE(u)

end

PRUDENCE algorithm for node u.
doi:10.1371/journal.pone.0041900.t001

An Algorithmic Model of Human Matching Behavior
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Let u0,u1,u2, � � � ,u‘ denote a shortest augmenting path. If the

extreme unmatched node u0 proposes to u1 and u1 accepts the

proposal breaking the current match with u2, then the particle

moves from u0 to u2. A similar argument applies to the other end

of the path. Also, the minimality of the path guarantees that the

internal nodes do not change their current matching as they have

no unmatched neighbor. It follows that the particles become closer

to each other and the augmenting path gets shorter. Using this

approach, we can prove that with suitable probability the length of

the shortest augmenting path shrinks after each round. When an

augmenting path becomes an edge (that is, a path of length one),

and if the extreme unmatched nodes select each other as partners,

the particles and the path vanish, yielding an increment to the size

of the matching. Hence, a key step of our proof is to lower bound

the probability that an augmenting path of length k vanishes, and

then to apply Lemma 1 to relate the existing augmenting paths

and the matching size.

We remark that the random process governing the movement of

the particles in the network is not a classical random walk over the

nodes of the graph. Indeed, if that were the case, a maximum

matching would always be reached in polynomial time by a simple

cat-and-mouse argument. Instead, a random move of a particle

depends on the current matching, which in turn changes when the

particle moves. This modest difference can lead to an exponential

time gap between convergence to an approximate matching and

convergence to a maximum matching. Indeed, exploiting the

dependence of the particles’ movements on the current matching,

we show that there is a family of graphs for which the Prudence

algorithm takes exponentially many rounds with high probability

to reach a maximum matching starting from a set of configurations

that cover almost all possible cases. This family of ‘‘bad’’ graphs is

defined as follows (see also Figure 7).

Definition 1 (Bad graph Gn) The bipartite graph

Gn~(A|B,E) has 4n nodes A~fa1, . . . ,a2ng and

B~fb1, . . . ,b2ng, and its edges are (anz1,bn), (ai,bj) for all 1ƒiƒn

and 1ƒjƒi, and (ai,bj) for all nz1ƒiƒ2n and nz1ƒjƒi.

Note that the set of ‘‘horizontal’’ edges (ai,bi), for 1ƒiƒ2n is

the unique perfect matching for Gn.

Theorem 3 The PRUDENCE algorithm requires 2V(n= log2 n) many

rounds with high probability to reach the perfect matching when starting from

any (2n{1)-matching in which the two unmatched nodes are in opposite sides

of Gn.

The main idea of the proof is to track the positions of the

unmatched nodes throughout the course of the algorithm and to

lower bound the number of rounds needed before they meet as an

adjacent pair.

We first prove a one-to-one correspondence between the

Markov process of the state evolution between matchings and a

classical random walk on a tree (represented in Figure S1) whose

size is exponential in n. We show that this classical random walk

takes exponential time to reach the root of the tree starting at any

one of its nodes, thus providing a lower bound on the convergence

time of the PRUDENCE algorithm.

We say that a matching M of Gn of size 2n{1 is bad if the

PRUDENCE algorithm requires exponentially many rounds with

high probability to converge to the perfect matching when starting

from M. Observe that all matchings considered by Theorem 3 are

bad. The following theorem states that almost all matchings of size

2n{1 are bad.

Theorem 4 The ratio between the number of ‘‘bad’’ matchings and the

number of all (2n{1)-matchings of Gn is 1{O(2{n).

Theorems 3 and 4 show that the PRUDENCE algorithm

requires exponentially many rounds to converge to the perfect

matching of Gn when starting from a set of configurations (the bad

matchings) constituting almost all possible cases (the matchings of

size 2n{1).

Validation
Figure 3 compares the performance of the human subjects (red)

with that of simulations (blue) on a set of 16-node networks (8

bipartite networks and 8 non-bipartite networks) with unique

perfect matchings. The networks are sorted by increasing average

completion time, and as a result bipartite networks are labeled

from 1 to 8, while non-bipartite networks are labeled from 9 to 16.

Each of these networks was tested at least 6 times over all sessions.

The vertical axis represents the time (in seconds), and the

numerical values of the convergence time of the algorithm are

scaled by a constant factor to best match the experimental data.

In an additional experimental session, we tested twenty four

subjects connected over small-world, preferential attachment and

ring networks as well as over the ‘‘bad’’ graph Gn. The games on

the bad graph were never solved, consistent with the prediction of

exponentially slow convergence. Furthermore, we found that

preferential attachment networks were more difficult to solve than

small-world networks (one-tailed Welch’s t-test, p-value v0:01).

