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Abstract

The endocrine control of the reproductive function is often studied from the analysis of luteinizing hormone (LH) pulsatile
secretion by the pituitary gland. Whereas measurements in the cavernous sinus cumulate anatomical and technical
difficulties, LH levels can be easily assessed from jugular blood. However, plasma levels result from a convolution process
due to clearance effects when LH enters the general circulation. Simultaneous measurements comparing LH levels in the
cavernous sinus and jugular blood have revealed clear differences in the pulse shape, the amplitude and the baseline.
Besides, experimental sampling occurs at a relatively low frequency (typically every 10 min) with respect to LH highest
frequency release (one pulse per hour) and the resulting LH measurements are noised by both experimental and assay
errors. As a result, the pattern of plasma LH may be not so clearly pulsatile. Yet, reliable information on the InterPulse
Intervals (IPI) is a prerequisite to study precisely the steroid feedback exerted on the pituitary level. Hence, there is a real
need for robust IPI detection algorithms. In this article, we present an algorithm for the monitoring of LH pulse frequency,
basing ourselves both on the available endocrinological knowledge on LH pulse (shape and duration with respect to the
frequency regime) and synthetic LH data generated by a simple model. We make use of synthetic data to make clear some
basic notions underlying our algorithmic choices. We focus on explaining how the process of sampling affects drastically the
original pattern of secretion, and especially the amplitude of the detectable pulses. We then describe the algorithm in
details and perform it on different sets of both synthetic and experimental LH time series. We further comment on how to
diagnose possible outliers from the series of IPIs which is the main output of the algorithm.
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Introduction

The neuroendocrine axes play a major part in controlling the

main physiological functions (metabolism, growth, development

and reproduction). The connection between the central nervous

system and the endocrine system takes place on the level of the

hypothalamus, where endocrine neurons are able to secrete

hormones that target the pituitary gland. In birds and mammals, a

dedicated portal system (the pituitary portal system) joins the

hypothalamus and pituitary gland together. The anterior lobe of

the pituitary gland (adenohypophysis) produces different hor-

mones, which target either other endocrine glands (releasing their

hormones directly into the bloodstream), exocrine glands (releas-

ing their hormones into dedicated ducts) or non-secreting organs.

We will be particularly interested in the gonadotropic axis, that

is named according to its most downstream component, the

gonads (ovaries in females, testes in males). The reproductive axis

is under the control of the gonadotropin-releasing hormone

(GnRH), which is secreted in pulses from specific hypothalamic

areas. GnRH effects on its target cells depend critically on pulse

frequency and ultimately result in the differential secretion

patterns of the luteinizing hormone (LH) and follicle-stimulating

hormone (FSH). LH secretion pattern is clearly pulsatile, while

FSH pattern is not. LH and FSH control the development of

germinal cells within the gonads and the secretory activity of

somatic cells. In turn, hormones secreted by the gonads (steroid

hormones such as androgens, progestagens and oestrogens or

peptidic hormones such as inhibin) modulate the secretion of

GnRH, LH and FSH within intertwined feedback loops.

Whereas measurements of GnRH levels (in either the pituitary

portal blood or the cerebrospinal fluid) cumulate anatomical and

technical difficulties, LH levels can be easily assessed from jugular

blood. In females, there is a clear modulation of LH pulse

frequency along an ovarian cycle [1]. Pulse frequency is much

lower in the luteal, progesterone-dominated phase compared to

the follicular, oestradiol-dominated phase. Apart from the period

surrounding ovulation, there is a good correlation between GnRH

and LH pulses [2,3], so that a precise determination of LH pulse

frequency is valuable to investigate the feedback effects of gonadal

hormones in different physiological or pathological situations.

LH plasma levels result from a convolution process. The

instantaneous LH release rate from the pituitary gland is pulsatile,

but as soon as LH enters the general circulation, it is subject to

clearance effects. Simultaneous measurements of LH levels in the

cavernous sinus and jugular blood [4] have revealed clear

differences in the pulse shape and amplitude as well as in the
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baseline. Besides, experimental sampling occurs at a relatively low

frequency (typically every 10 min, [5–7]) with respect to LH

highest frequency release (one pulse per hour) and the resulting

LH measurements are noised by both experimental and assay

errors. As a result, the pattern of plasma LH may be not so clearly

pulsatile. Yet, reliable information on the interpulse intervals (IPI)

is a prerequisite to study precisely the steroid feedback exerted on

the pituitary level. Hence, there is a real need for robust IPI

detection algorithms.

In this article, we present an algorithm for the monitoring of LH

pulse frequency, basing ourselves both on the available endocrino-

logical knowledge on LH pulse (shape and duration with respect to

the frequency regime) and synthetic LH data generated by a simple

model. We make use of synthetic data to make clear some basic

notions underlying our algorithmic choices. We focus on explaining

how the process of sampling affects drastically the original pattern of

secretion, and especially the amplitude of the detectable pulses. We

then describe the algorithm in details and perform it on different sets

of both synthetic and experimental LH time series. We further

comment on how to diagnose possible outliers from the series of IPIs

which is the main output of the algorithm.

Methods

A Mathematical Generator of Synthetic LH Time Series
Basing ourselves on a simple model of plasma LH level

introduced in [8], we illustrate the effects of the sampling process

upon a LH signal. This model combines a representative function

of the pulsatile LH secretion by the pituitary gland with a term

accounting for the clearance from the blood. The synthetic

sampling process is designed to reproduce as close to experiments

as possible the variability in the sampling times and measurements.

The different steps of this construction, as well as the links between

the mathematical objects and what they represent in the biological

context, are illustrated in the diagram of Figure 1.

Model of Luteinizing Hormone secretion. The pituitary

gland releases LH into the blood as successive spikes characterized

by a quasi-instantaneous increase followed by slower (yet quite fast)

decrease (see [4]). Hence, in our model, the LH release along a

spike is approximated by a discontinuous function of time: the

jump accounting for the instantaneous increase in the LH release

is followed by a fast exponential decrease. The interspike interval is

controlled by a function of time Pspike(t) accounting for the

varying release frequency. The spike amplitude is also subject to

an inter-spike variability as well as to long-term changes partly due

to the time variations in the stock of LH available for release. In

our model, the amplitude is controlled by another function of time

Mspike(t). Hence, the instantaneous release of LH (expressed in

ng/ml/min) in the blood by the pituitary gland is given by:

LH(t)~Mspike(t) exp {khl t{t
t

Pspike(t)
sPspike(t)

� �� �
ð1Þ

where vxwrefers to the greatest integer smaller than x (integer

part). The khl exponential decay rate is directly linked to the spike

half-life, thl , (i.e. the time taken for the instantaneous released LH

quantity to drop from the maximal spike value to half this value)

through:

khl~
ln 2

thl

We based our choice of parameter values on the few experiments

that have investigated the LH release by the pituitary gland in the

ewe from synchronous sampling in the jugular blood and

cavernous sinus [4]. Accordingly, we chose a spike half-life

thl~20min [ khl^0:03466 min{1:

We represent the continuously measured LH blood level

(expressed in ng/ml) as the solution of:

dLHp

dt
(t)~LH(t){aLHp(t) ð2Þ

where the LH release rate LH(t) is given by equation (1).

Parameter a represents the instantaneous LH clearance rate from

the blood. To be consistent with the one hour half-life of LH pulses

(i.e. the time taken for the blood LH level to drop from the

maximal pulse value to half this value) in the jugular blood, we

have fixed a~6min{1.

Sampling protocol and assay variance. To mimic the

experimental protocol for LH data acquisition, we extract time

series from the fine step numerical integration of equation (2). This

process is intended to obtain a time series of N consecutive samples

similar to experimental results, i.e. a finite sequence of N couples

(ti,Ai), with i = 1,2,…,N, where Ai is the measured LH level at

time ti.

