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Abstract

Background: Light has significant effect on the growth and development of Saccharina japonica, but there are limited
reports on blue light mediated physiological responses and molecular mechanism. In this study, high-throughput paired-
end RNA-sequencing (RNA-Seq) technology was applied to transcriptomes of S. japonica exposed to blue light and
darkness, respectively. Comparative analysis of gene expression was designed to correlate the effect of blue light and
physiological mechanisms on the molecular level.

Principal Findings: RNA-seq analysis yielded 70,497 non-redundant unigenes with an average length of 538 bp. 28,358
(40.2%) functional transcripts encoding regions were identified. Annotation through Swissprot, Nr, GO, KEGG, and COG
databases showed 25,924 unigenes compared well (E-value ,1025) with known gene sequences, and 43 unigenes were
putative BL photoreceptor. 10,440 unigenes were classified into Gene Ontology, and 8,476 unigenes were involved in 114
known pathways. Based on RPKM values, 11,660 (16.5%) differentially expressed unigenes were detected between blue light
and dark exposed treatments, including 7,808 upregulated and 3,852 downregulated unigenes, suggesting S. japonica had
undergone extensive transcriptome re-orchestration during BL exposure. The BL-specific responsive genes were indentified
to function in processes of circadian rhythm, flavonoid biosynthesis, photoreactivation and photomorphogenesis.

Significance: Transcriptome profiling of S. japonica provides clues to potential genes identification and future functional
genomics study. The global survey of expression changes under blue light will enhance our understanding of molecular
mechanisms underlying blue light induced responses in lower plants as well as facilitate future blue light photoreceptor
identification and specific responsive pathways analysis.
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Introduction

Light is a crucial environmental factor for growth and

development of photosynthetic eukaryotes. Plants deploy sensory

photoreceptors that assess and adapt to the quality and quantity of

light fluctuations [1,2]. Until now, known photoreceptor classes

are the UVB photoreceptors [3,4]; the red/far-red reversible

photoreceptors, phytochromes PhyA-PhyE [5]; three blue UVA

photoreceptor classes: cryptochromes (CRY1, CRY2 and CRY3)

[6,7], phototropins (PHOT1 and PHOT2) [8], aureochromes

(AUREO1 and AUREO2) [9,10]. Blue light (BL) photoreceptors

govern cellular responses such as photoreactivation, plant devel-

opment and circadian photoentrainment in bacteria, plants and

animals [11]. In marine environment, BL is predominant because

shorter and longer light wavelengths could not penetrate sea water

mass [12]. There are many reports on BL mediated physiological

responses in land plants [13,14], but records on BL regulation of

morphogenesis and life history in algae are few and only limited to

documents of Vaucheria [15,16,17,18,19] and some brown algae

[20,21,22].

Saccharina japonica (Areschoug) Lane, Mayes, Druehl and

Saunders, is one of important commercial seaweed that naturally

inhabits sublittoral zones where BL is predominant [23,24].

Previous reports show BL stimulates Saccharina gametophyte

growth and sporophyte reproduction [25,26,27,28,29,30]. It is

implied that BL photoreceptor is involved in the kelp growth and

development [27], and hints that prevalent existence of BL

photoreceptor in the stramenopiles, which including the Phaeo-

phyceae, Xanthophyceae, Bacillariophyceae, Chrysophyceae and

Raphidophyceae. In terms of phylogenetics, stramenopiles differ

from green plants and possess new type of BL receptor. Recently

the new type of BL receptor, AUREOs, is discovered in

photosynthetic stramenopile members Vaucheria frigida (Xantho-

phyceae) and Fucus distichus (Phaeophyceae) [9,10], and the

conserved motifs of AUREOs are regarded as common and

specific function of BL receptor in all stramenopiles [10]. Although

BL-mediated physiological responses and morphogenesis changes

have been observed in Saccharina [31,32], the behavior of the BL

receptor gene and its transcription analysis are far from
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understanding, especially our knowledge to Saccharina genome is

limited.

