
Determinants of the Incidence of Hand, Foot and Mouth
Disease in China Using Geographically Weighted
Regression Models
Maogui Hu1*., Zhongjie Li2., Jinfeng Wang1, Lin Jia3, Yilan Liao4, Shengjie Lai2, Yansha Guo5,

Dan Zhao2, Weizhong Yang2*

1 State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of

Sciences, Beijing, China, 2 Key Laboratory of Infectious Disease Surveillance and Early-Warning, Chinese Center for Disease Control and Prevention, Beijing, China,

3 Chinese Research Academy of Environmental Sciences, Beijing, China, 4 Institute of Population Research, Peking University, Beijing, China, 5 Institute of Computing

Technology, Chinese Academy of Sciences, Beijing, China

Abstract

Background: Over the past two decades, major epidemics of hand, foot, and mouth disease (HFMD) have occurred
throughout most of the West-Pacific Region countries, causing thousands of deaths among children. However, few studies
have examined potential determinants of the incidence of HFMD.

Methods: Reported HFMD cases from 2912 counties in China were obtained for May 2008. The monthly HFMD cumulative
incidence was calculated for children aged 9 years and younger. Child population density (CPD) and six climate factors
(average-temperature [AT], average-minimum-temperature [ATmin], average-maximum-temperature [ATmax], average-
temperature-difference [ATdiff], average-relative-humidity [ARH], and monthly precipitation [MP]) were selected as potential
explanatory variables for the study. Geographically weighted regression (GWR) models were used to explore the
associations between the selected factors and HFMD incidence at county level.

Results: There were 176,111 HFMD cases reported in the studied counties. The adjusted monthly cumulative incidence by
county ranged from 0.26 cases per 100,000 children to 2549.00 per 100,000 children. For local univariate GWR models, the
percentage of counties with statistical significance (p,0.05) between HFMD incidence and each of the seven factors were:
CPD 84.3%, ATmax 54.9%, AT 57.8%, ATmin 61.2%, ARH 54.4%, MP 50.3%, and ATdiff 51.6%. The R2 for the seven factors’
univariate GWR models are CPD 0.56, ATmax 0.53, AT 0.52, MP 0.51, ATmin 0.52, ARH 0.51, and ATdiff 0.51, respectively. CPD,
MP, AT, ARH and ATdiff were further included in the multivariate GWR model, with R2 0.62, and all counties show statistically
significant relationship.

Conclusion: Child population density and climate factors are potential determinants of the HFMD incidence in most areas in
China. The strength and direction of association between these factors and the incidence of HFDM is spatially
heterogeneous at the local geographic level, and child population density has a greater influence on the incidence of HFMD
than the climate factors.
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Introduction

Hand, foot and mouth disease (HFMD) is a common infectious

disease, the main clinical symptoms of which include mouth ulcers

and vesicles on the hands, feet, and mouth. The disease is caused

by a group of non-polio enteroviruses, particularly those viruses

belonging to Human Enterovirus species A (HEV-A). In most

cases, the disease is mild and self-limiting, however, severe clinical

presentations with neurological symptoms such as meningitis,

encephalitis and polio-like paralysis, and pulmonary edema may

occur, particularly among those aged 5 years and younger [1].

Currently, there is no vaccine or antiviral treatment specifically for

HFMD.

Outbreaks of HFMD have been reported since the 1970s. Over

the last decade, HFMD epidemic have increasingly occurred in

countries of the Western Pacific Region, which were regarded as

the most severely affected region by HFMD in the world,

including Japan, Malaysia, and Singapore, Thailand, and China
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[2,3,4,5]. The incidence of HFMD, particularly with deaths

among children caused by severe complications, appears to be

increasing across this region [6]. In 2009, for example, an

epidemic in mainland China involved 1 155 525 cases, 13 810

severe cases and 353 deaths [1]. Therefore, HFMD has become an

emerging public health concern in the affected countries, and a

focus of increasing amounts of research.

