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Abstract

Most species living in temperate zones adapt their physiology and behavior to seasonal changes in the environment by
using the photoperiod as a primary cue. The mechanisms underlying photoperiodic regulation of stress-related functions
are not well understood. In this study, we analyzed the effects of photoperiod on the hypothalamic-pituitary-adrenal axis in
photoperiod-sensitive Fischer 344 rats. We first examined how photoperiod affects diurnal variations in plasma
concentrations of adrenocorticotropic hormone (ACTH) and corticosterone. ACTH levels did not exhibit diurnal variations
under long- and short-day conditions. On the other hand, corticosterone levels exhibited a clear rhythm under short-day
condition with a peak during dark phase. This peak was not observed under long-day condition in which a significant
rhythm was not detected. To analyze the mechanisms responsible for the photoperiodic regulation of corticosterone
rhythms, ACTH was intraperitoneally injected at the onset of the light or dark phase in dexamethasone-treated rats
maintained under long- and short-day conditions. ACTH induced higher corticosterone levels in rats examined at dark onset
under short-day condition than those maintained under long-day condition. Next, we asked whether melatonin signals are
involved in photoperiodic regulation of corticosterone rhythms, and rats were intraperitoneally injected with melatonin at
late afternoon under long-day condition for 3 weeks. However, melatonin injections did not affect the corticosterone
rhythms. In addition, photoperiodic changes in the amplitude of corticosterone rhythms were also observed in melatonin-
deficient C57BL/6J mice, in which expression profiles of several clock genes and steroidgenesis genes in adrenal gland were
modified by the photoperiod. Our data suggest that photoperiod regulates corticosterone rhythms by altered adrenal
sensitivity through melatonin-independent mechanisms that may involve the adrenal clock.
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Introduction

Most species living in temperate zones adapt their physiology

and behavior to seasonal changes in the environment by using the

photoperiod as a primary cue. Mechanisms underlying the

photoperiodic regulation of reproduction have been well docu-

mented in birds and mammals; recent studies successfully

characterized molecular events in brain that trigger photoperiodic

responses of gonads in Japanese quail [1–3], sheep [4,5], and mice

[6,7]. On the contrary, a limited number of studies have been

reported regarding the mechanisms underlying the photoperiodic

regulation of stress-related functions. For example, in Syrian

hamsters (Mesocricetus auratus), photoperiod modifies plasma con-

centrations of glucocorticoids (corticosterone and cortisol) [8] as

well as their responses to acute stress [9], but the controlling

mechanisms remain unclear.

Several studies focused on the role of the negative feedback loop

within the hypothalamic-pituitary-adrenal axis (HPA axis) in the

photoperiodic regulation of the stress response. In Syrian

hamsters, a short photoperiod induces type I glucocorticoid

receptor binding in the hippocampus and hypothalamus [9] and

mineralocorticoid receptor mRNA expression in the hippocampus

[10]. Similarly, in white-footed mice (Peromyscus leucopus), a short

photoperiod increases corticosterone responses to restraint and

glucocorticoid receptor gene expression in the hippocampus with

enhanced sensitivity to dexamethasone-mediated suppression of

corticosterone [11]. However, the causal relationship between

photoperiodic changes in feedback regulation and photoperiod-

driven changes in corticosteroid levels is debatable because of the

lack of data on ACTH secretion in animals exposed to various

photoperiodic stimuli. In addition, most studies examined

physiological outputs from the HPA axis (e.g., corticosterone
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levels, their responses to acute stress, and glucocorticoid/

mineralocorticoid receptor expression) in a single time point per

day under each photoperiodic condition, despite of the diurnal

variations in these outputs in rodents [12–15].

In mammals, photoperiodic information perceived by the

retina is transmitted to the pineal gland through sympathetic

innervations via the suprachiasmatic nucleus (SCN), a master

biological clock, and translated into patterns of melatonin

secretion that correlate with photoperiod duration [16,17].