High-throughput RNA-sequencing (RNA-Seq) provides new

strategies for analyzing functional complexity of transcriptomes

[33,34,35]. So far, it has been used to interrogate eukaryotic

transcriptomes of yeast [36,37,38], mice [34,39], humans

[40,41,42], Arabidopsis [43], Caenorhabditis elegans [44], rice [45],

Vitis vinifera [46], cucumber [47], Lateolabrax japonicus [48], maize

[49], Aspergillus oryzae [50], large yellow croaker [51] and whitefly

[52]. Compared with conventional transcriptome analysis ap-

proaches, it can quantify absolute gene expressions and provide

more insight and accuracy than microarrays analysis [34,35].

Furthermore, unlike hybridization-based approaches, RNA-Seq is

not limited to detect transcripts that correspond to existing

genomic sequence [33], which enable us more feasible to analysis

organisms without genomic information.

In higher plants, light signals perceived by photoreceptors trigger

dramatic transcriptome shifts that regulate growth and development

[53]. While to algal materials, fewer reports are addressed on the

transcriptiome analysis under the light treatment [54]. Expression

profiling researches indicate that light induces profound gene

expression changes in Arabidopsis [55,55,56,57,58,60], rice [58,61]

Lotus japonicas [62], and and Ostreococcus tauri [54]. These light-

responsive genes include many transcripton factors and fall into

various functional categories mainly involved in photomorphogen-

esis processes, circadian clock function, DNA repair, photosynthetic

light reactions, photorespiration, photosynthetic carbon, metabo-

lism and biosynthesis [53,54,55,56,57,58,59,60,61,62].

For a broad testing the effects of BL induced physiological

responses in S. japonica, RNA-Seq technology was applied to

analysis the kelp transcription profile exposed to BL and darkness

respectively, and the dynamic variation of transcriptome was

interrogated. Our aim was to decipher transcriptomic changes and

related genes behaviors under BL induction as well as verify BL

receptor genes and the involved transduction pathway to the lower

plants on the transcriptomic level.

Materials and Methods

Plant Material
Fresh juvenile sporophytes of S. japonica were collected from

cultivated rafts in Rongcheng, Shandong, China in March, 2011.

Healthy individuals were selected, rinsed with sterilized seawater

for several times to remove epiphytes and cultured in constant

darkness for 4 h. Washed materials were immersed in sterilized

seawater under darkness and blue light for 2 h, respectively. Blue

light-emitting diodes (LEDs) of wavelength 460–475 nm (Ichia,

Shanghai, Japan) were used as light sources. Detected irradiances

of 300–390 mmol photons m22 s21 were measured with a

quantum photometer (LI-COR, LI-250, Nebraska, USA). Cul-

tures were carried out at 861.0uC. After washing with deionized

distilled water, samples were dried with hygroscopic filter paper

and frozen immediately in liquid nitrogen.

Preparation of cDNA Library for RNA-Seq
For each treatment (darkness and BL exposed, respectively),

about 100 g fresh algae materials (10 individuals) were mixed for

RNA preparation. Total RNA was extracted according to the Yao

et al. [63], and was treated with RNase-free DNase I (TaKaRa,

Dalian, China) to remove residual genomic DNA. RNA integrity

was confirmed via an Agilent Technologies 2100 Bioanalyzer with

a minimum RNA integrated numerical value of 7. For each

treatment, mRNAs were purified from the 20 mg total RNA using

oligo (dT) magnetic beads and fragmented using fragmentation

buffer. Cleaved short RNA fragments were used for first-strand

cDNA synthesis using reverse transcriptase and hexamer-primer.

Followed by second strand cDNA synthesis using DNA polymer-

ase I and RNase H, cDNA fragments were selected for PCR

amplification and cDNA library products were used for sequenced

analysis via the Illumina HiSeqTM 2000.

Transcriptome Analysis
Raw sequencing data were deposited in the GEO database at

NCBI (accession number GSE33853). Raw reads were cleaned by

removing adaptor sequences, empty reads and filtering reads

containing unknown nucleotides (Ns) .5, and remaining clean

reads were assembled into unigenes using SOAPdenovo [64].