In recent years, the epidemic, clinical, and pathogenetic features

of HFMD have been studied extensively [2,3,4,5], increasing our

understanding of the distribution and severity of the disease.

However, potential factors influencing the incidence of HFMD

remain little understood. In this study, we explore the spatial

association of HFMD incidence with several potential determi-

nants (including child population density, average temperature,

average minimum temperature, average maximum temperature,

average temperature difference, average relative humidity, and

monthly precipitation) to examine potential spatial variations in

the assumed relationship between these factors and HFMD

incidence.

Methods

Data
County-level HFMD data for May 2008 were obtained from the

Chinese Center for Disease Control and Prevention. The total

number of case records in May 2008 was 176 111, which is the

highest number of monthly cases for the year. The case numbers

of different counties vary substantially, from 0 to 2053 incident

cases. According to the records obtained, 98% cases (172 542)

were children aged 9 years and younger, with county-specific case

numbers varying from 0 to 2020 incident child cases. In this

research, we focus on the incidence of HFMD among children 9

years old and younger (0,9). Hence, we calculate the HFMD

cumulative incidence by adopting the count of HFMD cases aged

0,9 years as the numerator, and the total population aged 0,9

years as the denominator.

We also obtained data of monthly climate factors from the

China Meteorological Data Sharing Service System. The data

were collected from 727 meteorological stations in the whole of

China. The six monthly climate factors in the study consisted of

average temperature (AT), average minimum temperature

(ATmin), average maximum temperature (ATmax), average

temperature difference (ATdiff), average relative humidity

(ARH), and monthly precipitation (MP). Taking account of

the county population density of children (CPD), a total of

seven factors were used to explore the local determinants of

HFMD incidence.

The geographic data were obtained from the Chinese National

Administration of Surveying, Mapping and Geoinformation.

Cumulative Incidence Inference
The HFMD dataset comprises the number of incident cases

in each county. It reflects the occurrence of the disease in

different regions, and guides the government’s allocation of

medical resources. However, it cannot estimate the risk of

contracting the disease because of the different population

numbers among administrative regions, whose land areas are

also different. To reduce the influence of population size,

cumulative incidence (CI) was used to reflect the risk of

contracting HFMD in each county. It measures the disease

frequency during a period of time [7]. We used the crude CI of

HFMD among children aged 9 years and younger in the ith

county in May 2008, denoted as Ri. Ri is the ratio of the

number of cases Ni and the child population number Pi aged 9

years and younger. However, Ri cannot be used to compare the

disease risk between different counties directly because of

random effects. Some counties reported 0 HFMD cases

(Ri~0) in May 2008, however, it could not be deduced that

there is no risk of HFMD in these counties. In fact, they had

HFMD cases in other months. The case number Ni is a

random variable. The observed number can be interpreted as

just one realization of the random variable. Data collection

error is another important source of variation. Pi also affects

the rate’s comparability. The minimum and maximum number

of children (#9 years) in the population of all counties is about

284 and 644 147, respectively. The larger Pi in the county, the

more stable Ri is. In contrast, an Ri based on a small Pi is less

robust to data variation (for example, data collection error),

than those calculated from larger Pi. Therefore, a hierarchical

bayes model, Besag, York, and Mollié (BYM) model, is adopted

to reduce the spatial variance of CI [8]. The core idea to

improve accuracy in the model is ‘‘borrowing strength’’ from

other counties, whose accuracy is high. In the model, logarithm

of the expected CI in the ith county log (li) consists of three

parts: the overall level of the disease risk a, the correlated

heterogeneity ui and the uncorrelated heterogeneity vi, as

following equation.

log (li)~azuizvi ð1Þ

The uncorrelated heterogeneity vi is an independent normal

variable with mean 0 and variance t2
v . While for the correlated

component ui, spatial correlation is involved in the model, which is

defined by the intrinsic Gaussian auto-regression model [8,9].