In most experiments, the LH data are retrieved at a fixed

frequency. We describe below the corresponding synthetic process:

the samples are obtained each Ts minutes from the starting time

t = r (expressed in minutes). Hence, the sampling times are

ti~rz(i{1)Ts, i~1,2,:::N: ð3Þ

Note that the first sample is retrieved at time t1~r. Parameter r,

chosen between 0 and Ts, allows one to shift the beginning of the

sampling process while using the same set of data simulated from

equation (2).

To take into account the inherent variability of the experimental

sampling times, we compute times ti near the theoretical sampling

time ti:

ti~tizrtime(i), i~1,2,:::N: ð4Þ

In experiments, one naturally expects the error on the sampling

times to be bounded, otherwise it would mean that successive

samples could be retrieved in inverse time order. We also assume

that between these bounds, the errors are equally distributed.

Hence, the random numbers rtime(i)[½{f ,f �,f w0, are generated

from an uniform distribution (using the Mersenne Twister

algorithm [9]). Then, we can compute the value LHp(ti) of the

solution of equation (2) at each of these times. This amounts to

choosing the i-th sampling time ti with equal probability in an

interval centered on ti . It is worth noticing that a truncated normal

distribution (such that inversion between two consecutive sampling

times cannot happen) for the sampling time errors does not

significantly change the impact of the sampling process in

comparison with a uniform distribution.

We also reproduce the LH assay variance by applying a

multiplicative noise on each sample. We compute:

Ai~LHp(ti)(1zrassay(i)), i~1,2,:::N, ð5Þ

DynPeak: An Algorithm for Pulse Frequency Analysis
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where the random numbers rassay(i)[½{b,b�,bw0, are also

generated from an uniform distribution (Mersenne Twister

algorithm). Compared to a normal distribution, this choice allows

us to lower the extremal errors while enhancing the frequency of

medium ranged errors in the synthetic LH measured levels. Except

for large deviation-induced phenomena (that remain very rare),

the choice of a normal distribution for the assay error does not

impact much the pattern of synthetic LH time series, as shown in

the section ‘‘Algorithm robustness to assay error’’ of the Appendix

S1 (see Figure S4 and Table S1).

The output of the sampling process is the time series defined by

the N couples (ti,Ai),i~1,2,:::,N, of times and corresponding

measured LH levels. Figure 2 illustrates the construction of the i-th

sample in a time series.

In the context of an experiment, there may be some uncertainty

on the exact sampling times (i.e. the precise times at which the

samples are retrieved). On the contrary, in our model of the

sampling process, we can retrieve the sequence of effective

sampling times (ti) for a given synthetic experiment. Figure 3

allows us to visualize the sequence (ti) (red dotted lines) compared

to the registered sampling time sequence (ti) (blue dotted lines).

Here, we set the sampling period Ts to 10 min and the shift

constant r to 1 min, hence:

ti~10iz1, i~1,2,:::,N

The maximal error is fixed to 15% of the sampling period, so

that f = 1.5 min and, for each i from 1 to N, ti[½ti{1:5,tiz1:5�.
Moreover, Figure 3 compares the results obtained without any

variability on the sampling times (blue time series) with those

obtained with an error of +15% (red time series). It illustrates that

this variability can occasionally imply a great difference near a

pulse maximum. The 6th blue sample, obtained at t~t6~51min,

corresponds to the theoretical pulse maximum around 2.3 ng/ml.

Yet the 6th red sample, obtained one minute earlier due to the

variability of the sampling time, corresponds to the preceding

minimal LH level. Consequently, the local maximum of the blue

time series, obtained with the 6th sample, is noticeably greater

than the local maximum of the red time series, which is obtained

with the 7th sample.

Model Outputs
On the endocrinological ground, a LH pulse is an increase in

LH blood level triggered by the quick release of LH by the

pituitary gland. As illustrated in the preceding section, the

moderate clearance rate of LH from the blood underlies the

specific asymmetric shape of the pulses, which is characterized by

a fast increase immediately followed by a slower decrease. This

property has been highlighted in dedicated studies using high

frequency sampling (for instance [10]: horse, 2 samples per

minute) of LH level during a short interval of time.

However, in long-time experiments, the sampling frequency is

usually of the order of one per 10 minutes. Consequently, the

precise shape and quantitative properties of the pulses are non

longer obvious in the time series. In particular, the theoretical

pulse amplitude (theoretical highest level hit during a pulse event)

is most of the time not properly reflected by the highest sample

obtained during the corresponding event. In the following, we

introduce few notions allowing us to differentiate the properties of

a theoretical pulse from those of the corresponding pulse obtained

from a time series.

The advantages of synthetic time series is that the underlying

signal LH(t) of LH release and the theoretical continuously

measured blood LH level LHp(t) are available. This corresponds

to the ideal experimental situation where one could get high-

frequency sampled, variability-free time series retrieved at the

same time from the cavernous sinus and jugular blood. With

Figure 1. Diagram of the synthetic sampling process.
doi:10.1371/journal.pone.0039001.g001

DynPeak: An Algorithm for Pulse Frequency Analysis
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synthetic data, we dispose of reference sets that allow us to identify

both LH spikes and pulses without any ambiguity.

Moreover, we can easily test different experimental protocols by

changing the value of the parameters Ts, r, f, b controlling the

sampling properties and choosing various functions Mspike and

Pspike that determine the time-varying amplitude and frequency of

LH spikes released by the pituitary gland.

Definitions. For sake of clarity, we specify a few notions and

terms that will be used in what follows. The definitions are

illustrated by Figure 4. For a theoretical pulse (i.e. a peak in the

signal LHp(t) triggered by a spike in LH(t)), we define:

N the theoretical pulse amplitude as the maximal value hit during

the event.

N the theoretical pulse time as the time at which the level hits the

theoretical pulse amplitude.

For a pulse in a time series (corresponding to a theoretical pulse),

we define:

N the pulse amplitude as the maximal sample obtained during

the pulse event,

N the pulse occurrence as the sample time at which the time

series hits the pulse amplitude.

Figure 2. Computation of a synthetic sample. Solution LHp(t) of equation (2) (green curve), retained sampling time ti (blue dotted line), real
sampling time ti (red dotted line) randomly chosen in ½ti{f ,tizf � (blue interval), exact value LHp(ti) of LH level at time ti (green dotted line),
retrieved LH level Ai (red dotted line) randomly chosen in ½LHp(ti)(1{b),LHp(ti)(1zb)� (green interval). The output of the i-th step of the sampling
process is the couple (ti,Ai) (magenta disc) of time and corresponding LH level.
doi:10.1371/journal.pone.0039001.g002

Figure 3. Effect of the variability of the sampling times upon the synthetic time series. The ti,i~1 . . . 9, are the effective sampling times
leading to the red-colored LH time series. The ti,i~1 . . . 9, are the expected sampling times leading to the blue-colored LH time series. The original,
non-sampled time series corresponds to the green line. One can observe an instance of great discrepancy between the LH level measured at time t6 ,
which corresponds to the very beginning of the ascending part of a pulse, and the LH level measured at time t6 , which corresponds to the maximum
of the same pulse.
doi:10.1371/journal.pone.0039001.g003

DynPeak: An Algorithm for Pulse Frequency Analysis
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Synthetic LH time series obtained from constant spike

amplitude and frequency. We first examine the effects of

parameters r, f and b in case of a constant spike amplitude

Mspike~15ng=(ml:min) and constant interspike interval

Pspike~100min for a same sampling period Ts = 10 min:

N Case A: r = 1 min, f = 0 min, b = 0;

N Case B: r = 4 min, f = 0 min, b = 0;

N Case C: r = 4 min, f = 1.5 min, b = 0;

N Case D: r = 4 min, f = 1.5 min, b = 10%.

The top panel of Figure 5 displays the solution LHp(t) (green

curve) of equation (2), i.e. the theoretical continuously measured

LH blood level. Each panel from A to D shows the time series

(blue stars) obtained through the sampling protocol for the values

of parameters r, f, b specified above.