TGICL [65] was used to acquire a single set of non-redundant

unigenes. ESTScan [66] was used to analyze the coding sequences

(CDs) of unigenes. All the non-redundant unigenes were used for

blast search and annotation against the NCBI nr database,

SwissProt database, Kyoto Encyclopedia of Genes and Genomes

(KEGG) database and Cluster of Orthologous Groups (COG)

database with 1025 E-value cutoff. Functional annotation by gene

ontology (GO) terms was analyzed using Blast2go program [67].

WEGO [68] was used to classify GO function.

Identification of Differentially Expressed Genes
RPKM (reads per kilobase per million reads) were used to

evaluate expressed value and quantify transcript levels [35]. P

value and FDR (false discovery rate) were manipulated to

determine differentially expressed unigenes [69]. Assuming that

R differentially expressed genes have been selected, S genes really

show differential expression, whereas the other V genes are false

positives. If error ratio Q = V/R ,5%, FDR should be #0.05. In

the present study, unigene, P#0.05, FDR #0.001, absolute value

of log2Ratio $1 and unigene length $500 bp were used as

thresholds to assess the different significance of gene expression.

For pathway enrichment analysis, all differentially expressed

unigenes were mapped to terms in KEGG database and searched

for significantly enriched KEGG terms compared to the whole

transcriptome background.

Quantitative Real-time PCR Validation
A total of 11 representative BL response-relevant unigenes (BL

receptor, ZTL/FKF1/LKP2, CK2a, APR 5/APR 7/APR 9,

polyketide synthase, COP 9 signalosome complex subunit, DET1

and photolyase homologues) generated by RNA-seq were selected

for experimental validation. Real-time quantitative PCR was

performed with the SYBRH Premix Ex TaqTM (TakaRa, Tokyo,

Japan) on the Takara TP800 Thermal Cycler DiceTM (Takara).

First-strand cDNA was synthesized from 2 mg of total RNA as

described above and used as a template for real-time PCR with

specific primers (File S1). b-actin fragment amplification of S.

japonica was used as internal control tests. Real-time PCR was

performed in volume of 25 ml, and cycling conditions were 95uC
for 30 s, followed by 40 cycles of 95uC for 5 s, 50uC for 30 s and

72uC for 30 s. All reactions were performed in biological

triplicates, and the results were expressed relative to the expression

levels of b-actin in each sample by using the 2DDCT method.

Results and Discussion

Raw Reads Processing and Assembly
For the comparisons, two cDNA treatments prepared from dark

and BL exposure respectively was sequenced with the Illumina

sequencing platform. Raw reads was transformed by base calling

from image data output from sequencing machine. After removing

Blue Light Transcriptome of Saccharina japonica
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adapters and unknown or low quality bases, approximately 25.32

and 23.96 million clean reads were obtained (File S2). SOAPde-

novo [64] was used to assemble clean reads into contigs in which

the longest assembled sequences without N. Mapping reads to

contigs and combining paired-end information created scaffolds

and unknown bases were filled with Ns. After filling gaps in the

scaffolds, 83,194 and 56,934 unigenes were generated from

darkness and BL exposed treatments. Then removing partial

overlapping sequences using CAP3 [70] yielded 70,497 non-

redundant unigenes (Table 1). These sequences provided abun-

dant information to further analyze the BL-related genes in S.

japonica.

Annotation of Non-redundant Unigenes
To understand the transcriptome of S. japonica, we annotated the

unigene sets based on sequence homologies to annotated

sequences and identified conserved protein domains in other

species. ESTscan software analysis showed about 28,358 (40.2% of

all distinct unigenes) have reliable coding sequences (CDs) [66].

CD-containing unigenes have high potential for translation into

functional proteins and most translated to proteins with .100aa.

Comparison with the Nr, Swissprot, KEGG, GO databases

established 25,924 unigenes that compared well with known gene

sequences (Table 2 and File S3).

