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Abstract

The speed at which biological range expansions occur has important consequences for the conservation management of
species experiencing climate change and for invasion by exotic organisms. Rates of dispersal and population growth are
known to affect the speed of invasion, but little is known about the effect of having a community of dispersal phenotypes
on the rate of range expansion. We use reaction-diffusion equations to model the invasion of a species with two dispersal
phenotypes into a previously unoccupied landscape. These phenotypes differ in both their dispersal rate and population
growth rate. We find that the presence of both phenotypes can result in faster range expansions than if only a single
phenotype were present in the landscape. For biologically realistic parameters, the invasion can occur up to twice as fast as
a result of this polymorphism. This has implications for predicting the speed of biological invasions, suggesting that speeds
cannot just be predicted from looking at a single phenotype and that the full community of phenotypes needs to be taken
into consideration.
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Introduction

There is evidence that species are expanding their range as a

result of climate change and due to accidental or deliberate

introductions of exotic organisms [1–4]. The speed at which a

species is able to expand its range has important implications for

conservation management. Whether a species can shift its range at

the same rate as the climate shifts, or whether (and by how much)

it lags behind, will be important in determining how likely a

species is to survive a period of climate change [5,6]. The rate of

spread of exotic species as a result of introductions can also be

important especially if these species become pests [7].

The speed of a species invasion depends upon its dispersal

ability and population growth rate, which are affected by a

number of demographic and environmental parameters. Many

theoretical models have investigated species’ invasion speeds under

different conditions, beginning with the work of Fisher [8].

Developments since Fisher have found that many factors including

Allee effects, timing of reproduction and dispersal in the life cycle

and environmental heterogeneity can influence the speed of

invasion (reviewed in [9]). Adaptation to local conditions has also

been found to influence the rate of spread. Garcı́a-Ramos and

Rodrı́guez found that in a spatially heterogeneous environment

the rate of local adaptation can be the key limiting factor to

spread, with faster range expansions occurring when the

environmental gradient is shallower [10].

During invasions there is a selection pressure for increased

dispersal. The effect that the evolution of dispersal rate has on the

speed of invasion has been investigated using an individual-based

model (IBM) by Travis and Dytham [11]. They found that if

dispersal evolves during an invasion then there is a faster rate of

spread, with the rate that evolves determined by the cost of

dispersal. Other studies have also revealed that during range

expansions there is evolution towards increased dispersal resulting

in faster rates of spread. The extent to which increased dispersal

evolves can depend on different factors, with increased levels of

evolution if there are no competitors present [12], if Allee effects

are absent [11] and if there is a greater quantity of habitat

available [13]. It has also been shown that the rate at which species

expand their range can be affected by the way that dispersal is

modelled. Faster range expansions occur when density-dependent

strategies are allowed to evolve [14], when a dispersal kernel rather

than just an emigration rate is evolving [15] and when there is

temporal variability in dispersal [16].

There is also increasing empirical evidence from species that are

expanding their range, of evolutionary adaptations related to

dispersal ability in individuals in more recently colonised areas

(review see [17]). For example, more recently colonised sites of the

speckled wood butterfly, Pararge aegeria, contain populations with

larger adults, greater thorax mass and broader thorax shape

[13,18,19]. All of these traits are related to flight ability and so

mean that these individuals may be more dispersive and hence

may invade faster.

There is evidence, then, that individual dispersal phenotypes

can evolve during range expansion, and that the speed of range

expansion itself can also evolve. One study has shown that during

a range expansion selection favors individual behavior that

increases the rate of expansion for the population, rather than

selecting for behavior that minimizes disperser mortality [20].

However, very little is known about how the rate of range

expansion itself is related to the range of phenotypes that are
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present in the population. Classical models for computing invasion

speeds (reviewed in [9]) consider a single phenotype, and it is not

clear whether the speed of range expansion of a polymorphic

population should be that of one particular phenotype (say, the

most dispersive one), an average over phenotypes, or something

else entirely. To this end, we study a model for invasion by a

species with dispersal polymorphism, which is simple enough for

the the invasion speeds to be computed explicitly. Our model is

spatially-explicit, with mutation between two morphs which differ

in their dispersal and demographic parameters and interact via

Lotka-Volterra dynamics.