The histograms display, for each time series obtained in case C

or D, the distribution of LH pulse amplitude (blue bars in left

panels), i.e. local maxima, and LH levels at the basal line (blue bars

in right panels), i.e. local minima. For sake of comparison, the

constant amplitudes obtained in cases A and B have been marked

with red and green bars respectively.

In cases A and B (f = b = 0), one obtains a strictly periodic

pattern of sampled LH levels since Pspike is a multiple of Ts.

However, depending on the beginning of the sampling process r

(1 min in time series A and 4 min in time series B), the maximum

sample value varies from 2.425 ng/ml in case A (red bars in the

histograms of Figure 5) to 2.188 ng/ml in case B (green bars). This

shows the importance of the phase between the pulsatile LH signal

and the periodic sampling process in the resulting observed pulse

amplitude. It is worth noticing that this phase cannot be controlled

at all in experimental conditions since the delay elapsed from the

last pulse time is not known at the beginning of the experimental

sampling process. The dependence of the basal line on this phase is

weaker but still exists: it varies from 0.107 ng/ml in time series A

to 0.096 ng/ml in time series B.

By comparing time series B and C of Figure 5, we can observe

the impact of the variability in the sampling times (f = 0 min in

case B and f = 1.5 min in case C). With variable sampling times,

the pulse amplitude along time series is also variable, although the

original continuous signal LHp(t) is perfectly periodic. This

variability is shown in the histogram corresponding to case C in

Figure 5: the various LH pulse (resp. basal line) amplitudes

obtained in case C (blue bars) are scattered around the constant

case B pulse (resp. basal line) amplitudes (green bar).

The impact of the variability in the assays is illustrated by the

enhanced dispersal of the LH pulse and basal line amplitudes

obtained in case D (blue bars in the histograms corresponding to

case D in Figure 5) for which b = 10% compared to the case C

amplitudes (b = 0).

In any case of either shifted (case B) or noised (cases C and D)

time series, the pulse amplitudes are undervalued with respect to

the genuine amplitude (correctly assessed only in case A). It may

nevertheless happen that the effective sampling time coincides with

a (genuine) pulse time. In that case, the pulse amplitude can be

overvalued if the sign of the assay error is positive (instance of the

blue bar on the right of the red bar in the left panel of case D).

Synthetic LH time series obtained from time-varying

spike amplitude and frequency. We now further examine the

effects of the sampling process upon theoretical continuously

measured LH level with time-varying pulse amplitude and

frequency:

N Case E: constant spike amplitude and decreasing interspike

interval, respectively

Mspike~15ng=(ml:min),

Figure 4. Definition of pulse properties in the theoretical case versus experimental case. For a theoretical pulse (i.e. a local maximum in
the LHp(t) signal triggered by a spike in LH(t), we call ‘‘pulse time’’ the time at which LHp(t) admits a local maximum and ‘‘theoretical pulse amplitude’’
the value of LHp at this time. In a time series (either obtained from simulation and synthetic sampling protocol or experimental data), we call ‘‘pulse
occurrence’’, the time at which the time series admits a local maximum and ‘‘pulse amplitude’’ the corresponding value. Both the time values and the
amplitude values are different in the theoretical and the experimental cases.
doi:10.1371/journal.pone.0039001.g004
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Pspike(t)~100{
t

30
(expressed in min);

N Case F: decreasing spike amplitude and decreasing interspike

interval, respectively

Mspike(t)~15{8:7 10{3t(expressed in ng=(ml:min)),

Pspike(t)~100{
t

30
(expressed in min):

The sampling period Ts is the same in both cases: 10 min.

Figure 6 gives some examples of time series obtained in cases E

and F. In each case, the green curve (rows 1 and 3) represents the

solution LHp(t) (theoretical continuously measured plasma LH

level) and the blue stars (rows 3 and 4) represent the time series

obtained through the synthetic sampling protocol.

The histograms of Figure 6 detail, for cases E and F, the

distribution of LH pulse amplitudes and successive LH levels at the

basal line both for the theoretical continuously measured LH

Figure 5. Effect of the sampling process upon a LH level signal with constant amplitude and pulse frequency. In all panels,
Mspike~15ng=(ml:min),Pspike~100min,Ts~10min. Top panel: theoretical continuously measured LH blood level (green curve). Panels A, B, C, D:
sampling points (blue stars) of the time series obtained from the top panel signal through the sampling protocol. Panel A: first sampling time at
r = 1 min, without any variability in the sampling process. Panel B: first sampling time at r = 4 min, without any variability in the sampling process.
Panel C: first sampling time at r = 4 min, with variability in the sampling times (+1:5min). Panel D: first sampling time at r = 4 min, with variability
both in the sampling times (+1:5min) and the assays (+10%). The histograms correspond to the distribution of the levels at the basal line and the
distribution of the amplitudes of the LH pulses, measured from the four cases A to D. The A and B time series, that only differ in the first sampling
time, display constant (yet different) pulse amplitude. Red bars stand for case A (r = 1 min) value of the pulse amplitude (2.425 ng/ml) and level at the
basal line (0.107 ng/ml). Green bars stand for case B (r = 4 min) value of the pulse amplitude (2.188 ng/ml) and level at the basal line (0.096 ng/ml).
Blue bars stand for distributions of levels at the basal line and pulse amplitudes in case C (r = 4 min; f = 1.5 min) and case D (r = 4 min; f = 1.5 min;
b = 10%, i.e. a variability of +10% in the LH assays). In case D, the distributions of basal line levels (between 0.082 and 0.108 ng/ml) and pulse
amplitudes (between 1.940 and 2.486 ng/ml) are wider than in case C (levels at the basal line between 0.092 and 0.101 ng/ml; pulse amplitude
between 2.092 and 2.266 ng/ml), due to combined variabilities in the sampling times and assays.
doi:10.1371/journal.pone.0039001.g005
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blood level (row 2, green bars) and the time series obtained

through the sampling protocol (row 5, blue bars).

In case E, the spike frequency increases from 1 spike per

100 min to 1 spike per 50 min. Hence, the spike release arises

more and more often along time, so that the LH blood pulses are

successively triggered from a higher and higher basal level.

Consequently, the basal line and, in a lesser extent, the pulse

amplitude of the theoretical LH level undergo a small and smooth

increase. Moreover, the number of samples per pulse decreases

drastically as the pulse frequency increases, so that the LH time

series looks noisier at the end than at the beginning of the time

series (see case E, row 4 of Figure 6). This effect implies that the

pulse amplitudes are spread out by the sampling protocol much

stronger in case E (from 2.395 to 1.447 ng/ml) than in cases C and

D (see case E, row 5 of Figure 6). Hence the time variations in the

pulse frequency enhances the variability brought about by the

sampling process.