Photoperiodic melatonin signals exert their effects on various

physiological functions such as reproduction via melatonin

receptors located in the target tissue. This is mainly regulated

through the activation of MT1 receptors expressed in the

hypophyseal pars tuberalis [18,19]. Functional MT1 receptors

are also distributed in the adrenal gland of rats [20], although

their roles in photoperiodic regulation in adrenal physiology

remain unclear. In addition to melatonin signals, the photoperiod

regulates physiological functions through sympathetic innerva-

tions. For example, in Siberian hamsters, sympathetic nerves

innervating white adipose tissue contribute to seasonal regulation

in adiposity [21], and the sympathoadrenal system is associated

with photoperiodic changes in immune function [22]. Thus, the

photoperiod coordinates precise physiological outputs through

hormonal and neural pathways according to the distribution of

receptors and nerve innervations in the target tissue. However,

the relative contribution of each pathway remains elusive in

organs such as the adrenal gland that have both melatonin

receptors and sympathetic nerve innervations. As regards the

generation of corticosterone rhythms under 12 h light:12 h dark

condition, light exposure regulates circadian clock genes in the

adrenal gland via sympathetic nerve innervations to control the

corticosterone release [23], and the adrenal clockwork is linked

to steroidogenesis by several genes including steroidogenic acute

regulatory protein (StAR), a gene encoding a rate-limiting enzyme

in steroidogenesis [24,25].

To understand the mechanisms underlying photoperiodic

regulation of the HPA axis, we focused on these mechanisms in

the Fischer 344 inbred strain of rat. This strain exhibits robust

responses to the photoperiod regarding gonadal growth, body

weight [26], and expression levels of type 2 deiodinase in the

mediobasal hypothalamus [27], a key gene for photoperiodic

gonadal regulation [2]. This study further aimed to address the

roles of melatonin on photoperiodic regulation of corticosterone

rhythms by 1) melatonin injection experiments in rats and 2)

analysis of corticosterone rhythms in relation to molecular

clockwork and steroidgenesis genes in the adrenal gland of

C57BL mice. This mouse strain cannot produce detectable levels

of melatonin due to a truncation in arylalkylamine N-acetyltrans-

ferase [28,29].

Results

Photoperiodic Regulation in Body Weight and
Epididymal Fat Mass
To confirm the photoperiodic response of Fischer 344 rats used

in this study, we examined the effects of photoperiod on body

weight, epididymal fat mass, and testicular weight in rats

maintained under long- and short-day conditions. Body weight

and epididymal fat mass of the rats maintained under long-day

condition were greater than those in rats maintained under short-

day condition (P,0.01) (Figure 1A and B). However, testicular

weight did not differ between rats maintained under long- and

short-day conditions (Figure 1C).

ACTH and Corticosterone Rhythms in Plasma
Next, we examined temporal changes in the plasma concentra-

tions of ACTH and corticosterone throughout a 24-h cycle under

long- and short-day conditions. ACTH levels exhibited no diurnal

variations under both photoperiodic conditions (long-day condi-

tion: F5,17 = 1.76; short-day condition: F5,19 = 1.56, P.0.05)

(Figure 2A). Two-way ANOVA revealed a significant difference

in relation to photoperiod (F1,36 = 17.62, P,0.01); ACTH levels in

animals exposed to long-day condition were constitutively lower

than those exposed to short-day condition (Figure 2A). Cortico-

sterone levels exhibited a clear diurnal variation in animals

exposed to short-day condition (F5,19 = 13.57, P,0.01) with a peak

that ranged from Zeitgeber time (ZT: ZT0 corresponds to light

onset) 10 to 18, whereas no significant variation was observed in

those exposed to long-day condition (F5,18 = 1.28, P.0.05)

(Figure 2B). Photoperiod had a significant effect on the temporal

patterns of corticosterone levels (F5,36 = 3.6, P,0.01, interaction

between photoperiod and time).

Effects of Photoperiod on the HPA Axis
To elucidate the effects of photoperiod on hypophyseal

sensitivity to CRH, we used organ cultures of the pars distalis

dissected from rats exposed to long- and short-day conditions. The

culture samples were prepared at ZT7–10 because corticosterone

levels peaked around these times in vivo (Figure 2B). Plasma

samples were collected from these animals to determine the

concentrations of ACTH and corticosterone. ACTH levels did not

change in response to the photoperiodic conditions (P.0.05)

(Figure 3A), whereas corticosterone levels were lower in animals

exposed to long-day condition compared to their levels in animals

exposed to short-day condition (P,0.01) (Figure 3B). The CRH-

induced ACTH level in the each pars distalis exceeds 100% of the

respective control level except one sample of short-day condition,

Figure 1. Effects of photoperiod on body weight, epididymal
fat mass, and testicular weight in Fischer 344 rats. Rats were
maintained under either short-day condition (SD, 8 h of light, 16 h of
darkness, black bars) or long-day condition (LD, 16 h of light, 8 h of
darkness, white bars) for 2 weeks. Body weight (A) and epididymal fat
mass (B) of the rats maintained under LD were larger than those
maintained under SD, whereas testicular weight (C) did not differ
between rats maintained under SD and LD. Testicular weight and
epididymal fat mass are indicated as the average of left and right
specimens. **, P,0.01, t-test. Values are means + SEM (n= 25).
doi:10.1371/journal.pone.0039090.g001

Photoperiod and Corticosterone Rhythm
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in which the CRH-induced level was 81% of the control. When

the levels were compared between animals exposed to long- and

short-day conditions, they did not differ significantly (P.0.05)

(Figure 3C).