Methods

We use a spatially explicit general Lotka-Volterra model which

assumes that individuals disperse and reproduce randomly during

the lifetime of the individual. We are also assuming that time is

continuous and that the landscape is spatially and temporally

homogenous. In this model there are the following two phenotypes

that differ in their dispersal ability:

N an establisher morph e that after establishment has a higher

growth rate but is a poorer disperser; and

N a disperser morph d that has a lower growth rate after

establishment but is a better disperser

This model describes the spatio-temporal dynamics for the

population density of each of these morphs. Population density of

the species is denoted by ni with subscript i[fe,dg representing

density of each morph. Morph i has dispersal rate Di and growth

rate ri. Density dependence follows Lotka-Volterra dynamics, with

parameters mee and mdd representing competition between

individuals of the same morph, and med and mde representing

competition between the different morphs. Mutation at birth leads

to a fraction of the offspring of one individual being of the other

morph, which occurs at per-capita rates me and md respectively

(note that mi is the product of the per-capita birth rate and the

mutation probability per generation). Thus the equations are given

by:

Lne

Lt
~De

L2ne

Lx2
zrene(1{meene{mednd )zmdnd{mene ð1Þ

Lnd

Lt
~Dd

L2nd

Lx2
zrdnd (1{mdene{mdd nd )zmene{mdnd ð2Þ

The first term on the right hand side of each equation describes

the random dispersal of each morph. The second term describes

the population growth of each morph where we have assumed that

births are density independent and mortality is density dependent.

The third and fourth term describe the mutation of morphs into

each other i.e. the rate of production of offspring by either

phenotype that is of the other type. A more detailed derivation of

the model from explicit demographic processes is described in

Appendix S1. We are interested in how the invasion speed

depends on the model parameters.

We are primarily interested in the case where there is a cost to

being a better disperser, so in the following we will implicitly

assume DdwDe and rdvre. This implies that the disperser morph

d is better at dispersing but pays a cost by having a lower growth

rate, and that e the establisher morph is a poorer disperser but has

a higher growth rate. We have also analysed the case where one

morph is both a better disperser and establisher; we do not discuss

this case further as we find, unsuprisingly, that this superior morph

always dominates.

We analysed this model using both analytical techniques and

numerical simulations, studying the case where half of space is

initially occupied at a stable equilibrium and the other half is

completely empty. We first studied the invasion by each morph

when present in the landscape on its own, without mutation into

the other morph. We then studied the case where both morphs

coexist in the landscape. We are interested in the biologically

relevant case where the mutation rate is small, in which case

closed-form analytical solutions were found.

Analytical results for the underlying partial differential equa-

tions were obtained by first finding the equilibrium population

density of each morph and then using the method of front

propagation to calculate the invasion speed [21]. The equations

were then solved numerically by approximating the spatial

derivatives by finite differences, so that the partial differential

equations become a set of coupled ordinary equations, and then

carrying out simulations in R [22] using the deSolve function [23].

These simulations produced a travelling wave at the invasion front

which rapidly approached a constant speed as the invasion

progressed. The invasion speed was estimated by calculating the

distance that the density profiles at different times need to be

displaced in order to lie on top of each other.

Results

Calculation of Invasion Speed
We first considered the case where each morph i[fe,dg is

present in the landscape on its own. In this case the system of

equations (1) and (2) reduces to
Lni

Lt
~Di

L2ni

Lx2
zrini(1{

ni

Ki

) where

Ki~
1

mii

is the carrying capacity of morph i. We looked for

travelling wave solutions and found that the invasion speed, vi, is

determined by the morph’s growth rate and dispersal ability:

vi~2
ffiffiffiffiffiffiffiffiffi
riDi

p
. The invasion is faster when either the growth rate or

dispersal ability is increased, as was originally found by Fisher [8].