GO (Gene Ontology) assignments [71] were applied to classify

functions of predicted S. japonica unigenes. A total of 10,440

sequences were assigned at least one GO term (Figure 1), among

which 6,051 were assigned at least one GO term in the biological

process category, 5,460 in the cellular component category and

8,906 in the molecular function category. These unigenes were

further classified into functional subcategories. Sequences with

GO terms corresponding to the ‘‘biological process’’ group were

divided into 24 subcategories, ‘‘cellular component’’ into 8

subcategories, and ‘‘molecular function’’ into 8 subcategories.

The largest subcategory found in the ‘‘biological process’’ group

was ‘‘metabolic process’’ which comprised 29.1% of the unigenes

in the subcategory. In the ‘‘cellular component’’ and ‘‘molecular

function’’ categories, ‘‘cell’’ and ‘‘catalytic activity’’ were the most

abundant GO terms, making up 36.1% and 50.4% of each

subcategory, respectively. In addition, there were high percentages

of unigenes in the categories ‘‘cell part,’’ ‘‘binding,’’ ‘‘cellular

process’’ and only a few unigenes in ‘‘biological adhesion’’,

‘‘locomotion’’, ‘‘rhythmic process’’ and ‘‘extracellular region.’’

To further evaluate the completeness of the transcriptome

library and the effectiveness of annotations, we searched annotated

sequences for genes involved in COG classifications [72]. COG

annotation yielded approximately 9,650 putative proteins in 25

categories (Figure 2). Among those categories, the cluster for

‘‘General function prediction’’ was the largest group (3057,

12.8%), followed by ‘‘Translation, ribosomal structure and

biogenesis’’ (2014, 8.5%) and ‘‘Transcription’’ (1914, 8.0%).

Clusters for ‘‘Nuclear structure’’ (2, 0.008%), ‘‘Extracellular

structures’’ (24, 0.101%) and ‘‘RNA processing and modification’’

(79, 0.332%) were the smallest groups.

Kyoto Encyclopedia of Genes and Genomes (KEGG) database

[73] was used to identify the biological pathways in S. japonica. A

total of 8,476 unigenes were mapped to 114 KEGG pathways.

The pathways with most representation by the unique sequences

were metabolic pathways (1903 members); spliceosome (901

members) and biosynthesis of secondary metabolites (771 mem-

bers). These KEGG annotations provided a valuable resource for

investigating specific gene functions and pathways in Saccharina and

strongly supported future kelp genome annotation.

Detection of BL Response-relevant Gene Sequences
For further insight into BL response in S. japonica, response-

relevant gene sequences were analyzed. A total of 130 responsive

unigenes sequences were obtained, among them 43 were putative

BL photoreceptor candidates (Table 3 and File S4), of which 24

unigenes were homologous to known BL photoreceptor genes in

higher plant or other algae, including cryptochrome, phototropin

and aureochrome. One unigene was homologous to BL photore-

ceptor gene of bacteria (Listeria innocua). These sequences will

certainly facilitate further BL photoreceptor genes identification in

Saccharina.

In addition, 87 other unigenes were found to be homologous to

the known BL response-relevant genes (File S5), which are

essential components in physiological processes of circadian

rhythm (clock-associated PAS protein ZTL, flavin-binding kelch

repeat F-box protein 1 (FKF1), LOV kelch protein 2 (LKP2),

circadian clock associated protein 1 (CCA1), LHY (LATE

ELONGATED HYPOCOTYL), Arabidopsis pseudo-response reg-

ulator (APR 3, APR 5, APR 7 and APR 9), CK2a (casein kinase 2,

alpha polypeptide), CK2b (casein kinase 2, beta polypeptide),

serine/threonine-protein kinase WNK1, zinc finger protein

CONSTANS (CO)), flavonoid biosynthesis (polyketide synthase,

dihydroflavonol reductase, flavonoid hydroxylase, chalcone isom-

erase), photoreactivation (photolyase, DNA damage-binding pro-

tein, DDB1- and CUL4-associated factor, DET1 (de-etiolated 1)),

and photomorphogenesis (COP 9 signalosome complex subunit,

DET1). Future molecular and functional characterizations of these

candidate genes could help to global identification of BL

responsive genes and markers in algae.