vi
~NN(0,t2

v) ð2Þ

½ui Duj ,i=j,t2
u� ~NN(

P
j

ujwij=
P

j

wij ,t
2
u=
P

j

wij) ð3Þ

where, W~½wij � is the spatial adjacent matrix defining the

connectivity between counties. wij~1 if the ith county and jth

county is adjacent, otherwise wij~0. The parameters t2
v and t2

u are

the variability of vi and ui respectively. Gamma distribution is

selected in the study as prior distribution where the hyper-

parameters were drawn: 1=t2
v*Gamma(0:001,0:001) and

1=t2
u*Gamma(0:5,0:0005). The model is solved by MCMC

simulation in WinBUGS 1.4, and the length of burn-in sequence is

4 000. The convergence diagnostic is tested by the boa library in R

2.13 software.

Climate Factors Interpolation
Climate factors are usually observed from spatially distributed

meteorological stations. The data collected are site-specific.

Inference is required to obtain climate factors (such as temperature

and precipitation) for places where there are no meteorological

stations. There are 727 meteorological stations distributed within

the 2912 counties in the research. Interpolation is necessary to

estimate each county’s mean value of the selected climate factors.

By comparing the average interpolation accuracies from IDW,

Kriging, and thin plate smoothing splines with ‘‘leave one out’’

validation scheme, the thin plate smoothing splines method was

selected to estimate each county’s climate factors [10]. The

expression of the thin plate smoothing splines method is as

following:

Local Determinants of HFMD’s Incidence
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q~f (x,y)z
Pp
j~1

bjyj(x,y)ze ð4Þ

where, f is an unknown smooth function to be estimated; (x,y) is

spatial point’s coordinates; yj is a set of covariates, and p is

number of covariates; bj is a set of unknown parameters which will

be estimated; e is normal distributed random errors with mean 0.

Climate factors are usually affected by the local topography, so

elevation was selected as the covariate to improve the precision of

the estimates, while latitude and longitude were two independent

position variables [11,12]. Parameters were calculated by mini-

mizing the generalized cross validation scheme.

Geographically Weighted Regression
Multivariate regression model has been extensively applied in

spatial epidemiology. A global multivariate regression model can

capture the average strength and significance of statistical

relationships between independent and dependent variables with

just one equation for all data [13]. The relationship is assumed to

be unchanged everywhere. However, it might hide potentially

important local variations in the relationship. Geographically

weighted regression (GWR) model allows for local spatial variation

in the relationship between variables across the whole space

[14,15]. The form of GWR model we used is similar to global

regression models; however, the parameters vary with spatial

location:

ln ys~bs0zbs1xs1z . . . zbskxskz . . . zbs7xs7zes ð5Þ

where, s~1, . . . ,2912 denotes spatial location of counties in

mainland China; ys is the dependent variable CIs; seven

independent variables xsk (k~1, . . . ,7), including child popula-

tion density (logarithm transformed) and six climate factors,

altogether are considered in the model; bsk are local regression

parameters to be estimated. Therefore, every county in our study

area has a set of specific parameters to reflect the relationships

between the CI and the seven independent variables.

Besides parameter localization, spatial autocorrelation is also

carefully imbedded in the GWR model. According to Tobler’s first

law of geography, everything is related to everything else, but near

things are more related than distant things [16]. For a given

county, variables from near counties are more important than

those from far away counties. A weight matrix is adopted to

represent the relative importance between counties. The weight

value is a distance-decay function which is a Gaussian like ‘‘bell’’

shape function. The parameters are solved by the following matrix

form, where T is the matrix transpose operation.

b̂bs~(XT W sX){1XT W sy ð6Þ

Ws is a diagonal weighting matrix as follows:

Ws~

ws1 0 � � � 0

0 ws2 0 0

..

. ..
.
� � � ..

.