Figure 4 shows the affinity between humans’ (red) and algorithm’s

(blue) performance, on this set of 24-node networks: small-world

networks (triangles), ring network (diamonds), preferential attach-

ment networks (circles). The x-axis shows the indices of the

networks sorted by increasing average time to find the perfect

matching, and the y-axis shows the average time.

Figure 5 shows, by simulation, that the algorithm scales linearly

in the size of the network in the case of small-world networks [13],

while it scales polynomially for preferential attachment networks

[11,12], and exponentially on the ‘‘bad’’ graph Gn. These results

closely resemble the experimental data of the coloring games

performed by Kearns et al. [6], where preferential attachment

networks resulted in the worst performance among all tested

networks, while small-worlds networks appeared to be much easier

to solve.

Figure 6 shows the performance of the experimental subjects on

networks of 24 nodes, each admitting a perfect matching. In

Figure 7. The bad graph. The ‘‘bad’’ graph Gn for n~3. One of the
‘‘bad’’ matchings of Theorem 3 is highlighted in red.
doi:10.1371/journal.pone.0041900.g007
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particular, it reports results for single games, and it compares the

time to reach a perfect matching of size 12 (red), an approximate

matching of size 11 (a 0:92-approximate matching, in blue) and a

matching of size 6 (a 1=2-approximate matching, in green) in each

game. The x-axis shows the indexes of the games sorted by

increasing solution time, while the y-axis shows time in seconds.

The plot shows (consistent with the theoretical analysis) that a 1=2-

approximate matching is reached almost immediately in all games,

an almost maximum matching is reached quickly, while reaching a

perfect matching can take a large amount of time.

Discussion

While it is challenging to characterize the strategies used by

humans in performing even simple social tasks, as they may

depend on diverse individual cognitive and psychological attitudes,

we argue that it is possible to isolate simple behavioral invariants of

individual behavior, which are useful for algorithmic modeling,

analysis and prediction of collective dynamics of coordination.

To illustrate our approach, we have focused on a simple

matching game over networks and presented a combination of

theoretical, experimental, and simulation results. From the

experiments, we identified the prudence property as a common

behavioral invariant of human subjects when they coordinate to

find a maximum matching. We proposed an algorithm as model of

human behavior and showed that it can successfully predict

dynamics of coordination.

We have shown that our approach is able to uncover basic

behavioral properties that may not be apparent from off-line

surveys. Indeed, when subjects were asked to report on their

strategies in post-experimental surveys, we obtained a list of

diverse strategies, including: choose a partner and never disengage

from it, always accept proposals from neighbors, try to change

partner if the game is not solved for a while. Moreover, our results

demonstrate that algorithmic modeling and the mathematical

analysis of algorithms can be useful in systematically predicting the

aggregate behavior and in deriving results that hold for any graph,

or for a large family of graphs. This general conclusions cannot be

derived rigorously form experimental observations and computer

simulations.

Our work suggests further research in several directions. A

natural question is whether non-prudent behavior by a subset of

the nodes can help. In a preliminary investigation, we have

evaluated the performance of a variant of our algorithm where a

subset of nodes behave non-prudently with a positive probability.

In our simulations, these populations do not offer significant

improvement in terms of finding a maximum matching. Further-

more, populations entirely composed of non-prudent nodes seem

to perform poorly. In other words, a group of aggressive and risk-

taking individuals might not achieve coordination easily.

Our PRUDENCE algorithm is memoryless. It is an interesting

question as to what extent human subjects use memory in

distributed games, and how memory could be incorporated in

modeling human strategies. In an initial attempt to study this, we

implemented a variant of the PRUDENCE algorithm in which a

node remembers its recent history and gives less preference to

neighbors who recently rejected it. In simulations on preferential

attachment and small world networks, memory did not result in

significant improvement over the memoryless case. Furthermore,

simulations show that making decisions based on events in a

distant past (that is, tracking events that happened in a distant past)

might hurt performance. A careful investigation of the role of

memory in human strategies in distributed games is of fundamen-

tal interest.

Regarding the incentives, in our matching games each subject

obtains the same reward when a maximum matching is reached,

regardless of the chosen partner. How does the introduction of

preferences affect the overall coordination? Preferences could be

‘‘enforced’’ for example by rewarding subjects based on the

partners they match with. There is likely to be a trade-off between

the collective task of finding a maximum matching and the

individual profit maximization.

As a final remark, the proposed Prudence algorithm constitutes

a possible reasonable explanation of human coordination behavior

in the distributed matching game. Apart from the simple variations

mentioned above, we did not test how well other alternative

algorithmic models could fit the experimental data.

Supporting Information

Figure S1 Tree T�n . Tree T�n with labels, for n~6.

(TIF)

Text S1 Technical proofs. This documents contains the

detailed proofs of all technical results presented in the article.

(PDF)
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