We further analyzed the sensitivity of the adrenal gland to

ACTH by means of ACTH injections in dexamethasone-treated

rats in vivo. The analysis was performed at light onset and dark

onset under long- and short-day conditions. Dexamethasone

injections suppressed plasma concentrations of corticosterone

irrespective of injected time in rats exposed to long- and short-

day conditions (Figure 3D). Intraperitoneal injections of ACTH

in dexamethasone-treated rats significantly induced corticoste-

rone levels under both photoperiodic conditions (F1,30 = 38.06,

P,0.01, main effect of ACTH injections). When ACTH-induced

levels were compared among ACTH-injected groups, they were

significantly higher in rats exposed to short-day condition than in

those exposed to long-day condition (F1,16 = 8.22, P,0.05, main

effect of photoperiod). In rats exposed to short-day condition, the

induced levels at dark onset were significantly higher than those

at light onset (P,0.05), whereas no time differences were

detected in rats exposed to long-day condition (P.0.05)

(Figure 3D).

Figure 2. Effects of photoperiod on diurnal fluctuations in
plasma ACTH and corticosterone of Fischer 344 rats. Rats were
maintained under either short-day condition (SD, 8 h of light, 16 h of
darkness, black circles) or long-day condition (LD, 16 h of light, 8 h of
darkness, white circles) for 2 weeks. Corticosterone levels (A) in rats
maintained under SD showed a significant variation throughout 24 h
(P,0.01, one-way ANOVA), whereas no diurnal variation was detected
in those maintained under LD. ACTH levels (B) in rats maintained under
LD was constitutively lower than those under SD (P,0.01, two-way
ANOVA). Different characters indicate significant differences among
time points within the SD (P,0.05, one-way ANOVA followed by
Bonferroni’s multiple comparison test). The black and white bars below
the graphs show the length of the dark and light phases. Values are
means 6 SEM (n = 4–5).
doi:10.1371/journal.pone.0039090.g002

Figure 3. Effects of photoperiod on the HPA axis in Fischer 344
rats. Rats were maintained under either short-day condition (SD, 8 h of
light, 16 h of darkness, black bars) or long-day condition (LD, 16 h of
light, 8 h of darkness, white bars) for 2 weeks, and examined plasma
concentrations of ACTH (A) and corticosterone (B) around Zeitgeber
time 7–10 (ZT: ZT0 corresponds to the light onset). Corticosterone levels
of rats under LD were significantly lower than those under SD (**,
P,0.01, t-test). (C) CRH-induced ACTH secretion from the organ culture
of hemi-pars distalis dissected from animals exposed to either SD or LD.
The data are indicated as the percentage of the CRH-induced ACTH
level to the control level for each rat (n = 4–6). (D) ACTH-induced
corticosterone levels in dexamethasone-treated rats maintained under
SD and LD. Rats were intraperitoneally injected with dexamethasone-
21-phosphate (0.97 mmol/kg body weight) 2 h prior to light onset
(Light) or dark onset (Dark) under SD and LD, followed by in-
traperitoneal injections of rat ACTH1–24 (0.27 nmol/kg body weight)
or saline 3 h after dexamethasone injections. Plasma samples were
collected 20 min after ACTH injections. Different characters indicate
significant differences within ACTH-injected groups (P,0.05, two-way
ANOVA followed by Bonferroni’s multiple comparison test). Values are
means + SEM (n= 3–7).
doi:10.1371/journal.pone.0039090.g003
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Effects of Melatonin Injections on Corticosterone
Rhythms
To evaluate the involvement of melatonin signals in photope-

riod-regulated corticosterone rhythms, rats were intraperitoneally

injected with melatonin or vehicle at ZT14 under long-day

condition for 3 weeks, and plasma corticosterone levels at ZT2

and 10 were compared to rats maintained under short-day

condition. Corticosterone rhythms clearly amplified in rats

maintained under short-day condition compared to those injected

with vehicle under long-day condition (ZT10: F2,9 = 20.99,

P,0.001) (Figure 4). However, melatonin injections did not mimic

the effects of short-day condition on corticosterone rhythms, and

the levels at both time points were similar with those in rats

injected with vehicle under long-day condition (P.0.05) (Figure 4).