We then investigated the case where both morphs were present

in the landscape and there is mutation between them. In this case

we used the front propagation method of van Saarloos [21] to

calculate the invasion speed. The general system of spatially

uniform equations has two equilibria: an unstable extinction state

where (ne,nd )~(0,0), and a stable coexistence state which we will

denote by (n�e ,n�d ). The front propogation method involves

linearising the equations about the unstable steady state, which

gives:

Lne

Lt
~De

L2ne

Lx2
z(re{me)nezmdnd ð3Þ

Lnd

Lt
~Dd

L2nd

Lx2
z(rd{md )ndzmene ð4Þ

Note that these equations only depend upon the morphs’

population growth rates, dispersal abilities and mutation rates, and

are independent of the competition coefficients mij . Here we are

assuming that the speed we calculate using the linear system (3)

and (4) also applies to the nonlinear system (1) and (2). This linear

speed is known to be a lower bound of the invasion speed but it is
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not always exact [24]. In the numerical simulations section we will

therefore check that the results we obtain based on this linear

conjecture are valid.

Using these linearised equations, and following van Saarloos

[21], we substitute
ne

nd

� �
! exp ({iv(k)tzikx) where v(k) is

the dispersion relation of Fourier modes of the linearised equations

(3), (4) and k is the spatial wavenumber. This gives the equations:

½iv(k){k2Dezre{me�nezmd nd~0 ð5Þ

menez½iv(k){k2Ddzrd{md �nd~0 ð6Þ

This leads to an eigenvalue problem, with solutions

v(k)~
i

2
½rezrd{me{md{k2(DezDd )+R� ð7Þ

where R2~½k2(Dd{De)zre{rd{mezmd �2z4memd . This implies

dv

dk
~{ik(DezDd )

+
ik(Dd{De)½k2(Dd{De)zre{rd{mezmd �

R

We then calculate the wave speed by finding k�, where k� is the

linear spreading point [21], such that

dv(k�)

dk�
~
=v(k�)

=k�
ð8Þ

where = denotes the imaginary part. These equations represent a

biological invasion so ne and nd cannot be negative, so we can

deduce that k� is purely imaginary. We can then assume k�~iq

with q real, and substituting into (8) we get

R2½rezrd{me{md{q2(DezDd )�2~

½q4(Dd{De)2{(re{rd{mezmd )2{4memd �2 ð9Þ

The realised wavespeed is obtained by finding the real solution

q to Eqn. (9) that corresponds to the largest speed v~
=v(iq)

q
[21].

Eqn. (9) is a quartic equation in q2, which can readily be solved

numerically, though general analytical results are somewhat

laborious to obtain. Simple analytical results can, however, be

obtained in the biologically interesting limit of weak mutation

between the morphs. Taking the limit me?0 and md?0 in Eqn. (9)

we obtain

½re{rd{q2(Dd{De)�½rezrd{q2(DezDd )�~

+½re{rd{q2(Dd{De)�½re{rdzq2(Dd{De)� ð10Þ

This gives three values for q2: q2~
re{rd

Dd{De

, q2~
rd

Dd

and

q2~
re

De

, which after substitution into (8) gives three possible values

for the limiting wavespeed:

ve~2
ffiffiffiffiffiffiffiffiffiffi
reDe

p
ð11Þ

vd~2
ffiffiffiffiffiffiffiffiffiffi
rdDd

p
ð12Þ

vp~
DreDd{rdDeDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(re{rd )(Dd{De)
p ð13Þ

Note that vp is only real if (re{rd )(Dd{De)w0, so this speed

clearly does not occur if one morph is both a better disperser and a

better establisher. For a finite but small mutation rate, we would

expect the invasion speed to equal one of the above values plus a

small correction proportional to some power of the mutation rate.

ve is the speed at which the establisher would invade in isolation,

vd is the invasion speed of the disperser, and vp is a third

wavespeed that is dependent on both morphs’ establishment and

dispersal abilities.