Case F represents a situation that is naturally encountered in the

physiological dynamics of LH secretion: the same increase in the

spike frequency as in case E, combined with a decrease in the

amplitude. As in the preceding cases, each of the LH pulse

amplitude in the time series is smaller than the corresponding one

Figure 6. Effect of the sampling process upon a LH level signal with regular increasing sampling frequency. Case E (left panels): the
pulse amplitude remains almost constant and the basal line increases regularly. Case F (right panels): the pulse amplitude decreases regularly and the
basal line decreases regularly. Panels on row 1 represent the fine step simulation of LH blood level. Histograms on row 2 display the distribution of
the LH pulse amplitudes and the distribution of the levels at the basal line, measured from the two theoretical LH level signals shown in row 1. A
zoom on the distribution of the pulse amplitudes is shown as an insert in case E. Panels on row 3 represent the time series (blue stars) along the
theoretical continuously measured LH level (green curve). Panels on row 4 represent the resulting LH measured time series (measured LH levels
versus sampling times linked with segments). In both cases E and F, the sampling period is Ts = 10 min. In case E, the initial sampling time occurs at
the first minute of the simulation (r = 1 min), without any variability in the sampling times (f = 0 min) or the assays (b = 0%). In case F, the initial
sampling time occurs at the fourth minute of the simulation (r = 4 min), with variability both in the sampling times (f = 2 min) and the assays (b = 5%).
Histograms on row 5 display the distribution of the LH pulse amplitudes and the distribution of the LH levels at the basal line, measured from the
time series shown in row 4. While the distributions are regular in the theoretical time series, they become completely irregular in the sampled time
series. As a result, the range of amplitudes is shortened. Regarding the distribution of the levels at the basal line, it is worth noticing that the
measured values (E: between 0.125 and 0.519 ng/ml; F: between 0.094 and 0.258 ng/ml) are greater than the theoretical values (E: between 0.098 and
0.434 ng/ml; F: between 0.075 and 0.171 ng/ml). On the contrary, in case E, it is worth noticing that the theoretical pulse amplitudes vary from 2.379
to 2.425 ng/ml whereas measured pulse amplitudes vary from 1.447 to 2.395 ng/ml. In case F, all measured pulse amplitudes (between 0.302 and
1.959 ng/ml) are lower than the corresponding theoretical values (between 0.353 and 2.315 ng/ml).
doi:10.1371/journal.pone.0039001.g006
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in the theoretical LH level. Additionally in case F, the amplitude at

the basal line is sensibly raised up by the sampling protocol.

Hence, the difference between the pulse amplitude and the basal

level is strongly deprecated, which adds to the noisy character of

the ending of the time series.

Pulse Detection Algorithm
In the context of automatic pulse detection in a time series, a

pulse is a peak (i.e. a local maximum of the time series) fulfilling

given criteria. The most challenging issue in the algorithm design

consists in formalizing the biologically relevant criteria that

discriminate the pulses from other peaks. Among these criteria,

the amplitude is the most obvious. However, as illustrated in the

preceding section, it cannot be used as an infaillible criterium for

automatic pulse detection since the quantitative features of a pulse

(absolute amplitude, amplitude from baseline, …) are really altered

in an unknown way by the sampling process.

For sake of robustness and acuteness of our pulse detection

algorithm, we have introduced a selection process based on

multiscale criteria involving different properties of the peaks.

Besides the series of pulse occurrences, the main output of our

algorithm is the series of the corresponding InterPulse Interval

(IPI) together with a tunnel of confidence (IPI tunnel) related to the

regularity of the pulse frequency variations.

Notations and definitions. We consider a time series of N

points obtained with a Ts-periodic sampling process and we note

the sampling times:

tk~(k{1)Ts, k~1,2, . . . N:

Hence, the k-th sampling time is tk (in particular, the first sampling

time is t1~0). We note either Ak or A(tk) the value corresponding

to the k-th sample and call k a ‘‘time index’’. For sake of simplicity

in the following explanations, we will refer either to the time index

k or the corresponding time tk.

The pulse detection algorithm is based on a sequence of

different processes. Some of them consist in researching high

amplitude peaks that can potentially be classified as pulses, others

aim to remove, among the formerly selected peaks, those that do

not fit other properties met by genuine pulses. In the following, we

note P~(pi)1ƒiƒs(P) the vector storing dynamically the time

indexes at which the algorithm detects the summit of a potential

pulse. s(P) is the size (number of elements) of P. The algorithm

modifies vector P in such a way that indexes pi are always sorted in

increasing order. Hence, at any time along the algorithmic

process, s(P) pulses are detected, tpi
is the occurrence of the i-th

detected pulse and Api
is the amplitude of the i-th detected pulse.

In order both to moderate the importance of the amplitude and

to account for several characteristics of the pulse shape, we need to

introduce the notions of ‘‘height’’ and ‘‘magnitude’’ of a peak as

well as that of ‘‘relative magnitude’’ between two peaks. Let us

suppose that the i-th sample of the time series (occurring at time ti)

corresponds to a peak (i.e. Ai{1vAi and Aiz1vAi). The height

of this peak is defined as the difference between its amplitude Ai

and the lowest value of Aj within the sampled time series, denoted

by A, i.e.:

Hi~Ai{ min
j~1::N

Aj~Ai{A:

Let us assume additionally that a set of potential pulses P is

identified from the time-series and the closest pulses registered in P

before and after ti occur at t~tk and t~tl respectively (see Figure

S1). We define the two minimal values of the time series between

tk and ti on one hand, and between ti and tl on the other hand:

B1~ min
j[f(kz1),(kz2),...,(i{1)g

Ak

B2~ min
j[f(iz1),(iz2),...,(l{1)g

Ak

Then, we define the magnitude of the peak corresponding to the i-

th sample as the geometric mean of Ai{B1 and Ai{B2, i.e.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Ai{B1)(Ai{B2)

p
.

Finally, let us consider two peaks occurring at tk and tl with

tkvtl . Let us call B0 the minimal value of the time series between

tk and tl :

B0~ min
j[f(kz1),(kz2),...,(l{1)g

Ak

We call ‘‘relative magnitude’’ between the two peaks the

geometric mean between Ak{B0 and Al{B0.

The notion of peak height does not depend on the vector of

potential pulses. It represents a normalization of the amplitude

among the time-series with respect to the lowest value of the time

serie. The peak magnitude can change as the vector P of identified

pulses evolves and, consequently, will be used to compare a peak

with its direct neighbors. The interest of the magnitude is to take

into account the local baseline, without being sensitive to

differences in the baseline from one side or the other of a peak.

The relative magnitude between two peaks gives a semi-local

reference for the pulse magnitude. In particular, the magnitude of

a pulse can be usefully compared to the relative magnitude

between its direct neighbors (i.e. the pulses just before and after it).

Pulse selection process

N Initialization: We first fill vector P by selecting time indexes

corresponding to great height samples. Even if, at this stage, we

intend to recover a large enough set of potential pulse indexes,

the time intervals between pulses should be consistent with the

maximal frequency. Accordingly, we introduce a parameter

Tp, called the nominal period, defined as the smallest time

duration in which, from one pulse occurrence, one expects the

following one.

Starting from the time index p1 of the maximal sample in [0,

2Tp], we locate the time index m2 of the minimal sample in

½tp1
,tp1

zTp� and then we retrieve the time index p2 of the

maximal sample in ½tm2
,tm2

zTp� (see Figure S3). We iterate the

process along the whole time series to obtain the initial guess of

potential pulse indexes P~(pi).

This method is a trade-off between selecting all the peak indexes

in the time-series (with the drawback that there will be too many of

them if the time series is noisy) and selecting only local maxima

corresponding to great amplitudes (with the drawback that there

will be too few of them if the time series is smooth and the pulse

frequency is low).

N Remove too small peaks: Once vector P is initialized,

some of the registered indexes may correspond to small sample

values. As illustrated in the first section, the pulse amplitude is

strongly altered by the sampling process and, consequently, it

cannot be used as an infallible criterium to select the pulses.

DynPeak: An Algorithm for Pulse Frequency Analysis
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Hence, we use multi-scale criteria based on the notions of

height and magnitude to determine which indexes corresponds

to too small peaks and to remove them from vector P.

– Global relative criterium: We aim to remove peaks

whose height is small in comparison with the height of all

detected pulses. We define the ‘‘median height’’ as the median

of the detected pulse heights. For each pulse, if the ratio

between its own height and the median height is less than a

threshold parameter lr, it is removed from P.

We have chosen the median instead of the (arithmetic or

geometric) mean since it is less sensitive to the presence of great

height peaks.

– Semi-local relative criterium: We compare the magni-

tude of each peak with the relative magnitude between the

immediately preceding and following pulses. If this compar-

ison is not conclusive with respect to the threshold lr

introduced above, we remove the peak index from vector P.

It is worth noticing that the geometric mean used to define the

magnitudes provides robustness (compared to arithmetic mean, for

instance) to this criterium with respect to possible local variations

of the base line.