Global Changes in Gene Expression under BL
To characterize the differences of molecular response between

the dark and BL treatments, unigene expression levels were

calculated by RPKM using the formula [35]: RPKM = (109 6C)/

(N 6L), where C is the number of reads that uniquely aligned to

the gene, N is the total number of reads that uniquely aligned to all

genes, L is the sum of the gene in base pairs. The RPKM method

eliminates the influence of gene length and sequencing discrep-

ancy in calculating gene expression, allowing direct comparison of

gene expression between treatments. Based on RPKM values,

11,660 differentially expressed unigenes (with P value ,0.05, FDR

#0.001, fold change value .2 and unigene length $500 bp) were

indentified (File S6), including 7,808 upregulated and 3,852

Table 1. Distribution of assembled unigenes.

Length (bp) Total Number Percentage

100–500 47,293 67.09%

500–1000 15,040 21.33%

1000–1500 4,638 6.58%

1500–2000 1,911 2.71%

$2000 1,615 2.29%

Total 70,497

Total Length (bp) 37,895,389

N50 679

Mean 538

N50 = median length of all unigenes.
Mean = average length of all unigenes.
doi:10.1371/journal.pone.0039704.t001
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downregulated unigenes. The large amount of regulated genes

(17%) encountered here was in contrast to what has been recorded

in Arabidopsis, where the proportion of significantly light or BL

modified genes generally ranges from 1% to 5% [55,56]. The

dramatic expression profile suggested significant transcriptional

complexities in S. japonica and its extensive transcriptome re-

orchestrated during BL induction.

Functional Annotation of Differentially Expressed
Unigenes

All the differentially expressed sequences were mapped to

KEGG database terms and compared with the whole transcrip-

tome data, with a view to finding unigenes concerning metabolic

or signal transduction pathways that were significantly enriched.

Of 8476 unigenes with KEGG annotation, 4671 differentially

regulated unigenes were identified between the two treatments.

The other 6989 changed unigenes failed to match sequences in the

current database and therefore represented potentially novel BL

responsive genes. The three-fifths regulated genes functions were

unknown, underlined molecular mechanisms underlying BL

responses in lower plants were far from thoroughly understanding.

Pathway enrichment analysis revealed that the annotated changes

were mainly involved in primary metabolism, transcription,

protein processing, cellular transport, biogenesis of cellular

components, energy storage, light response and DNA repair

(Figure 3 and File S7). These processes included biological

pathways that directly or indirectly participated in response, and

again reflected the large scale re-orchestrated during short-term

acclimation to BL exposure. Some significantly prominent

pathways were shown in Table 4.

The extensive transcriptome changes as observed inevitably

demanded a multitude of signals for coordination. BL photore-

ceptor was one of the most possible triggers in the network. As BL

activated receptor, it initiated BL signal transduction through the

coordinated activation and repression of specific genes and

regulated several downstream signaling pathways [6,7,8,9,10,11].

In our study, among the 43 hypothetic BL photoreceptor unigenes

(File S4), 28 sequences was highly elevated regulated after BL

exposure (File S8), of which 6 genes was upregulated more than 10

Table 2. Annotation of non-redundant unigenes.

Database Number of annotated unigenes Percentage of annotated unigenes

Swissprot 15,281 53.89%

Nr 24,514 86.44%

GO 10,440 36.82%

KEGG 8,476 29.89%

COG 9,650 34.03%

All 28,358 CD-containing unigenes revealed by ESTscan were annotated though Swissprot, Nr, GO, KEGG, and COG databases. 25,924 unigenes amongt them compared
well (E-value ,1025) with known gene sequences in existing species.
doi:10.1371/journal.pone.0039704.t002