0 0 � � � wsn

2
66664

3
77775 ð7Þ

The bandwidth or extent for a county to determine how many

nearby counties should be included in the matrix is also a key point

in the application because each county’s area is very different from

others. Counties with sparse population densities often cover a

large area, while counties with high population densities might

have a small area. To make sure a sufficient number of counties

are used to solve the local regression model, an adaptive kernel

scheme is used to select the optimal number of neighboring

counties. The optimal number is determined according to the

Akaike Information Criterion (AIC) through an iterative optimi-

zation process [14]. AIC is one of the most appropriate indices for

implementing the adaptive kernel technique to find the most

appropriate number of neighbors of the regression county [15,17].

The spatial radius to the regression county adapts for the density of

counties at each regression location. A bi-square weighting

function was selected to calculate the weight between counties,

wsi~
½1{(dsi=dmax)2�2 dsiƒdmax

0 otherwise

(
ð8Þ

where, dmax is the max distance from the mth farthest county to the

county of interest (m is the selected optimal neighboring counties).

Both univariate and multivariate GWR models were built to

explore the factors’ separate and combined explanatory effects.

Factors entering into the multivariate GWR model were selected

with the criteria of non-collinearity and AIC minimization.

Furthermore, model significance was tested by variance analysis

(F tests), and the significance of estimated local parameters was

checked with pseudo t tests [14].

Results

The spatial distribution of the original monthly HFMD CI of

children aged 0,9 years in May 2008 was calculated from the

county’s number of cases and the at-risk population. Among the

2912 counties, 468 counties reported no child HFMD cases (crude

CI = 0). To reduce uncertainty in the crude CI, a hierarchical

Bayesian model was applied to adjust the rate. The county-specific

CIs after adjustment are shown in Figure 1(a), and vary from 0.26

HFMD cases per 100 000 children to 2549.00 cases per 100 000

children with a median CI of 42.15 per 100 000 and a mean of

106.50 per 100 000. Simple comparisons of the original and

adjusted CIs are listed in Table 1. No county has an adjusted CI of

zero. The difference between the original CI and the adjusted CI

is large in the counties with a sparse child population and a small

number of cases. Counties with high HFMD CIs were mainly

located in southern, eastern, mid- and northern China. Counties

in west and north-east China had relatively low HFMD CIs. The

global Moran’ I index of the adjusted CIs is 0.36 (p,0.01)

indicating that there is relative strong positive spatial correlation.

The spatial scope of the study area was very broad. Climate

factors varied greatly from northwest to southeast China.

Descriptive statistics for the climate and child population density

data are presented in Table 2. The difference between the

maximum and minimum average temperature is 28.67uC. The

corresponding difference values of ATmin, ATmax and ATdiff are

30.96uC, 27.76uC, and 13.62uC respectively. The variation in

monthly precipitation is also very large. Some counties had more

than 400 mm precipitation in May 2008; while in other counties,

the precipitation is was less than 1 mm. This difference was

reflected by the monthly average relative humidity index, whose

difference between the maximum and minimum value is more

than 60%. The child population number also varies greatly

between counties, with a mean and standard deviation of 135.30

and 325.96 persons/Km2 respectively. The spatial distributions of

Local Determinants of HFMD’s Incidence
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child population density and the climate factors are displayed in

Figure 1(b)–(h). High child population densities were mainly

concentrated in eastern, northern, and southern China, while the

child population densities in western and north-eastern China

were smaller. Precipitation and temperature show a similar trend

across China in May, decreasing from south-eastern to north-

western China, which is opposite to the observed variation in

temperature difference.