– Global absolute criterium: We compare the magnitude

of each pulse to an absolute threshold la. If the comparison is

not conclusive, the corresponding time index is removed from

vector P.

This criterium precludes non significant elevations in the

baseline to be considered as potential pulses. Hence, parameter

la corresponds to the assay detection threshold.

At this level of the selection process, vector P only contains the

time indexes corresponding to peaks with sufficiently great height

and magnitude (with respect to threshold lr and la) to be classified

as pulses. However, as the initial guess for P may have skipped

some potential pulses, the next step of the selection process consist

in retrieving the missed pulses.

N Retrieve missed pulses: Between each pair of successive

pulses registered in P, we examine each peak. If this peak

fulfills the semi-local relative criterium, the corresponding time

index is added to vector P.

By construction, such a retrieved peak almost automatically

fulfills the other two global criteria.

N Shape-based criterium: The pulse duration has to be

consistent with available knowledge on pulse half-life. For a

fixed sampling rate, a detected pulse should extend over a

minimum number of consecutive experimental data. Conse-

quently, we intend to remove what we call ‘‘3-point peaks’’ for

which the immediately preceding and following samples are

local minima of the time series (see top panel of Figure S2).

However, due to possible noise in the time-series, a pulse may

appear as a 3-point peak. But, in this case, the pulse is expected

to be not ‘‘too sharp’’ (see bottom panel of Figure S2). Thus we

remove from P the time indexes corresponding to peaks with a

‘‘sharpness coefficient’’ greater than a chosen threshold l3p.

The precise definition of ‘‘sharpness coefficient’’ will be detailed

in Step 5 of the algorithm (see next subsection ‘‘Algorithmic pulse

detection’’). We only enlighten here that this criterium is based on

the asymmetric shape of a pulse and allows one to get rid of the

genuine peaks produced by occasional experimental errors.

Vector of InterPulse Interval (IPI) and IPI tunnel. At a

given step, we define the vector of InterPulse Intervals (IPI) from

the current P vector by:

H~(hi)1ƒiƒs(P){1withhi~tpiz1
{tpi

:

As we aim to apply the algorithm mainly to hormonal time series,

we designed a process to take into account some degree of

regularity in the rate of change in the pulse frequency. Hence,

given a vector P~(pi) of identified potential pulses, we introduce a

cubic function w(i) fitted to hi in a least squares sense. Function w
gives an averaged, yet time evolving representation of the IPI built

from the global sequence H.

Then, we build a tunnel in ½tp2
,tps(P)
�|Rz delimited by the

graphs of two piecewise linear functions of time yinf and ysup built

from function w. Precisely, for each pulse time tpi
(i~2:::s(P)), we

define yinf (tpi
)~(1{a)w(i{1) and ysup(tpi

)~(1zb)w(i{1) to

draw the lower and upper boundaries of the tunnel. Thus,

parameters a and b tune the width of the so-called ‘‘IPI tunnel’’;

they represent a quantification of the pulse frequency regularity.

The tunnel allows one to assess the regularity of the IPI time

variations and can help the user to (i) classify a specific pulse as a

potential outlier with respect to the pulse frequency properties of

the series, (ii) identify and localize a possible rupture in the

secretion rhythm.

To illustrate the use of the IPI tunnel, let us consider a time

series for which the sequence of pulse indexes Q~(qi) is easy to

find by sight. We assume that the time series displays regular

pulsatility, i.e. the pulse frequency undergoes smooth variations

along time. Under this condition, function w is a good

approximation of the IPI sequence.

Let us first consider the case of a lack of detection: let P be the

vector formed by the pulse indexes in Q except one (the ith
0 ). In the

course of the automatic pulse detection, this case may happen if

the maximum amplitude corresponding to this pulse is low. Then,

the corresponding IPI sequence (hP
i ) is given by:

hP
i ~

hQ
i if 2ƒiƒi0{1,

h
Q
i0
zh

Q
i0z1 if i~i0,

hQ
iz1 if i0z1ƒiƒs(Q){1~s(P):

8>><
>>: ð6Þ

Under the regularity assumption, each IPI hi should be close to (or

even in) the range delimited by the values of its neighbors hi{1 and

hiz1. On the contrary, in the case of vector P, the (i0{1)th IPI, i.e.

hP
i0

, is noticeably greater than the maximum of its neighbors. More

precisely, its value is twice the mean of its neighbors and,

consequently, is approximately twice the w value.

Now, let us consider the case of an over-detection: let P be the

vector formed by the pulse indexes in Q plus an extra pulse

occurring at time t~tk lying between the (i0{1)th and the ith
0

pulse times stored in vector Q. Hence, qi0{1vkvqi0 . Then:

hP
i ~

h
Q
i if 2ƒiƒi0{1,

h
Q
i{1 if i0z2ƒiƒs(Q)z1~s(P),

(
ð7Þ

and moreover:
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hP
i0
zhP

i0z1~h
Q
i0
:

Under the regularity assumption, either hP
i0

or hP
i0z1 is too small

compared to the expected IPI range delimited by hP
i0{1~h

Q
i0{1

and hP
i0z2~hQ

i0z1. In the less discriminating case, the extra pulse

lies close to the middle of its neighbors (qi0{1zqi0
)=2. Then, hP

i0

and hP
i0z1 are almost equal to the half of the expected IPI h

Q
i0

.

Hence, even if several combinations of hP
i0

and hP
i0z1 values exist,

depending on the position of time k compared to qi0{1 and qi0
,

one of the IPIs is always less than the half of the w value, which

indicates a potential over-detection.

An appropriate choice of the values of a and b allows one to

discriminate the pulses that break the frequency regularity and

indicate a rupture in the secretion rhythm.

The different steps of the algorithm are described as pseudo-

code in the ‘‘Algorithm Description’’ of the Appendix S1. We have

implemented the algorithm in the Scilab environment (http://

www.scilab.org/) dedicated to numerical computing.

Experimental Data Provided to the Algorithm
We have run the algorithm on either experimental or synthetic

LH time series. Experimental time series included nineteen ewes,

distributed over two different protocols. All procedures were

approved by the ‘‘Direction Départementale des Services Vétér-

inaires d’Indre-et-Loire’’ (approval number C37-175-2) for the

agricultural and scientific research agencies INRA (French

National Institute for Agricultural Research) and CNRS (French

National Center for Scientific Research), and conducted in

accordance with the Guide for the Care and Use of Agricultural

Animals in Research and Teaching. Blood samples from a first

group of ten estrus-synchronized ewes (Lacaune breed, [5]) were

collected via jugular venous cannula every 10 min for a period of

24 h during the follicular phase. A second group of nine

ovariectomized Ile-de-France ewes were collected during anestrus

season for blood sampling every 10 min over a period of 15 h.

Ewes received an agonist of somatostatin type 2 receptor via

intracerebroventricular injection between 5 and 10 h after

sampling start (Courtesy of A. Caraty, unpublished data). All

blood samples were collected into heparinized tubes and then

centrifuged for 20 min at 400 g. Plasma was stored at 220 C until

hormone assays [5].

Results

The output of our algorithm consists of the IPI series, providing

the number of detected peaks with respect to the time series

indexes. Moreover, the IPI tunnel has been used on the LH time

series according to the assumption of regularity in their frequency

modulation. The sampling period and the absolute magnitude

threshold la, corresponding to the minimal detectable concentra-

tion, are provided by the protocol specifications. The default set,

proposed in Table 1, has been used in all the cases: nominal

period, Tp, equal to 40 min, relative magnitude threshold, lr,

equal to 0.2, (20% of the geometric mean of the neighbors), both

the lower and upper bound of the IPI tunnel equal to 0.6. The

choice of the default parameter set is explained.

The InterPulse Interval (IPI) Series
Figures 7 and 8 correspond respectively to LH synthetic and

experimental series. The left panels display the LH plasma level

time series. Vertical lines correspond to the pulse occurrences.