Effects of Photoperiod on Corticosterone Rhythms and
Adrenal Genes Expression in C57BL/6J Mice
We further examined diurnal variations in plasma corticoste-

rone levels in melatonin-deficient C57BL/6J mice exposed to

long- and short-day conditions. Corticosterone levels exhibited

a significant rhythm in mice exposed to short-day condition

(F5,26 = 3.61, P,0.05) and peaked at ZT6 (Figure 5A), whereas no

diurnal variation was detected in mice exposed to long-day

condition (F5,29 = 1.91, P.0.05) (Figure 5A). Two-way ANOVA

detected a significant interaction between photoperiod and time

(F5,55 = 2.99, P,0.05).

Diurnal rhythms of expression of clock genes in the adrenal

gland were analyzed in C57BL/6J maintained under long- and

short-day conditions. All genes examined were expressed rhyth-

mically in mice maintained under short-day condition (Per1:

F5,16 = 5.09, P,0.01; Per2: F5,16 = 5.40, P,0.01; Cry1:

F5,16 = 31.99, P,0.0001; Cry2: F5,16 = 7.52, P,0.001; Bmal1:

F5,16 = 11.99, P,0.0001; Clock: F5,16 = 3.99, P,0.05). Several

genes were also expressed rhythmically in mice maintained under

long-day condition (Per1: F5,14 = 3.26, P,0.05; Cry1: F5,14 = 14.84,

P,0.0001; Bmal1: F5,14 = 86.77, P,0.0001), although expression

of Per2, Cry2, and Clock did not show significant rhythms (P.0.05)

(Figure 5B). Two-way ANOVA detected significant interactions

between photoperiod and time in the expression of Per1

(F5,30 = 3.73, P,0.01), Cry1 (F5,30 = 31.40, P,0.0001), Cry2

(F5,30 = 2.70, P,0.01), and Bmal1 (F5,30 = 32.01, P,0.0001), and

the peak time points of the rhythms were either advanced 8 h (Per1

and Bmal1) or delayed 8 h (Cry1) in mice maintained under short-

day condition compared to those maintained under long-day

condition (Figure 5B).

We also analyzed rhythmic expression of several genes involved

in steroidgenesis, and found the significant rhythms of StAR

(F5,16 = 10.83, P,0.0001), Cyp11a1 (F5,16 = 5.37, P,0.01), Cyp21a

(F5,16 = 4.91, P,0.01), and Cyp11b1 (F5,16 = 3.07, P,0.05) in mice

maintained under short-day condition (Figure 5B). On the other

hand, only StAR was rhythmically expressed in mice maintained

under long-day condition (F5,14 = 6.84, P,0.01)(Figure 5B). Sig-

nificant interactions between photoperiod and time were detected

in the expression of StAR (F5,30 = 11.18, P,0.0001) and Cyp11a1

(F5,30 = 2.70, P,0.05). The peak of the rhythmic expression of

StAR was 8 h advanced in mice maintained under short-day

condition compared to those maintained under long-day condition

(Figure 5B).

Discussion

The mechanisms underlying photoperiodic regulation of stress

physiology are poorly understood because of limited animal

models that exhibit a clear response of their stress-related functions

to photoperiodic stimuli. To establish a suitable model for this

purpose, we here demonstrate for the first time the photoperiodic

regulation in the HPA axis of Fischer 344 rats. These rats are

known to exhibit robust responses to the photoperiod regarding

their gonadal growth, body weight, and expression of key genes for

the photoperiodic gonadal regulation in the brain [26,27]. In

agreement with these reports, we confirmed the greater body

weight and epididymal fat mass in Fischer 344 rats exposed to

long-day condition than those exposed to short-day condition.

However, we could not detect a photoperiodic change in testicular

weight. This discrepancy might be attributed to the stages in

growth; testicular volume in young Fischer 344 rats (4–5 weeks

old) exhibits a robust response to the photoperiod, which is

reduced with age until reaching a point of nonresponse in adults

despite the maintained sensitivity of body weight to the

photoperiod during adulthood [26]. The rats in our study were

8–9 weeks old at the sampling day, and their testicular growth

appears to have reached the nonresponsive point, whereas other

physiological outputs, i.e., body weight and fat mass were sensitive

to the photoperiod. Thus, these rats are suitable animals to detect

the effects of photoperiod on HPA axis in the absence of gonadal

changes.