It is straightforward to show that vp (provided it is real) is larger

than either vd or ve, but we have not yet shown that this speed

corresponds to an appropriate solution to the PDEs in the limit

where the mutation rate is small but finite, for which q must be

real. We assume that the mutation rates are small, but not

necessarily the same, so we substitute me~em, md~dm, where e

and d are positive. We substitute q2~
re{rd

Dd{De

ze into (9), where

e is small when the mutation rate is small. When we take the limit

m?0, we find
e

m
?g, where

g(Dd{De)ze{d½ �2z4ed
� � rdDd{reDeð Þ2

(Dd{De)2
~

(re{rd )2 g(Dd{De)ze{d)ð Þ2

[
4ed

g(Dd{De)ze{d)ð Þ2
~

(re{rd )2(Dd{De)2

rdDd{reDeð Þ2
{1

Since e and d are both positive, g will be real if and only if

(re{rd )2(Dd{De)2
§ rd Dd{reDeð Þ2

This condition is satisfied, and therefore the invasion will

proceed at speed vp, in the positive quadrant of
re

rd

,
Dd

De

� �
space

that is bounded by the curves

(9)

Dispersal Polymorphism and Invasion Speeds
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Dd

De

~2{
rd

re

ð14Þ

and

De

Dd

~2{
re

rd

: ð15Þ

Below the curve defined by (14), the invasion proceeds at the speed

of the monomorphic establisher ve, whereas the invasion will

proceed at the monomorphic disperser speed vd when parameters

are above curve (15) in
re

rd

,
Dd

De

� �
space. The parameter regions

where each of these speeds occur are illustrated in Fig. 1.

The faster invasion speed occurs when the difference of both

traits between morphs is roughly greater than a factor of two, and

for the parameter regions shown can be up to twice as fast as the

single phenotypes invasion speeds (Fig. 1). Polymorphic invasion

speeds could be more than twice as fast as either monomorphic

speed if the morph’s parameters differ by a factor of more than

ten, but this is unlikely to be the case for real species.

Numerical Simulations
Numerical simulations were carried out to determine whether

the analytical results using the linear conjecture do indeed give the

true wave speeds for the nonlinear system of equations (1) and (2).

The simulations were carried out by approximating the spatial

derivatives by finite differences and then carrying out simulations

in R [22]. We first studied the case where both morphs have the

same carrying capacity and interact neutrally (mee~med~

mde~mdd~1=K ).

Initially we carried out simulations with no mutation between

morphs. In this case both coexist neutrally at equilibrium,

however, during an invasion whichever morph has the faster

Figure 1. Parameter regions where each invasion speed occurs. The area between each of the curves (given by (14) and (15)) and the axes is
where the polymorphic invasion occurs at approximately the same monomorphic speed as one of the phenotypes. The area above the curves is
where the polymorphic invasion occurs faster than either monomorphic invasion, with the shading from white to grey representing the extent to
which the polymorphic invasion is faster. (a), (b) and (c) show the parameters used in Fig. 3. The area where the ratio of the net growth rates and
dispersal rates is less than one is not shown in this figure because that region of parameter space violates our assumption of net growth rate of
establisher w net growth rate of disperser and dispersal rate of disperser w dispersal rate of establisher. If there were a tradoff in only one of the
traits, for example, if both morphs have the same net growth rate but different dispersal rates then the ratio of growth rates would be 1 and so we
can see that the invasion would follow the speed of the disperser. Similarly if the morphs only differed in their net growth rate then we can see that
the invasion would follow the speed of the establisher.
doi:10.1371/journal.pone.0040496.g001
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invasion speed in isolation will invade the empty landscape and

reach its carrying capacity (Fig. 2). The interface between

coexistence of phenotypes and dominance of the faster morph

moves very slowly (Fig. 2). We do not observe a wave travelling at

speed vp in this case because the two morphs are not invading the

landscape at the same speed.