Stars on the time series correspond to the points of sampled

measures. The right panels display the resulting IPI series, indexed

by the number of the pulse occurrence (each IPI is represented by

a black diamond).

On the synthetic LH series (Figure 7), the left panels display the

following cases. Panel A represents a theoretical plasma level

series, that would be retrieved in case of continuous monitoring.

The pulse frequency increases whereas the pulses amplitude

decreases along time. Panels B, C and D are the corresponding

sampled series with a respective sampling period of 1, 5 or 10 min.

The first sampling time occurs at the first minute of the simulation,

i.e. r = 1 min, and there is variability both in the sampling times

and the assays: f is equal to 15% of the sampling period,

corresponding to 0.15 min for B, 0.75 min for C, 1.5 min for D

and b = 5% in the three cases. On the right panels, the theoretical

IPI series are represented by a continuous green curve, superim-

posed on the IPI series of measured LH series (black diamonds).

Comparisons between the successive panels allow us to assess the

influence of the sampling period on the IPI series. The number of

detected peaks (16) is the same, and the patterns of regular

acceleration are identical, whatever the sampling period is.

Moreover, the discretization of the initially continuous signal

induces delays in the time occurrence of pulses; the maximal delay

corresponds to the sampling period. The higher the sampling

period is, the closer the measured IPI series are to the theoretical

ones. On the experimental LH series (Figure 8), three different

pulsatile rhythms are displayed, with a 10 min sampling period.

Table 1. Algorithm parameters and default set adapted to LH time series.

Name Notation Default set A B

Time series characteristics Sampling frequency Ts X X

Absolute magnitude treshold la X X

Parameters Nominal period Tp 40 X X

Relative magnitude threshold lr 0.2 X X

3-point peak threshold l3p 0.1 X

Frequency regularity of pulsatility a, b 0.6 X

Default set for Ts and la are provided by the experimental protocol specifications.
A: needed parameters for time series characterized by a pulsatile pattern, an asymmetric shape of pulses, some regularity in the time evolution of the pulse frequency
(LH, GH, Insulin).
B: needed parameters for time series with no underlying assumption of symmetric shape of the peaks or frequency regularity (intracellular calcium).
doi:10.1371/journal.pone.0039001.t001
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Panel A illustrates the case of a stable rhythm with a final

acceleration resulting in IPI shortening in the last third of the

series. Panel B illustrates the case of a progressive acceleration

resulting in a progressive shortening of the IPIs. Panel C illustrates

the case of a fast deceleration in the second half of the series

resulting in increased IPIs. As the IPI series give information both

on the number of detected peaks and the rhythm evolution, they

are particularly useful for comparing the rhythmicity of different

series of the same duration (for instance, B is almost twice as

fast as A).

The IPI Tunnel
Due to the assumption of regularity in the frequency

modulation of the LH time series, the IPI tunnel has been used

to point out situations where there may be a lack of detection or an

over-detection of pulses in the time series. In such situations, we

can try to explain the detection error and propose possible

corrections. On the opposite, the IPI tunnel can detect genuine

long or short IPIs, and be used as a tool for analyzing sudden

frequency breaks or accelerations in pulsatile rhythms. In all

examples the sampling period was equal to 10 min.

Figures 9 and 10 display respectively apparent lacks of detection

or over-detections in experimental time series. The top panels

display the LH plasma time series and vertical lines correspond to

pulse occurrences. The bottom panels display the resulting IPI

series, indexed by the pulse time rather than the pulse number in

order to keep the same reference time in both the LH and IPI

series. Each IPI value (marked by a blue point) corresponds to the

time elapsed between the current detected pulse and the previous

one. The IPI series are displayed together with the three curves

delimiting the tunnel: the dashed line represents the moving cubic

function fitting the values of the IPI series, the solid lines represent

the lower and uper bounds of the tunnel, i.e. yinf ,ysup respectively.

Figure 9 displays two cases of apparent lack of detection, where

the IPI outliers lie above the upper bound. In case A, the outlier

appears at minute 400 (black arrow, panel A1). Going back and

forth between the IPI series and the LH time series allows us to

favor the hypothesis of a lack of detection. Indeed, if we take into

account the small amplitude pulse occurring at minute 340 (red

arrow, panel A1), the exceedingly large IPI can be distributed over

two consecutive IPIs of 100 and 60 min, whose duration are

compatible with the local tunnel size (local upper bound of

123 min, local lower bound of 30.5 min), hence with the regularity

Figure 7. IPI series from synthetic LH time series with different sampling frequencies. Left panels: LH plasma level time series retrieved
over 1000 min. Vertical lines correspond to the pulse occurrences. Panel A: theoretical plasma level, corresponding to a continuous monitoring. The
pulse frequency increases, whereas the pulse amplitude decreases along time. Panels B, C and D: sampled series, with a respective sampling period of
1, 5 or 10 min. Stars on the time series correspond to sampled points. The first sampling time occurs at the first minute of the simulation (r = 1 min),
variability in the sampling times is set to 15% of the sampling period (f = 0.15 min for B, f = 0.75 min for C and f = 1.5 min for D) and the assay
variability is set to b = 5%. Right panels: resulting IPI series, indexed by the number of the pulse occurrence (each IPI is represented by a black
diamond). The theoretical IPI series is the continuous green curve, superimposed on the IPI series obtained after sampling. In any case, there are 16
detected peaks.
doi:10.1371/journal.pone.0039001.g007
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assumption. A first correction step consists in decreasing the

relative magnitude threshold lr, set to the default value of 0.2, in

such a way that the missed pulse can be recovered without adding

false detections. Panel A2 illustrates the result of the correction: the

missed pulse occurring at minute 340 was recovered (red arrow)

after decreasing the value of parameter lr to 0.1. In case B, the

outlier appears at minute 440 (black arrow, panel B). Going back

and forth between the IPI series and the LH time series allows us

to favor the hypothesis of a genuine long IPI. There is not only no

visible pulse after the preceding detected pulse but the rhythm also

remains slow after the long IPI.

Figure 10 displays some cases of over-detection, where the IPI

outliers lie below the lower bound, in two LH series A and B. The

outlier occurrences are indicated by solid black arrows. It is worth

noticing that the two IPIs indicated by dashed arrows in case B

(panel B1) are not classified as outliers with the default set of

parameter values a~b~0:6 but they are close enough to the

tunnel lower bound to draw the user’s attention. In this example,

we considered them as IPI outliers. In both cases, the patterns of

some detected peaks suggest false detections possibly imputable to

measurement conditions. The IPI outliers in cases A (panel A) and

B (panel B1) are either due to additional peaks lying on the middle

of the descending phase of the preceding pulse (red arrows) or to a

peak lying on the middle of the ascending phase of the following

pulse (green arrow). A first correction step consists in increasing

the relative magnitude threshold lr in such a way that the peak

can be discarded without eliminating true detections. Increasing lr

to 0.45, allows us to discard two false peaks in case B (panel B2).

Nevertheless, no change in lr can get rid of the IPI outlier in case

A nor of the third IPI outlier in case B without discarding genuine

pulses at the same time. It appears that the amplitude of the peaks

underlying the IPI outlier is too close to that of their neighbors. It

will be up to the user to evaluate the influence of such IPIs on the

characteristics of the series and to follow the more appropriate

strategy.

Figure 11 shows how the IPI tunnel can be used for detecting

sudden frequency breaks. It displays four different LH time series

(left panels) retrieved from ewes subject to an experimental

protocol inducing a steep decrease in the pulse frequency. IPI

series (right panels) are indexed by the pulse time in order to keep

the same reference time when studying variability between series.

The break in the dynamics of the IPI series corresponds to the

occurrence of the last IPI preceding the outlier lying above the

upper bound. Moreover, identifying its precise location enables us

to study the synchronization between the different time series, as

pointed out by the vertical dashed line.