Using the Fischer 344 rats, we first demonstrate the effects of

photoperiod on diurnal variations in plasma concentrations of

ACTH and corticosterone. Surprisingly, temporal patterns of

ACTH levels did not exhibit positive correlations with those of

corticosterone levels; ACTH levels had no fluctuations over 24 h

under long- and short-day conditions, whereas corticosterone

levels exhibited a robust rhythm under short-day condition that

was attenuated under long-day condition. These data are in-

Figure 4. Effects of melatonin injections on plasma corticoste-
rone rhythms in Fischer 344 rats. Rats maintained under long-day
condition (LD, 16 h of light, 8 h of darkness) were daily injected either
vehicle (white bars) or melatonin (shaded bars) at late afternoon for
3 weeks. The other group of rats was maintained under short-day
condition (SD, 8 h of light, 16 h of darkness, black bars). Plasma
concentrations of corticosterone at Zeitgeber time (ZT: ZT0 corresponds
to the light onset) 2 and 10 are shown. Values are means + SEM (n = 4–
5). **, P,0.01, t-test. Different characters indicate significant differences
among the levels at ZT10 (one-way ANOVA followed by Bonferroni’s
multiple comparison test, P,0.05).
doi:10.1371/journal.pone.0039090.g004
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consistent with the classical concept that plasma concentrations of

ACTH and corticosterone are positively linked and exhibit parallel

rhythms under 12L:12D in many mammalian species including

rats [30] and mice [24]. However, a corticosterone rhythm persists

in hypophysectomized rats implanted with ACTH pellets under

12L:12D [31], presumably through diurnal changes in adrenal

sensitivity to ACTH [14,15]. These data raise the hypothesis that

photoperiod affects the sensitivity of adrenal gland regarding its

regulation of corticosterone rhythms. In agreement with this

hypothesis, under the dexamethasone-treated condition in vivo, i.e.,

the condition in which endogenous ACTH is suppressed, the

sensitivity of adrenal corticosterone secretion to injected ACTH

was higher in rats exposed to short-day condition than in those

exposed to long-day condition in the present study. Notably, the

sensitivity increased at dark onset under short-day condition, at

which corticosterone rhythms reached their peaks. These data

strongly suggest that a short photoperiod sensitizes the adrenal

gland to ACTH to generate a robust corticosterone rhythm. This

hypothesis is further supported by a report using fat sand rats

captured from Algerian Sahara desert, in which the sensitivity of

cortisol secretion to ACTH increases during winter and decreases

during spring [32].

Although melatonin is widely known as a transmitter of the

photoperiodic information in mammals [16,17], a daily melatonin

injection at late afternoon under long-day condition did not induce

the amplified rhythm observed under short-day condition in the

present study. In addition, melatonin-deficient C57BL mice also

showed a clear rhythm under short-day condition, which was

attenuated by the exposure to long-day condition. These data

suggest that melatonin is not crucial for the photoperiodic

regulation of corticosterone rhythms. In mammals, significant

evidence suggests the involvement of SCN-autonomic innervations

in the circadian rhythms of glucocorticoid secretion [12,33], as

lesions of the SCN abolish the diurnal rhythms of corticosterone

[34] and adrenal sensitivity [35], which are reduced in SCN-

intact, adrenal-denervated animals [36]. Additionally, light in-

duces a variety of genes including clock genes Per1 and Per2 in the

adrenal gland with corticosterone release via SCN-sympathetic

nervous system in mice [23]. Thus, our data on 1) photoperiod-

regulated adrenal sensitivity in rats, and 2) melatonin-independent

responses of corticosterone rhythms to photoperiod in rats and

mice, suggest that photoperiod affects corticosterone rhythms via

an autonomic pathway. This is also inferred by the photoperiodic

regulation of immune functions by the sympathoadrenal system in

Siberian hamsters [22]. Notably, in Syrian hamsters, glucocorti-

coid rhythms regulate the nycthemeral and photoperiodic changes

in tryptophan hydroxylase 2 gene, which codes the rate-limiting

enzyme of serotonin synthesis, in the raphe nuclei [37]. Since

Figure 5. Effects of photoperiod on plasma corticosterone rhythms and expression of adrenal genes in C57BL/6J mice. Mice were
maintained under either short-day condition (SD, 8 h of light, 16 h of darkness, black circles) or long-day condition (LD, 16 h of light, 8 h of darkness,
white circles) for 2 weeks, and examined diurnal rhythms of plasma corticosterone (A) and expression of clock genes and steroidgenesis genes (B).
Diurnal rhythmicity was analyzed by one-way ANOVA, and significances (*, P,0.05, **, P,0.01, ***, P,0.001) or non-significances (n.s.) were indicated
in each graph. Significant effects of photoperiod on the expression profiles of adrenal genes were indicated by underlines of gene symbols (two-way
ANOVA, interactions between photoperiod and time, P,0.05). Values are means 6 SEM (n= 4–10).
doi:10.1371/journal.pone.0039090.g005