We found that the addition of a small amount of mutation

between phenotypes allows both morphs to coexist during an

invasion. Fig. 3 illustrates examples where invasions occur at the

three different speeds that were found analytically, for neutral

interactions and equal small mutation rates between morphs.

These three invasion speeds occur as a result of differences in the

dispersal and establishment abilities of the two phenotypes. When

the dispersal abilities of the disperser and establisher are similar

but the population growth rate of the establisher is much higher

than that of the disperser the invasion occurs at the speed of the

establisher (Fig. 3A). When the population growth rates of each

strain are similar but the dispersal rate of the disperser is much

higher than the dispersal rate of the establisher the invasion occurs

at the speed of the disperser (Fig. 3B). However, when there is a

big difference between the two phenotypes in terms of both the

dispersal and establishment abilities, the invasion occurs faster

than either single morph (Fig. 3C).

The analysis predicts that the invasion speed is independent of

the carrying capacities and mutation rates, provided the mutation

rate is small. To check this, we also carried out simulations with

different mutation rates between morphs (Fig. 4i), non-neutral

interactions (Fig. 4ii), and non-neutral interactions with different

mutation rates and different carrying capacities (Fig. 4iii). The case

where the morphs differ only in their carrying capacity is not

shown, because in that case the two morphs do not coexist in the

absence of mutation. As predicted, we found that none of these

parameters has an effect on the invasion speed, though they could

change the shape of the invasion profile. Only the morphs’

population growth rates and dispersal abilities were found to affect

the species’ invasion speed.

The invasion speeds found in numerical simulations are

compared to the analytical predictions in Fig. 5. The formulae

for the invasion speeds (11–13) apply strictly in the limit m?0, so

to confirm that these formulae can be used for finite m we have also

included numerical solutions to Eqn. (10) for m~0:001. We find

excellent agreement between the invasion speed from numerical

simulations, analytical predictions for m?0, and numerical

predictions from the wave propagation method for finite m.

Discussion

We have investigated the effect of the presence of two dispersal

phenotypes on a species’ invasion speed. We found that, if the

morphs differ in both their dispersal ability and growth rate, then

the invasion speed can be faster than the speed of either morph on

its own. This effect becomes significant when both traits differ by a

factor of two or more, and for reasonable parameter values the

combined invasion speed will be up to twice as fast as either

monomorphic speed. Surprisingly, this effect persists when the

mutation rate between the morphs is vanishingly small, even

though this should mean that each morph has a minuscule effect

on the other morph in the leading edge of the invasion front. We

have shown that this effect is robust to the other parameters in the

system, such as non-neutral interactions and differences in

mutation rates.

Mathematically, there is no reason to expect that the invasion

speed of a community of phenotypes should follow the speed of

any particular phenotype. For example, the invasion speed

obtained by solving Eqn. (9) does not equal vd or ve when the

mutation rate is finite. Weinberger et al. [25] have reported an

example where a polymorphic population invades faster than any

of its constituent phenotypes in isolation. They studied a model of

a two-allele, one-locus diploid species, and found that the presence

of both homozygotes and heterozygotes results in the homozygotes

spreading at a faster speed than they do in the absence of the

heterozygotes but which is also faster than the invasion speed of

the heterozygotes [25]. However, in Weinberger’s model there are

strong `cooperative’ effects between the phenotypes, since a

significant fraction of offspring of heterozygotes will be homozy-

gotes. Since our anomalous speeds persist when the mutation

between morphs is vanishingly small, we have shown that faster

speeds are also observed in competing systems where there is

effectively no cooperation.

It is technically difficult to prove that the linear wave speed

correctly describes the speed of travelling waves in reaction-

diffusion systems, and since our model is not an example of the

cooperative systems studied in [24,25] there is no proof that Eqn.