User Parameters: Choice of a Default Set and Robustness
Evaluation

Among the algorithm parameters (Table 1), two are provided

directly by the protocol specifications: the sampling period Ts and

the absolute magnitude threshold la, corresponding to the assay

Figure 8. IPI series from experimental LH series with different pulsatile rhythms. Left panels: LH plasma level time series with a 10 min.
sampling period. Vertical lines correspond to the pulse occurrences. Stars on the time series correspond to sampled points. Right panels: resulting IPI
series (black diamond), indexed by the number of the pulse occurrence. Panel A: stable rhythm with final acceleration. Panel B: progressive
acceleration. Panel C: fast deceleration in the second half of the series.
doi:10.1371/journal.pone.0039001.g008
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detection threshold (minimal LH level that can be reliably

measured). For Ts, an upper bound equal to 10 min is

recommended (see the explanation below). Default values have

been fixed for the other five parameters of Table 1: nominal

period Tp, relative magnitude threshold lr, 3-point peak threshold

l3p and the lower a and upper b bounds of the IPI tunnel. The

choice was based on the observation of LH time series retrieved in

19 ewes distributed over two different protocols.

Nominal period Tp. The value of the nominal period is

chosen so as to favor the maximal number of correct detections,

especially at the beginning of time series. According to the

existence of high frequency series with short IPIs, there is a risk to

detect two consecutive pulses in the same window if it is too large.

Figure 9. IPI outliers lying above the upper bound of the tunnel. Example of correction by decreasing the value of the relative
magnitude threshold, lr. Top panels: two experimental LH plasma time series, A (panels A1 and A2) and B (panel B). Vertical lines correspond to
pulse occurrences. Bottom panels: resulting IPI series indexed by time. Each IPI value (blue point) corresponds to the time elapsed between the
current detected pulse and the previous one. Dashed line: moving cubic function fitting the values of the IPI series. Solid lines: lower (a-dependent
function yinf ) and upper (b-dependent function ysup) edges of the tunnel (a~b~0:6). Black arrows: occurrences of the outliers. Case A: outlier due to

a lack of detection (missed pulse designed by a red arrow); panel A1: initial IPI series with lr~0:2 (default value); A2: corrected IPI series; with lr~0:1.
Case B: genuine long IPI.
doi:10.1371/journal.pone.0039001.g009

Figure 10. IPI outliers lying below the lower bound of the tunnel. Example of correction by increasing the value of the relative
magnitude threshold, lr. Top panels: two experimental LH plasma time series, A (panel A) and B (panels B1 and B2). Bottom panels: resulting IPI
series indexed by time. The vertical lines, the blue points, the dashed line and the solid lines represent the same objects as in Figure 9. Panels A and
B1: initial IPI time series. Solid black arrows: occurrence of clear outliers. Dashed black arrows: occurrence of IPIs that can be associated with over-
detected peaks in the LH series although they remain above the lower bound of the tunnel. Red arrows: peaks lying on the middle of the descending
phase of the preceding pulse. Green arrow: peak lying on the middle of the ascending phase of the following pulse. Panel B2: B corrected IPI series
after increasing the relative magnitude threshold lr to 0.45. Two of the three false peaks have been discarded.
doi:10.1371/journal.pone.0039001.g010
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The value of parameter Tp has been set to 40 min, which is a

value close to the minimal observed period. The number of missed

pulses is equal to 0 for Tp ranging from 40 to 70 min; it increases

up to 2 for Tp = 80 min. Even in that latest case, the number of

missed pulses is small enough to guarantee the algorithm

robustness with respect to this parameter.

Relative magnitude threshold. lr Compared to the

performances of the algorithm with the lr default value (0.2), a

decrease down to 0.1 or an increase up to 0.3 increase the total

number of outliers (either false detections or missed detections).

Moreover, this parameter can be adapted in order to correct

outliers lying outside the tunnel, as previously seen.

3-point peak threshold. l3p The 3-point peak threshold is

introduced to prevent non-asymmetric pulses from being detected.

Figure S2 illustrates the identification of a 3-point peak pattern.

l3p is the ratio between the arithmetic mean of the amplitude of

the neighboring points of rank 2 (green lines) and the geometric

mean of the amplitude of the immediate neighbors (red lines). For

instance, based on that criterion, the peak selected on panel A

(dashed vertical line), is identified as a genuine 3-point peak. On

the contrary, the peak selected on Figure S2, panel B (solid vertical

line) is not identified as a 3-point peak, since it belongs to a

genuine, asymmetric LH pulse with an exponential decrease,

albeit locally noised (the LH level corresponding to the latter

neighbor of rank 2 is a little higher than expected for a smooth

exponential decrease). Over 15 analyzed potential 3-point peaks,

the minimal l3p value corresponding to a genuine 3-point peak

was equal to 0.15, while the maximal l3p value corresponding to a

locally noised, genuine asymmetric LH pulse was equal to 0.07, so

that there was no overlapping. Consistently, we chose a default set

value (0.1) lying within the [0.07,0.15] range. This parameter is

embedded within the algorithm, since there is no reason for the

user to modify it. Indeed, the 3-point peaks rely on endocrino-

logical considerations and take into account, either directly or

indirectly, the typical duration of a LH pulse (around 30 min) and

its asymmetric shape, that can be reconstructed from time series

sampled at least every 10 min.

Lower and upper bounds of the IPI tunnel. a,b For the

lower bound a, the 0.6 default value does not lead to any IPI

outlier, whereas a value of 0.5 leads to classify two genuine pulses

as over-detected pulses, and a value of 0.4 leads to classify twelve

genuine pulses as over-detected pulses (among more than 300

pulses). For the upper bound b, the 0.6 default value allows one to

identify every genuine outliers, without generating false outliers,

but changing the value to 0.5 led to false additional under-detected

pulses. However, the use of the tunnel bounds is mainly to draw

the user’s attention to possible events of interest, and there is no

direct sensitivity of the algorithm to their precise values.

Figure 11. IPI-based study of the synchronization between LH series. The four LH series are retrieved from ewes subject to an experimental
protocol inducing a steep decrease in the pulse frequency. Left panels: experimental LH plasma time series; vertical lines correspond to pulse
occurrences. Right panels: resulting IPI series indexed by time. The vertical lines, the dashed line and the solid lines represent the same objects as in
Figure 9. Vertical dashed line: break in the dynamics of the IPI series corresponding to the last IPI preceding the outlier.
doi:10.1371/journal.pone.0039001.g011
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Discussion

For hormonal time series as those studied in this article, an

important particularity is the fact that the signals are clearly

subsampled due to the invasive nature of the sample collection

procedure. In this case the classical filtering methods cannot be

successful. Specific methods have to be developed to overcome this

difficulty. There are two main approaches to study time series of

pulsatile hormones. One consists in trying to detect, as accurately

as possible, the pulse peaks, considered as discrete events [11],

while the other is based on deconvolution principles and intend to

reconstruct the underlying secretion process [12]. The deconvolu-

tion approach might seem more attractive, since it is susceptible to

provide rich information on the hormonal signal, but it is

hampered by the lack of validation, since information on the

‘‘true’’ signal is almost never available and cannot be directly

compared to the reconstructed signal. Our own algorithm clearly

belongs to the category of discrete peak detectors. Whereas, to our

knowledge, the other available algorithms rely only on local and

semi-local amplitude criteria, our algorithm combines local (on the

data point level), semi-local (on the level of -possibly moving-

windows of consecutive data points), and global (on the whole

series level) amplitude criteria, with other criteria accounting for

the pulse duration and the relative regularity in the pulse

frequency modulation. Hence, this is a multi-scale and multi-

criteria algorithm based on a dynamical selection process of the

peaks.