Figure 1. GO annotation of non-redundant unigenes. Good hits were aligned to the GO database, and 10,440 transcripts were assigned to at
least one GO term. All the unigenes were grouped into three major functional categories, namely biological process, cellular component, and
molecular function. The right y-axis indicates the number of unigenes in a category. The left y-axis indicates the percentage of a specific category of
unigenes in that main category.
doi:10.1371/journal.pone.0039704.g001
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folds. Increased expression of BL receptor genes was also observed

by the real-time PCR (Figure 4A). Since very little information

were known on the signal cascades and the relative pathway of BL

sensing in algae, these sequences provided important clues for

screening putative BL receptors genes and relative transcriptional

factors. Besides, 34 BL-specific responsive genes (except the

putative BL photoreceptor unigenes) were either found or

recognized as important role during the algal circadian rhythm,

flavonoid biosynthesis, photoreactivation and photomorphogene-

sis. We then focused our discussion on these physiological

processes and highlighted emerging insights regarding information

provided by the regulated sequences.

The circadian rhythm is the temporal oscillation of genetic,

metabolic and physiological processes based on the 24 h cycle.

It is shaped by alternating day and night cycles and driven

through an endogenous timekeeping mechanism [74,75].

Previously, tremendous progress has been made in the

molecular mechanisms in Arabidopsis thaliana [61], and some

deduced proteins related to control TOC1 (TIMING OF CAB

EXPRESSION 1) that functioned in constant darkness were

considered as key determinants in circadian period of higher

plants (Figure 5). To our yielded data, the increased abundances

of transcripts of these proteins, including ZTL/FKF1/LKP2,

CCA1/LHY, APR 5/APR 7/APR 9, CK2a and CK2b were

detected (Figure 5 and File S9). Quantitative PCR results also

Figure 2. Histogram presentation of clusters of orthologous groups (COG) classification. A total of 9,650 sequences have a COG
classification among the 25 categories.
doi:10.1371/journal.pone.0039704.g002

Table 3. Blue light receptor genes/homologues in S. japonica.

Blue light receptor
gene catalog The number of unigenes Homologs number in other species

Cryptochrome 7 7

Phototropin 26 7

Aureochrome 9 9

BL receptor in bacteria 1 1

doi:10.1371/journal.pone.0039704.t003

Blue Light Transcriptome of Saccharina japonica
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demonstrated the upregulation of genes of ZTL/FKF1/LKP2,

APR 5/APR 7/APR 9 and CK2a (Figure 4B). Among the total 20

highly expressed transcripts, 13 of them were homologue to

ZEITLUPE family of putative BL photoreceptor, which consists

of PAS-like LOV domain, F box domain and kelch repeats. LOV

domain is the molecule responsible for flavin binding in known BL

photoreceptors, while the F box motif is found in specific target

substrates for proteolytic degradation [76]. In this case, upon BL

activation, ZTL as component of SCF (Skp/Cullin/F-box) E3

ubiquitin complex recruits TOC1 for post-translational proteaso-

mal degradation [76,77,78]. Other 5 unigenes, putative CCA1/

LHY or CK2a/CK2b orthologue, were involved in CCA1/LHY

mediated transcriptional repression of TOC1. CCA1/LHY as

negative regulator activated by CK2 (Casein Kinase II) could bind

with the TOC1 promoter to repress TOC1 expression [79,80,81].

The other 2 unigenes were paralogues to TOC1 relatives, APR5/

APR7/APR9, which are important components for photoperiodic

timekeeping and positively regulated by CCA1/LHY proteins

[82,83]. To our data obtained, 18 of the 20 regulated clock unigenes

belonged to the core feedback loop, suggested the BL effects on the

kelp clock were predominantly mediated via this part of the

oscillator mechanism. In addition, we compiled 48 clock-associated

coding sequences in Saccharina, which appeared to be orthologous or

homologous to the Arabidopsis counterparts. A considerable conser-

vation of some elements in circadian rhythm seems exist between

Saccharina and Arabidopsis. Further verification of those homologous

sequences is expected to not only deeper understand the kelp

photoperiodism properties but also enrich knowledge on molecular

mechanism of circadian rhythm in lower plants.