Univariate GWR models were built to test for significant

relationships between HFMD CI and each potential explanatory

factor. The coefficients of determination (adjusted) for AT, ATmin,

ATmax, ATdiff and ARH are 0.52, 0.52, 0.53, 0.51 and 0.51

respectively (Table 3). The corresponding values of MP and CPD

are 0.51 and 0.56 respectively. The GWR model with CPD as a

unique explanatory variable has the lowest AIC value and the

largest coefficient of determination among all the univariate

models. The statistical significance of the regression parameters

was checked using the pseudo t test. The percentages of counties

with significant relationships (p,0.05) between CI and the factors

(from largest to smallest percentage) are: CPD 84.3%, ATmin

61.2%, AT 57.8%, ATmax 54.9%, ARH 54.4%, ATdiff 51.8%, and

MP 50.3%. Among counties, the directions of the significant

relationships were not the same, even for the same factor. The

percentages of counties with significantly positive relationships are:

CPD 83.4%, ATmin 53.8%, AT 52.0%, ATmax 50.3%, MP 24.6%,

ARH 19.7%, and ATdiff 25.1%. The spatial distribution of the

direction and strength of the relationships between the HFMD CI

and the seven factors is displayed in Figure 2. The model residuals’

global Moran’s I index are CPD 0.058, AT 0.093, ATmin 0.093,

ATmax 0.091, ATdiff 0.096, MP 0.095, and ARH 0.094 (p,0.01)

respectively. Although the model residuals’ spatial correlation is

much smaller than the CI’s spatial correlation whose Moran’s I is

0.36, more effective variates would be helpful to capture the CI’s

spatial variation.

All of the explanatory variables were further tested using a

multivariate GWR model. Five variables (CPD, AT, ARH, MP

and ATdiff) were entered into the model under the criteria of non-

collinearity and AIC minimization. The model’s coefficient of

determination was 0.62, which is larger than that of all the

univariate GWR models. Both AIC and ANOVA analysis (F test)

show that the improvement is statistically significant. The global

Moran’s I index of the regression residual is 0.03 (p,0.01),

indicating that there is very weak positive spatial correlation. Thus

the multivariate GWR model captures the CI’s variation very well.

The local coefficients of determination at county level derived

from the multivariate GWR model are shown in Figure 3. The

spatial distribution of the local coefficients of determination

demonstrates the combined statistical effect of the five explanatory

variables on the HFMD CI. The coefficients of determination vary

from 0.10 to 0.82 across the region. All of the local models are

statistically significant (p,0.05). Summary of the relationship

directions shows that CPDs of 92.6% counties are positively

related with the HFMD CIs. It is much higher than all the four

climate factors (AT 61.1%, ATdiff 49.2%, MP 62.5, and ARH

39.5%). Most of the directions in the multivariate GWR model are

the same with that in the univariate models (Table 4). However,

there are also a considerable number of the relationship directions

Figure 1. HFMD cumulative incidence of children (#9 years old) and the spatial distribution of potential determinants.
doi:10.1371/journal.pone.0038978.g001

Table 1. Summary of the original and adjusted HFMD
cumulative incidences (1/100 000).

Original CI Adjusted CI

Minimum 0.00 0.26

1st Quantile 7.32 9.06

Median 42.32 42.15

Mean 106.67 106.54

3rd Quantile 132.00 131.03

Maximum 2555.34 2549.00

doi:10.1371/journal.pone.0038978.t001

Local Determinants of HFMD’s Incidence
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changed between the univariate models and multivariate models.

With the pseudo t test, CPDs of 60.06% counties are significantly

related with the HFMD CIs in both univariate and multivariate

model. The percentages of counties with significant relationships

between CI and the climate factors in both univariate and

multivariate models are: ARH 31.5%, ATdiff 26.2%, MP 25.2%,

and AT 21.6%. Therefore, the proportion of CPD is also the

highest one in the five factors. There are some counties where the

relationships are significant only in the univariate model or

multivariate model. There are also some counties where the

relationships are not significant in neither models.

Discussion

Child population density and climate factors were the potential

determinants of HFMD incidence in most areas of China.