(13) is the correct invasion speed for the dimorphic system.

Nevertheless, we can prove that the dimorphic wave speed is

Figure 2. Invasion profile when there is no mutation between
phenotypes. At the start of the simulation half of the landscape was
filled with both morphs each at half of the carrying capacity and the
other half of the landscape was unoccupied. This is an example of the
case where the establisher morph (solid line) has the fastest single
invasion speed and so this phenotype invades through the landscape
and the disperser morph (dotted line) remains in its initial location. The
parameter values used for this simulation were K~1, re~0:8, rd~0:2,
Dd~0:6, De~0:4.
doi:10.1371/journal.pone.0040496.g002
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indeed higher than the speed of either monomorphic system. This

follows because the linear wave speed is, in general, a lower bound

to the true wave speed [24]; meanwhile, the monomorphic case

reduces to the Fisher wave equation – for which the linear speed is

known to be the true wave speed. Therefore, the dimorphic system

invades at a speed faster than Eqn. (13), which is itself faster than

either Eqn. (11) or (12).

Our model is quite generic, and we would expect this

phenomenon to occur in a very wide class of systems because

the method for predicting the wave speed depends solely on the

linearised behaviour of the partial differential equations close to

the unstable equilibrium [21]. Clearly, there will be many different

systems of reaction-diffusion equations which have the same

linearised form at low density. For instance, if density dependence

acts on birth then the mutation term in Eqns. (1–2) would be

Figure 3. Invasion profiles of the two morphs. These show the establisher morph (solid line) and disperser morph (dashed line) when present in
the landscape on their own (rows (i) and (ii)) and when mutation allows both to be present (row (iii)). Row (iv) shows the same data as row (iii), but
the invasion waves are shifted by (speed) times (time) to illustrate that the wave maintains its shape as it travels. The simulations were initiated with
the first 100 cells occupied by each phenotype at its equilibrium population density and the remaining cells unoccupied. The simulations were run on
a lattice consisting of 8000 cells, using a space increment of 0.1. For all graphs each line represents the density profiles at a different time point,
shown by the different shades of grey, with each time point 500 units apart. In column (A) the polymorphic invasion speed is the same as the
monomorphic establisher speed; in column (B) the polymorphic invasion speed is the same as the monomorphic disperser speed, and in (C) the
polymorphic invasion speed is faster than either monomorphic invasion. For all simulations K~1, m~0:001, and in (a) re~0:8, rd~0:2, Dd~0:6,
De~0:4; (b) re~0:6, rd~0:4, Dd~0:9, De~0:2; (c) re~1:1, rd~0:2, Dd~1:5, De~0:3.
doi:10.1371/journal.pone.0040496.g003

Dispersal Polymorphism and Invasion Speeds
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density dependent, but the linearised form of the equations would

be the same as when density dependence acts on mortality.

Reaction-diffusion equations of this type can also be used to model

spatially explicit metapopulation dynamics, since colonisation-

extinction dynamics are mathematically equivalent to birth-death-

dispersal processes [26,27]. In that case, density dependence acts

on the colonisation process through the availability of unoccupied

patches, which means that: (i) interactions between morphs will be

neutral; and (ii) dispersal will be nonlinear. Nevertheless, the

linearised equations will take the same form as in the present

study. We have studied numerically and analytically invasive

waves for two competing morphs in a spatial metapopulation

system, and we find the same invasion speeds as in the population

model described in the present manuscript.

It is tempting to explain this faster wave speed by saying that

mutation between morphs allows the species to exploit the

dispersal rate of the disperser and the growth rate of the

establisher. Comparing the polymorphic speed vp with the speed

vb~2
ffiffiffiffiffiffiffiffiffiffi
reDd

p
of a `best of both worlds’ morph, we find that

1
2

vbvvpvvb in the parameter range where vp is the invasion

speed. The polymorphic wave speed is therefore always slower

than the`best of both worlds’. In any case, this explanation is not

wholly satisfactory, because it would suggest that the effect would

diminish when the mutation rate between morphs becomes small.