Photoperiod and Corticosterone Rhythm
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serotonin is one of the major regulators of the master clock in the

SCN, and the SCN receives direct serotonergic innervations from

the median raphe as well as an indirect input from the dorsal

raphe [38], a glucocorticoid rhythm itself may modulate/enhance

the output from the SCN such as adrenal sensitivity via the

serotonergic system.

Rhythmically expressed clock genes in the adrenal gland play

pivotal roles in generating corticosterone rhythms in mice under

12L:12D or constant darkness, as shown by using Per2/Cry1

double mutant mice [24] or adrenal-specific knockdown of

BMAL1 protein [25]. In these lighting conditions, StAR and other

genes involved in corticosterone biosynthesis are controlled by the

adrenal clock [24,25,39]. Here we demonstrate the temporal

expression of clock genes and several genes involved in

steroidgenesis under different photoperiodic conditions in mice.

Intriguingly, rhythmic expression of several clock genes and StAR

were 8 h advanced under short-day condition compared to long-

day condition, correlated with the 8 h advance of light-dark

transition under short-day condition relative to that under long-

day condition. An exceptional case is Cry1 expression, whose phase

was 8 h delayed under short-day condition. The ACTH receptor

gene, Mc2r, did not show diurnal or photoperiodic changes,

although a previous report showed the circadian rhythm of the

Mc2r expression in mice adrenal gland under constant darkness

[24]. Exposure to light irrespective of photoperiod might modify

the expression, asMc2r expression is sensitive to a light pulse in the

adrenal gland of rats [40]. Other important observation is that

short-photoperiod induced significant rhythmicity of 10 genes/

12 genes examined, whereas only several genes among them

(4 genes/12 genes) showed significant rhythmicity under long-day

condition. These observations suggest that photoperiod differen-

tially entrains the adrenal clock and its downstream genes involved

in steroidgenesis. However, photoperiod did not alter the

amplitude of the rhythms of adrenal genes examined despite of

the amplified corticosterone rhythms in plasma under short-day

condition. Genome-wide studies are needed to identify the genes

responsible for the amplification of corticosterone rhythms in

response to photoperiod.

In conclusion, photoperiod regulates plasma corticosterone

rhythms in Fischer 344 rats through the adrenal sensitivity to

ACTH. Photoperiodic changes in corticosterone rhythms are

likely to be controlled by melatonin-independent mechanisms, as

demonstrated using melatonin injected rats and melatonin-de-

ficient C57BL/6J mice. Our study contributes to understanding

the mechanisms underlying seasonal regulation in stress-related

physiology as well as seasonal affective disorder, a disease

characterized as a condition of regularly occurring depression in

winter and at least in part regulated by seasonal changes in HPA

axis.

Materials and Methods

Ethics Statement
All animal experiments reported here were conducted in

accordance with the Guidelines for Animal Experiments of the

Faculty of Agriculture of Kyushu University, as well as the Law

(No. 105) and Notification (No. 6) of the Japanese Government,

and were specifically approved by Animal Care and Use

Committee of Kyushu University.

Animals
Male 4-week-old Fischer 344 rats and C57BL/6J mice were

obtained from Charles River Laboratories (Yokohama, Japan) and

Japan SLC (Shizuoka, Japan), respectively. They were maintained

in light-tight boxes and exposed to short-day condition [8 h of

light (50 lux), 16 h of darkness (8L:16D)] for at least 1 week before

the experiment. Five to 6-week-old rats or mice were separated

into 2 groups: 1 group was transferred to the long-day condition by

delaying the lights-off time by 8 h (16L:8D) for 2 weeks and the

other group was maintained under short-day condition for

additional 2 weeks. Thereafter, they were used for either plasma

collections for hormonal assays, organ cultures, ACTH injections,

and mRNA analysis in adrenal gland as described below. The

animal boxes were placed in a room at a temperature of 2561uC.
Standard diet for laboratory rodents (MF, Oriental Yeast, Tokyo,

Japan) and water were available ad libitum. Although the previous

report used a low-calorie diet (ZF for herbivorous animals,

Oriental Yeast) to enhance the photoperiodic response of gonads

in Fischer 344 rats [27], our pilot experiments revealed no

enhancement of the stress response to the photoperiod by the use

of ZF (data not shown). Rather, the ZF diet appears to behave as

an overall stressor irrespective of photoperiodic conditions and

may mask the photoperiod-specific effects. Thus, we used standard

MF diet throughout the present study.