Furthermore, the strength and direction of association between

these factors and HFDM incidence were obviously spatially

heterogeneous at the local geographic level. In some areas, the

child population density and climate factors were not significantly

related to the incidence of HFMD, while in the other areas these

factors were positively related, or had an inverse association with

HFMD incidence, with different strengths. We found that child

population density exerted greater influence on HFMD incidence

than the climate factors.

The strong seasonality of HFMD incidence and epidemics has

been demonstrated in many affected countries and regions, for

example, in mainland China epidemic peaks occurred in spring

and early summer [18], the incidence of HFMD is highest in

summer in Taiwan (China) [2], and outbreaks occurred in a

cyclical pattern every 3 years in Malaysia [19]. Other studies have

also assessed the influence of climate on the incidence of HFMD.

Under a regression model, mean temperature, relative humidity,

and wind speed were positively related to HFMD incidence rates

in Hong Kong, where relative humidity was the most influential

factor and wind speed was the least [20]. A similar relationship was

found in Singapore, where weekly mean temperature and

cumulated rainfall were significantly associated with HFMD

incidence at a time lag of 1–2 weeks [21]. Under the analysis of

an S-BME spatiotemporal model, the number of HFMD cases

showed a close relationship to monthly precipitation in mainland

China [22]. Similar to these studies, our study revealed that

climate factors are associated with the incidence of HFMD.

What’s more, we further demonstrated a spatial variation in the

association between HFMD incidence and climate factors at the

small geographic level of county, which has not been demonstrat-

ed previously. Child population density was also found to affect the

incidence of HFMD in most of the study counties, which is

consistent with the findings of another study recently conducted at

the prefecture level (one higher administrative level than county)

by other Chinese researchers [18]. By adopting a smaller

geographic scope we further proved the spatial heterogeneity of

the association between child population and HFMD incidence.

There are two reasons that we select one month (May) rather than

a year in 2008 to research the heterogeneous relationships

between HFMD incidence and potential factors. On one side,

the HFMD case number in May 2008 is the largest one in all the

twelve months in 2008. It is the most typical month to reveal the

relationships. On the other side, the heterogeneous relationships

may be hidden or smoothed due to yearly mean value of potential

factors.

We found that child population density alone could explain

56% of the variance of HFMD incidence, while the climate factors

could explain about 52%. From this point of view, child

population density seems more significantly related to the disease

incidence rather than the climate factors. Among the 2912 study

counties, the local GWR models’ statistical tests show that no

factor is significantly related to the HFMD CI in all counties.

However, the child population density factor had the largest

percentage of significantly related (to HFMD CI) counties, and in

most of these counties, population density was positively related to

the HFMD CI. Besides child population density, three tempera-

ture-related factors (AT, ATmin and ATmax) had positive

relationships with the disease in more than 50% of the significantly

related counties. In contrast, for average relative humidity,

monthly precipitation and average temperature difference, more

counties are negatively related to the HFMD CI than positively

related. In addition, our study shows that the combination of child

population density, monthly precipitation, average temperature,

average temperature difference and average relative humidity

could explain HFMD incidence more than any single factor,

Table 2. Descriptive statistics of climate factors and child population density for all counties in May 2008, China.

AT (6C) ATmin (6C) ATmax (6C) ATdiff (6C) ARH (%) MP (mm) CPD (person/km2)

Minimum 21.47 26.59 4.41 3.72 17.44 0.00 0.02

Mean 18.89 13.96 24.66 10.70 62.42 103.27 135.30

Maximum 27.20 24.37 32.17 17.34 85.21 310.79 4297.00

Standard Deviation 5.01 5.83 4.56 2.47 13.35 70.28 325.96

AT: average temperature; ARH: average relative humidity; MP: month precipitation; CPD: child population density.
doi:10.1371/journal.pone.0038978.t002

Table 3. Summary of univariate GWR models for different
factors.