Figure 4. Invasion profiles with different parameter values. These show that invasion speeds are the same when (i) morphs have
asymmetrical mutation rates, (ii) there is non-neutral competition and (iii) morphs have asymmetrical mutation, non-neutral competition and
different carrying capacities. The simulations were initiated with the first 100 cells occupied by each phenotype at its equilibrium population density
and the remaining cells unoccupied. The simulations were run on a lattice consisting of 8000 cells, using a space increment of 0.1. For all graphs each
line represents the density profiles at a different time point, shown by the different shades of grey, with each time point 500 units apart. In column (A)
the polymorphic invasion speed is the same as the monomorphic establisher speed; in column (B) the polymorphic invasion speed is the same as the
monomorphic disperser speed, and in (C) the polymorphic invasion speed is faster than either monomorphic invasion. For all the simulations the
parameters used are the same as in Fig. 3 apart from in (i) have that me = 0.001 and md = 0.00025, in (ii) ade = 0.8, aed = 0.7, where a is the competition
coefficient, and in (iii) have both the parameters used in (i) and (ii) and additionally Ke = 1.2 and Kd = 1.
doi:10.1371/journal.pone.0040496.g004
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Since we find a faster polymorphic speed even when the mutation

rate is vanishingly small, it appears that the only role of mutation is

to ensure that both morphs travel at the same speed, which is one

of the assumptions behind the derivation of vp. An alternative

mechanism for ensuring that both morphs travel at the same speed

might lead to the same polymorphic invasion speed even in the

complete absense of mutation, though we have not found such a

mechanism.

These results suggest that polymorphism is an important factor

that needs to be considered when investigating species invasions

and so speeds should not be predicted by only looking at the fastest

single morph. In terms of the invasion of exotic species this may be

of concern if introduced species spread faster than expected

threatening native species. However, for species shifting their

range as a result of climate change this may be encouraging as it

may mean that more species than previously thought will be able

to keep up with the rate of change.

Species may experience these faster range expansions as a result

of both morphological and behavioural differences in phenotype.

For example, many flowering plants exhibit seed polymorphism

where large seeds remain near the site of the parent plant and

small seeds are wind dispersed to sites further away [28]. These

morphological differences may allow faster range expansions to

occur. Species may also have different dispersal behaviours, such

as the western bluebird Sialia mexicana, where aggressive males are

more dispersive than non-aggressive males. It has been found that

these two phenotypes are maintained in populations as each are

advantageous in different stages of range expansions [29].

In insects that have wing polymorphism where one morph is

capable of flight and the other is not, trade-offs between dispersal

ability and reproductive ability are observed (reviewed in [30]).

The anomalous invasion speeds reported in this paper require

both traits to differ appreciably – we would expect to see

anomalous invasion speeds if the growth rate of the flightless

morph is more than twice that of the winged morph, but otherwise

invasion would follow the speed of the disperser morph.

We have modelled the invasion here of a species where dispersal

ability trades-off with population growth rate. Although in some

species, such as the speckled wood butterfly, individuals with

increased dispersal ability are less fecund and hence will have

slower population growth rates [19], this trade-off is not always

observed. It has been suggested that because dispersal and

reproductive rate are complex traits it is unlikely that they will

directly trade-off against one another and that either may actually

trade-off against other traits [31]. For example, Burton et al. [12]

showed that dispersal and reproduction can trade-off with

Figure 5. Comparison of analytical and numerical predictions of the invasion speed. This is an example of the case when polymorphism
results in faster invasions than either single morph. The curve represents the analytical predictions of the invasion speed in the limit m?0 given by
Eqn. (13). The crosses represent numerical predictions calculated numerically using Eqn. (10), and the circles the numerically integrated predictions,
when m~0:001 using a space increment of 0.1. Parameter values used were rd~0:3, Dd~1, De~0:2 and K~1. For the analytical prediction re was
varied and for the numerical simulations the values of re used were 0.6, 1, 1.4, 1.8 and 2.2.
doi:10.1371/journal.pone.0040496.g005
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competitive ability when invading into a landscape occupied by