Diurnal Rhythm of Plasma Hormones and Gene
Expression in Adrenal Gland
Rats and mice were sacrificed by isoflurane anesthesia and

decapitated within 2 min to avoid acute increases in corticosterone

levels, and trunk blood was collected into sampling tubes. They

were sacrificed at ZT2, 6, 10, 14, 18, and 22 (n= 4–5).

Decapitation during the dark phase was performed under dim

red light. In rats, body mass, testes, and epididymal fat were

weighed to confirm the photoperiodic response. In mice, adrenal

glands were collected in RNAlater (Ambion, TX, USA). Blood was

immediately chilled after the collection and centrifuged at

3000 rpm for 10 min at 4uC, and collected plasma samples were

stored at 280uC until analysis. Highly hemolyzed plasma samples

were removed from the analysis, since they influence the stability

of ACTH.

Organ Culture
Culture preparation was performed at ZT7–10. Rats were

sacrificed by isoflurane anesthesia, and the hypophysis was

dissected from the sella turcica. The pars nervosa was carefully

removed under dissection microscopy, and then the pars distalis

was divided into 2 equal pieces. Each hemi-pars distalis was

cultured on the culture inserts (BD Falcon, Franklin Lakes, NJ)

with 1 ml of DMEM (Invitrogen, Carlsbad, CA) supplemented

with 10 mM HEPES, 25 U/ml penicillin, 25 mg/mg streptomy-

cin, and 2% B27 supplement (Invitrogen) at 37uC under 95%

atmosphere and 5% CO2 for 24 h. Thereafter, the medium was

replaced with prewarmed medium including either 100 nM CRH

(Peptide Institute, Osaka, Japan) or vehicle. Each hemi-pars

distalis from the same rat was treated with either CRH or vehicle

(n = 4–5). After 3 h of stimulation, medium was collected for

ACTH measurement and stored at280uC until analysis. After the

data were normalized by individual tissue weight, they were

calculated according to the percentage of the CRH-induced value

to the control value for each animal.

ACTH Injections
ACTH injections were performed according to a previously

reported method [41]. Rats were intraperitoneally injected with

dexamethasone-21-phosphate (0.97 mmol/kg body weight, Sigma,

St. Louis, MO) 2 h prior to light onset or dark onset under short-

and long-day conditions (ZT22 or 6 under short-day condition,
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ZT22 or 14 under long-day condition) and left in their home cages

for 3 h. Thereafter, they were intraperitoneally injected with rat

ACTH1–24 (0.27 nmol/kg body weight, Sigma) or vehicle (0.9%

NaCl), left an additional 20 min in their home cages, and rapidly

decapitated under isoflurane anesthesia (n = 3–7). Samples were

stored at 280uC until the assay. The injected dose of dexameth-

asone was sufficient to suppress endogenous ACTH, and that of

ACTH yielded circulating levels of ACTH that were within the

physiological range in Fischer 344 rats [41].

Melatonin Injections
The melatonin injections were performed according to a pre-

vious study [27]. Four-week-old Fischer 344 rats were obtained

from Charles River Laboratories, and maintained under short-day

condition for 1 week. At 5-week-old, rats were separated into 3

groups (n = 8–9 per group): one group was maintained under

short-day condition, and the other two groups were transferred to

long-day condition. Three weeks after the separation, a daily

melatonin injection was started with the groups maintained under

long-day condition, i.e., they were intraperitoneally injected with

either melatonin (100 mg of melatonin dissolved in 0.1 ml 10%

ethanol and 0.9% NaCl) or vehicle (0.1 ml 10% ethanol and 0.9%

NaCl) 2 h prior to the dark onset (ZT14). Injections were carried

out for 3 weeks. Rats maintained under short-day condition were

left intact. Thereafter, rats were sacrificed by decapitation under

isoflurane anesthesia within 2 min at ZT 2 and 10 (n= 4–5 per

time point for each group). Blood was centrifuged at 3000 rpm for

10 min at 4uC, and collected plasma samples were stored at

280uC until analysis.