R2 Significantly related counties

p,0.05 + 2

AT 0.52 57.8% 52.0% 5.8%

ATmin 0.52 61.2% 53.8% 7.4%

ATmax 0.53 54.9% 50.3% 4.7%

ATdiff 0.51 51.8% 25.1% 26.6%

ARH 0.51 54.5% 19.7% 34.8%

MP 0.51 50.3% 24.6% 25.7%

CPD 0.56 84.3% 83.4% 0.9%

AT: average temperature; ARH: average relative humidity; MP: month
precipitation; CPD: child population density.
doi:10.1371/journal.pone.0038978.t003

Local Determinants of HFMD’s Incidence
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demonstrating the interactive effects among these factors on the

disease incidence.

There are two possible reasons for the spatial heterogeneity of

the relationship between the climatic factors and population

density with HFMD incidence at the local level. First, weather

condition is a synthesis of multiple climatic processes, and different

combinations of climate factors may generate different climate

types, which in turn would have unique influences on HFMD

Figure 2. The spatial distribution on the local relationship between HFMD incidence, child population density, and six climate
factors at county level in May 2008, China.
doi:10.1371/journal.pone.0038978.g002

Figure 3. Local R2 derived from multivariate GWR model.
doi:10.1371/journal.pone.0038978.g003

Local Determinants of HFMD’s Incidence
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infection and transmission. For example, some combinations

would favor virus survival, reproduction, and transmission [23],

while others would limit children’s outdoor activity and would

prevent viral transmission among the community [24,25]. Second,

other conditions unaccounted for in our study, such as population

immunity to HFMD, public health measures taken by local health

departments, and personal and environmental hygiene, may also

contribute to the occurrence, transmission and spread of HFMD

among the community, childcare centers, kindergartens, and

preschools [3,26,27]. These factors are potential covariates

influencing the association between child population density,

climate factors, and the incidence of HFMD.

In spatial regression models, a global model is generally used to

examine the relationship between disease risk and potential

explanatory factors, which is based on the assumption that the

relationship is a stationary spatial process [20,21]. For a small and

homogenous region of interest, it is reasonable to assume that the

explanatory factors would not change significantly across the

whole region, and the relationship between HFMD incidence and

the potential factors would also be unchanged. However, the

topography, climate, and population distribution change greatly

when it comes to a large region like China with a territory over 9.6

million square kilometers. According to Zheng et al’s (2010) climate

regionalization scheme, there are 12 temperature zones, 24

moisture regions, and 56 climatic sub-regions in China [28]. It

would be difficult to keep the spatial stationarity assumption in

such a complicated area. The effect of the factors of interest on

HFMD would be more similar in local regions with similar

conditions, while the effect would be more different in local

regions whose conditions differ greatly. GWR models consider

spatial heterogeneity by separating the large heterogeneous region

into small local regions. Only nearby counties are included in the

local regression, and every included county is given a weight

according to its spatial distance to the destination county. In this

study, GWR models were successfully used to explore the local

climate and population distribution factors effects on HFMD

incidence at the county level, which demonstrates that GWR

models can be used to geographically differentiate the relationships

between diseases and their explanatory factors.

The underreporting of HFMD cases in clinics and hospitals is

a potential limitation of our study. Some HFMD cases do not

seek health care because their symptoms are mild, or they are

asymptomatic. Also, even though standard diagnosis criteria for

HFMD have been issued by the Chinese Ministry of Health,

discrepancies in clinical diagnosis awareness and capacity exists

in the clinics and hospitals among different regions (such as in

developed versus underdeveloped areas). Regional differences in

the reporting of HFMD cases may influence our study findings to

a certain extent.

In summary, HFMD, a wide-spread infectious disease in

China, is found to be heterogeneously related to climate factors

and child population density distributed at the county level

throughout the country. Our findings may assist in the risk

assessment for HFMD epidemic in local areas, and guide local

public health institutes to rationally allocate public health

resources and improve their preparedness for an outbreak

according to region-specific conditions.
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