To design our algorithm, the first idea was to locate significant

local maxima in the processed time series, guided by the nominal

IPI value so that the detected pulses have a reasonable rhythm. As

the nominal IPI value may be too large or too small for each actual

IPI in the processed signal, more steps were added to retrieve

missed pulses and to remove false pulses. These extra steps are

mainly based on the height of each pulse candidate and its

magnitude with respect to the relative magnitude between

neighbor pulses. The main advantage of these criteria is their

weak dependence on the baseline that is most of the time non-

stationary in typical hormonal time series.

An original feature of our work is to combine mathematical

modeling with signal processing. We have used synthetic time

series, generated by a simple dynamical model, to illustrate the

fundamental concepts underlying our algorithmic choices, as well

as to assess the robustness of the model outputs with respect to the

sampling rate and different sources of variability. Introducing

uncertainty on both the measured LH level (to mimic assay

variability) and time of measurement (to mimic possible hidden

variability in the sampling chronology) allowed us to check that the

ability to detect the right number of events was not affected by the

noise.

For a given time series, the outputs of the algorithm consists of a

corresponding series of detected IPI, structurally expressed as

multiples of the sampling period. Hence, the algorithm provides

information on the evolution of the frequency regime along the

series, which is essential for studying the control of frequency

encoding in endocrine systems.

We have run the algorithm on two different sets of experimental

time series collected in sheep. Since they have a large body size

and a much longer ovarian cycle compared to rodents, domestic

species such as the ovine species are more suited to longitudinal

endocrine studies and their reproductive physiology is much closer

to human reproductive physiology. We gave several instances

showing that the algorithm is able to adapt to different patterns of

frequency modulation (more or less rapid acceleration or

deceleration) and also to detect breaks in the IPI rhythm. We

then explained how one can make use of the IPI tunnel to

discriminate outlier pulses from genuine pulses corresponding to a

locally marked change in the frequency regime. On the whole,

these results have shown that the algorithm can be employed to

study and understand the frequency encoding of hormonal signals.

To put the algorithm at the disposal of the user not familiar with

computer programs, we are developing a user-friendly interface to

make our software easily available and ready for use, cf https://

www.rocq.inria.fr/sisyphe/paloma/dynpeak.html. The aim of this

tool is to provide as much aid to decision as possible to the users

together with guaranteeing full understanding on the detection

process and the effect of the parameter values on the output.

In addition to the time series, the sampling period Ts and the

assay detection threshold la provided directly by the protocol

specifications, there are only 5 parameters to be set by the user:

Tp,lr,l3p for the pulse detection itself, a and b for the definition of

the IPI tunnel edges. A default set of parameter values is proposed

in the case of LH time series (Table 1). It was refined by

performing the algorithm on LH time series characterized by a

pulsatile pattern with an asymmetric shape of pulses and some

regularity in the time evolution of the pulse frequency. LH can be

considered as the paragon of any hormone whose secretion pattern

is pulsatile, so that the algorithm would also be suited for other

hormones (e.g. insulin or growth hormone). As for LH, one has to

go through the whole steps of the algorithm, including the

removing of 3-point peak (needed parameter: l3p) and tunnel-

based identification of outliers (needed parameters: a and b) for

GH and insulin series analysis. In the case of time series for which

there is no underlying assumption of asymmetric shape of the

peaks or frequency regularity, such as intracellular calcium series,

one only needs to go through the first to the fourth steps of the

algorithm.

On a more theoretical ground, an interesting question may be

addressed in relation to the discretization of a continuous signal. A

time series results from a sampling process applied to a continuous

signal, which implies that we have chosen (by default) to retrieve

the sampling time corresponding to a local maximum to define the

time of pulse occurrence. Thus, each IPI is a multiple of the

sampling period. As illustrated in the first section, the correspond-

ing theoretical pulse time differs from the pulse occurrence. A

deeper analysis of the effect of the sampling on the pulse shape

could be undertaken. This problem is hard to tackle since it mixes

non linear dynamics, stochastic process and statistical inference.

However, results on this subject would give precious additional

knowledge on the location of the theoretical pulse time and could

provide more accurate information on the IPI sequence and the

frequency encoding.

Supporting Information

Figure S1 Definition of the magnitude of a peak. Let P be

a given vector of potential pulses. Considering the peak occurring

at ti~43min, we assume that P contains the pulses just before and

after ti occurring at tk~4min and tl~108min. We define U (resp.

V) as the difference between the peak amplitude Ai~2:2ng=ml
and the minimum value B1 (resp. B2) of the time series between tk

and ti (resp. ti and tl ) : B1~0:8ng=ml (resp. B2~0:4ng=ml). The

magnitude of the peak occurring at ti is the geometric mean

between U (1.4 ng/ml) and V (1.8 ng/ml). Here, the peak

magnitude is equal to 1.587 ng/ml.

(TIF)

Figure S2 Identification of a 3-point peak pattern.
Parameter l3p corresponds to the ratio between the arithmetic

mean of the amplitude of the neighboring points of rank 2 (green
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lines) and the geometric mean of the amplitude of the immediate

neighbors (red lines). Panel A: the selected pulse (dashed vertical

line) is identified as a genuine 3-point peak. Panel B: the selected

pulse (solid vertical line) is not identified as a 3-point peak, since it

belongs to a genuine, asymmetric LH pulse with an exponential

decrease, albeit locally noised.

(TIF)

Figure S3 One iteration of the forward research of
pulses. For a given value of i in the iterative process (initialized

with i = 1), the algorithm searches for the index miz1 of the

minimal sample from the pth
i sample in the window defined by the

nominal period Tp, i.e. among the kp samples (under the green

segment) directly following the pth
i sample. Then, the algorithm

searches for the index piz1 of the maximal sample among the kp

samples (under the blue segment) directly following the (miz1)th

sample. Index piz1 is stored in vector P and the process is iterated

with i incremented by 1 until the end of the time series.

(TIF)

Figure S4 Outputs of the algorithm applied to synthetic
LH time series obtained with uniformly distributed or
normally distributed assay errors. Top panel: theoretical

continuously measured LH blood level (green curve) obtained with

a spike amplitude function decreasing linearly from 15 to 6.5 ng/

ml and an interspike interval function decreasing linearly from 80

to 50 min. The pulse times are highlighted by vertical green bars.

The other panels represent the outputs of the algorithm for 4 time

series obtained with either uniformly (b = 32 or 36%) or normally

(SD = 32 or 36%) distributed assay errors and a sampling period

Ts = 10 min. In each case, the upper panel represents the time

series (blue circles) with the detected pulse occurrences (vertical

blue bars) and the lower panel displays the detected IPI series (blue

diamonds) together with the IPI tunnel (delimited by the cyan and

red lines). In both cases where b and SD equal to 32%, the

algorithm has detected the pulses of the time series accurately. In

the case of a uniform distribution with amplitude b = 38%, two

over-detections occurred around 180 min and 770 min. Both led

to IPI outliers. In the case a normal distribution with SD = 38%,

two over-detections occurred around 190 min and 270 min and a

lack of detection occurred around 500 min. Both the first over-

detection and the lack of detection implied IPI outliers, yet the IPI

sequence remains in the tunnel, even if it is close to the lower edge,

near 270 min.

(TIF)

Table S1 Accuracy of the algorithm outputs for synthet-
ic LH time series according to the features of the assay
error distribution. The same set of 6 different values for the

amplitude b of the uniform distribution (UD) of the assay error and

for the standard deviation SD of the normal distribution (ND) of

the assay error has been used to extract time series with a 10

minutes sampling period. In each case (column), 10 time series

have been generated from the same theoretical LH signal with

decreasing pulse amplitude and interpulse interval (see top panel of

Figure S4). The table displays the corresponding numbers of time

series for which the detection algorithm (i) detected all the pulses

accurately, (ii) missed a pulse or produced an over-detection

leading to IPI outlier or (iii) missed a pulse or produced an over-

detection without an associated IPI outlier.

(PDF)

Appendix S1.

(PDF)
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