We also noticed elevated transcript abundance of polyketide

synthase (CHS) (Figure 4C) and dihydroflavonol reductase (DFR)

(File S10), which are two key enzymes in flavonoid biosynthesis

pathway. In higher plants, CHS catalyzes the first committed step

in the flavonoid biosynthesis and DFR is the first enzyme leading

to anthocyanidins production. Their expression stimulated by

UV/BL were considered to be protective mechanism as which

promoted the accumulation of UV-absorbing flavonoids [84].

Here BL stimulated transcription of key enzymes in flavonoid

biosynthesis corresponded to that the precious reports on UV/BL

induction of flavonoid synthesis in higher plants [84,85]. Saccharina

naturally inhabit the sublittoral zone, which of rapid changing

physical conditions when tides in and off. It is required to exhibit

tolerance to various abiotic stressors such as osmotic pressure,

temperature and water currents, and the flavonoids might play

roles in stresses or UV protection in kelp. It is suspected that UV/

BL increases the biosynthesis of flavonoids, which in turn, function

Figure 3. KEGG functional analyses of the differentially expressed unigenes (data from File S7).
doi:10.1371/journal.pone.0039704.g003

Table 4. Significantly enriched pathways of differentially
expressed unigenes.

Pathway category
Unigenes
No. % Q-value

Plant-pathogen interaction 174 3.73 0.00000019

ABC transporters 77 1.65 0.00148163

Ribosome 129 2.76 0.01365288

Alanine, aspartate and glutamate
metabolism

61 1.31 0.01896333

alpha-Linolenic acid metabolism 29 0.62 0.06159647

Unigenes No. and % indicate the number and the percentage of unigenes in
each pathway from 4671 differentially expressed unigenes mapped to KEGG
respectively.
doi:10.1371/journal.pone.0039704.t004

Blue Light Transcriptome of Saccharina japonica
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in stresses or UV protection in S. japonica, future experiments are

required to test this hypothesis.

Photoreactivation is a repair process of DNA pyrimidine dimers

that results from UV-B light exposure [86]. It is catalyzed by BL

dependent enzymes photolyases [87]. In our study, 16 transcripts

of genes implicated in photoreactivation were detected (File S5),

and 9 sequences of them exhibited different expression under BL

exposure (File S11). One sequence (Unigene7340) homologous to

photolyase was upregulated 2.8 fold after BL induction in our

quantitative PCR, which was consistent with its nearly 2 folds

elevated expression in RNA-seq (Figure 4C). The other 8

sequences including genes encoding DDB1- and CUL4-associated

factor, DET 1 (de-etiolated 1) and DNA damage-binding protein.

DET1 is a nuclear protein conserved to higher plants. In

Arabidopsis, DET1 associated with factors of the poly-ubiquitination

pathway (such as CUL4) and with the DNA repair pathway via

DDB1 [88,89]. Previously, photoreactivation have mainly been

studied in virus, bacteria, fungi and higher plant, and very few

works focused on algae. Whitaker first reported Fucus furcatus

Gardner on the reactivation of UV inhibited rhizoid formation

[90]. Followed damaging UV effects on Acetabularia, Alaria and

Saccharina (Laminaria) photoreactivated were recorded, and BL was

higher effective than white, green or red light in these processes

[91,92,93]. Han and Kain inferred a BL absorbing photolyase was

involve in the BL induced reactivation of UV-irradiated damages

in brown algae [92,93]. Our results confirmed their deduction,

and suggested that the DNA damage genes were not only triggered

by UV exposure, but also responded to BL. The 9 upregulated

unigenes were extremely related to the early stage of the BL

mediated DNA repair in juvenile sporophytes of S. japonica.

Photomorphogenesis is a serial of developmental changes in

growth and differentiation upon the exposure to light [1]. In

higher plants, CRYs are the mainly BL photoreceptors involved in

the process [86,87]. Here we encountered 5 unigenes associated

with kelp photomorphogenesis (File S5). One of them (Unigene

48767) was found to be homolog of DET1, a photomorphogenesis

repressor, controls several genes in darkness in higher plant [94].