Hormone Assays
Total corticosterone was measured in duplicate by using

a corticosterone enzyme immunoassay kit (Cayman Chemical,

Ann Arbor, MI) according to the manufacturer’s protocol except

for the use of Steroid Displacement Reagent (2.5%, Enzo Life

Sciences, Farmingdale, NY) in the step of plasma dilution. The

cross-reactivities of the antibody are following: corticosterone,

100%; 11-dehydrocorticosterone, 11%; 11-deoxycorticosterone,

7%; progesterone, 0.31%; cortisol, 0.17%; aldosterone, 0.06%.

Intra- and inter-assay coefficients of variation were 2.8% and

8.9%, respectively.

Plasma ACTH concentrations were measured by RIA as

described by Katoh et al. [42]. A specific antiserum was kindly

provided by Dr. B.J. Canny (Monash University, Australia) and

shows following cross-reactivities: ACTH1–39, 100%; ACTH5–24,

1.6%; ACTH18–39, ,0.01%; b-endorphin1–31, ,0.01%; a-mela-

nocyte-stimulating hormone, ,0.01%; c-melanocyte-stimulating

hormone, ,0.01%; and deacetyl-a-melanocyte-stimulating hor-

mone, ,0.01%. Intra- and inter-assay coefficients of variation

were 9.8% and 12.4%, respectively.

Real-time PCR
Total RNA was isolated using ISOGEN (Nippon gene, Tokyo,

Japan) from whole adrenal gland, and cDNA was synthesized

using the PrimeScript RT Reagent Kit with gDNA Eraser

(Takara, Ohtsu, Japan) according to the manufacturer’s protocol.

In order to analyze the expression levels of clock genes (Per1, Per2,

Cry1, Cry2, Bmal1, and Clock), genes involved in steroidgenesis

(StAR, Cyp11a1, Hsd3b, Cyp21a, and Cyp11b1), and the ACTH

receptor gene (Mc2r), real-time PCR was performed using

Mx3000P Real–Time QPCR System (Stratagene, CA, USA) with

SYBR Premix Ex Taq (Takara) and primers shown in Table 1. PCR

was performed at 95uC for 30 s followed by 40 cycles at 95uC for

5 s, 60uC for 30 s. The specificity of PCR products was confirmed

by analyzing the dissociation curves. Levels of cyclophillin mRNA

were used as internal controls.

Statistical Analysis
Student’s t-test was used for the analysis of the photoperiodic

effects on body weight, epididymal fat mass, testicular weight, and

hormonal levels in plasma or culture medium at a single time

point. Diurnal variations in plasma ACTH, plasma corticosterone,

and adrenal genes expression were analyzed by one-way ANOVA,

followed by Bonferroni’s multiple comparison test. Two-way

ANOVA was applied for the analysis of the effects of photoperiod

on diurnal variations in hormonal levels and adrenal genes

expression, as well as effects of ACTH or melatonin injections on

corticosterone levels. Adrenal sensitivity to ACTH was further

analyzed by one-way ANOVA within ACTH-injected groups

followed by Bonferroni’s multiple comparison test. Values were

considered significantly different at P , 0.05.
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Table 1. Primers used for real-time PCR

gene 59–39 sequence size

Per1 F agaagaaaacagcaccagct 98

R tcttgagttataagaaccccaacatg

Per2 F gccaagtttgtggagttcctg 226

R cttgcaccttgaccaggtagg

Cry1 F gtcattgcaggaaaatgggaag 235

R taaagaggcggagagacaaagg

Cry2 F agatggcctcaggttttctcag 218

R ttcaggcccactctaccttctc

Clock F gtggtgactgcctatcctacct 286

R aaggagggaaagtgctctgttg

Bmal1 F gcagtgccactgactaccaaga 170

R tcctggacattgcattgcat

StAR F ttgggcatactcaacaacca 102

R gaaacaccttgcccacatct

Cyp11a1 F gacctggaaggaccatgca 63

R tgggtgtactcatcagctttattga

Hsd3b F agaccagaaaccagggagcaa 84

R tctccttccaacactgtcacctt

Cyp21a F gggaactgcccagcaagtt 78

R ggatggtgttctgggattcttc

Cyp11b1 F tcagtccagtgtgttcaactatacca 62

R gccgctccccaaaaaga

Mc2r F cacaaatgattctgctgcttcc 188

R ttatttcttgcggtgtcattgg

Cyclophillin F cgactccggcaagatcgaa 67

R ggtcccccaggctctctact

doi:10.1371/journal.pone.0039090.t001
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