another species. If a competitor is present in the expanding range

it may therefore be that the trade-off required for faster invasions

may not occur as investing more in competitive ability is more

important for a species to be able to expand its range. The

relationship between dispersal and reproduction has been found in

some species to be positive, with for example, more dispersive cane

toads, Bufo marinus, having faster growth rates [32] and more

dispersive Glanville fritillary butterflies, Melitaea cinxia, investing

more in reproduction [33,34]. The result of faster range

expansions found using this model may not be transferable to

species such as these where there is no trade-off between dispersal

and establishment.

A general theory emerging from the literature is that during

range expansions there is evolution towards increased dispersal

[12–15,35]. There is also a view that spatial sorting can lead to

increased dispersal at the range edge, through fast-dispersing

individuals dispersing further and then random mating at the

range edge of these individuals [36]. While our results agree that

having good dispersers at the invasion front allows the population

to invade faster, if there is a trade-off in dispersal and

establishment ability it is also important to have good establishers

present. Indeed under some parameter conditions, for example see

Fig. 3C(iii), our results suggest that for faster speeds to occur the

density of good establishers at the invasion front is higher than the

density of good dispersers. During range expansions, our results

suggest that establishment ability (i.e. local population growth rate)

is just as important as dispersal ability, and that there will be

selection for both to evolve.

These conclusions were made based on the results of a simple

deterministic model in which the landscape was modelled as one-

dimensional and continuous. These simplifying assumptions were

made to make the model analytically tractable but in doing so

have made the model less realistic. Modelling using a simple

deterministic approach can sometimes give results that are an

artefact of the model. Carrying out simulations of a stochastic

version of the model will help to determine if these results are

robust and will allow us to see when we expect these results to

occur. Stochastic simulations may also help to further explain why

faster invasions occur when there are differences between the two

phenotypes and this will be our next step in this research.

Species expanding their range as a result of climate change are

likely to invade into landscapes where the habitat is not continuous

and where there may be patches that are unevenly spaced and of

different quality [11]. Future work investigating what impact this

may have on species invasions may help us to more accurately

predict the rate of range expansions as a result of climate change.

In this case a more complicated two-dimensional landscape would

need to be considered, because a two-dimensional heterogeneous

landscape cannot be adequately described by a one-dmensional

model. Explicitly modelling a shifting climate would also help us to

understand the effect that the loss of suitable habitat at the rear of

a species range has on invasions.

The structure of the landscape in terms of availability of habitat

and its spatial distribution is also an important factor that needs to

be considered for species expanding their ranges. The evolution of

dispersal distances and dispersal polymorphism have been found

to be affected by landscape structure [37]. It has been predicted

that as a result of species having dispersal polymorphism there

may be geographic variation in range expansion speeds [37]. Our

results implicating that dispersal polymorphism can lead to faster

range expansions may lead to even further geographic differences.

In this model we assume perfect heritability of the dispersal trait,

however, there is increasing evidence that species responses to

climate change can be plastic (reviewed in [38]). Indeed it has been

shown that spatial and temporal variation in the environment can

result in selection of different dispersal strategies as a result of

phenotypic plasticity [39]. If plasticity could result in differences in

morphs establishment and dispersal abilities then this could aid the

range expansion of species that are not genetically polymorphic.

This could result in increased invasion speeds for more species

than would be predicted by the present model.

We have shown that the presence of two phenotypes can lead to

unexpected results for the speed of biological invasions. Not only

can invasion speeds adapt due to evolutionary selection of more

invasive phenotypes, but polymorphism itself plays a role in

determining invasion speeds. We hope that our results motivate

further research to understand the importance of dispersal

polymorphism in determining shifting species ranges.
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