The other 4 sequences were homologous to subunit of COP9

signalosome complex, which is another repressor of photomor-

phogenesis in Arabidopsis [95]. As a component of ubiquitin-

proteasome pathway, COP9 signalosome complex participates in

targeted degradation of key transcription factors that regulates the

photoresponsive genes expression [1]. HY5, a constitutive nuclear

bZIP transcription factor, function positively in photomorphogen-

ic development by binding to the promoters of light-inducible

genes, is a primary target of this pathway. Previous studies showed

that COP9 complex was highly conserved in mammals and higher

plants [95,96]. Our results indicated that it was also conserved in

algal phylum. However, no other homolog of signaling compo-

nents in higher plants photomorphogenesis was identified in our

data set, suggesting poor conservation of photomorphogenic basic

elements existed between the lower plant-kelp and higher plant.

Besides, the DET1 sequence and one COP9 subunit homology

were prominent expressed in the BL relative to dark treatment

Figure 4. The expression analysis of selected genes from the RNA-seq by relative quantitative real-time PCR. Total RNA was extracted
from S. japonica exposed to BL and darkness, respectively. Real-time PCR was used to validate gene expression changes of putative BL
photoreceptors (A) and in pathways of circadian rhythm (B), flavonoid biosynthesis and photoreactivation pathways (C), and photomorphogenesis
(D). Increases and decreases in relative levels of transcripts with respect to the control 18 S gene are shown. For each gene, the black bar indicates the
gene expression ratio of kelp exposed to BL; the grey bar indicates the expression ratio of kelp exposed to darkness. Values are mean 6 standard
deviation.
doi:10.1371/journal.pone.0039704.g004
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(File S12). Our quantitative PCR analysis also confirmed

differential expression of the two unigenes (Figure 4D), suggested

that the two repressors might play important role in the

photomorphogenesis of juvenile sporophyte.

Conclusion
This study investigated the transcriptome profile of BL-exposed

S. japonica using Illumina RNA-seq technology to identify

responsive genes and specific pathways involved in BL response

of kelp. Although current knowledge was limited by the poorly

annotated kelp genes and scanty reports of BL-mediated

physiological responses in algae, we identified 43 putative BL

photoreceptor unigenes and simply elucidated 4 BL specific

responsive functions in the BL induced gene set. The present

assessment of transcriptome and gene expression in S. japonica

included the most comprehensive sequence resource yet available

for the species lack of genome information. Our results provided

important clues for further BL photoreceptor and other functional

genes identification in kelp as well as paved the way for more

details investigations of mechanisms underlying the 4 BL specific

responsive pathways in the lower plants.

Supporting Information

File S1 Primers for relative quantitative realtime PCR. Primers

were designed from the sequences of the S. japonica transcriptome

library by using Primer Premier 5.0.

(XLS)

File S2 Overview of output statistics on S. japonica transcriptome

sequencing.

(DOC)

File S3 Details on 25,924 unigenes annotated in the transcrip-

tome of S. japonica.

(XLS)

File S4 Details on 43 blue light-receptor genes/homologues in S.

japonica.

(XLS)

File S5 Summary of 87 blue light response-relevant genes/

homologues in S. japonica.

(XLS)

File S6 11,660 differentially expressed unigenes between blue

light and dark exposed samples.

(XLS)

File S7 KEGG functional analysis of the differentially expressed

unigenes.

(XLS)

File S8 28 significant differentially expressed BL-receptors

unigenes in S. japonica.

(XLS)

File S9 20 significant differentially expressed unigenes in

circadian rhythm pathway in S. japonica.

(DOC)

Figure 5. The circadian rhythm signal network in plant. Red color represents up-regulated unigenes after blue light exposure in our study.
doi:10.1371/journal.pone.0039704.g005
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File S10 3 significant differentially expressed unigenes in

flavonoid biosynthesis pathway in S. japonica.

(DOC)

File S11 9 significant differentially expressed unigenes related to

blue light induced photoreactivation in S. japonica.

(DOC)

File S12 2 significant differentially expressed unigenes related to

blue light induced photomorphogenesis in S. japonica.

(DOC)
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