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Abstract

Background: Blood fluidity is maintained by a delicate balance between coagulation and fibrinolysis. The endothelial cell
surface is a key player in this equilibrium and cell surface disruptions can upset the balance. We investigated the role of
pericellular myeloperoxidase oxidized LDLs (Mox-LDLs) in this balance.

Methods and Results: We designed a technical device that enabled us to monitor fibrinolysis in real-time at the surface of
an endothelial cell line (EA.hy926), and showed that Mox-LDL decreased pericellular fibrinolysis. There were no changes in
fibrinolysis when EA.hy926 endothelial cells were exposed to native LDL (24 hours) at doses of 10, 50, 100 and up to
1250 mg/ml. However, treatment of EA.hy926 endothelial cells with 10 and 50 mg/ml of Mox-LDL (physiological serum
concentrations) increased the lysis time by 15 and 13%, respectively (p,0.001), although this effect was not present at
higher concentrations of 100 mg/ml. This effect was not correlated with any changes in PAI-1 or t-PA or PA Receptor (PAR)
expression. No effect was observed at the surface of smooth muscle cells used as controls.

Conclusion: Our data link the current favorite hypothesis that modified LDL has a causal role in atheroma plaque formation
with an old suggestion that fibrin may also play a causal role. Our data help complete the paradigm of atherosclerosis:
Modified LDL locally enhances fibrin deposition (present work); fibrin deposits enhance endothelial permeability; this effect
allows subendothelial accumulation of lipid and foam cells.
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Publique du Pays de Charleroi and Institut de Recherche en Pathologie et Génétique Gosselies. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: karim.zouaoui@chu-charleroi.be

. These authors contributed equally to this work.

" These authors also contributed equally to this work.

Introduction

Atherosclerosis is a clinical condition for which multiple genetic

and environmental causal factors have been proposed. The

atherosclerotic process involves thickening of the arterial wall;

this thickening is related to the accumulation of foam cells,

macrophages that have engulfed large amounts of modified LDL

particles. These macrophages differentiate from monocytes that

are recruited to the endothelium and activated to express

leukocyte adhesion molecules [1,2]. These adhesins are themselves

also induced by modified LDLs (more abundant in patients with

hypercholesterolemia), and it is, therefore, widely accepted that

they are involved in atherogenesis [3]. Observations also suggest

that myeloperoxidase (MPO), a protein secreted by activated

phagocytes, is a major physiological player in generating

modified/oxidized (lipo)proteins [4,5] via the production of

hypochlorous acid (HOCl) from H2O2 and chloride [6]. HOCl-

modified LDLs (HOCl-LDLs) are present in human atheroscle-

rotic lesions, where they are located both in vascular cells and in

extracellular spaces [4]. Clinical studies have shown that patients

with MPO-deficiency or low blood levels of MPO have reduced

risk of cardiovascular disease [5,7]. Two other studies reported

that serum MPO levels could predict prognosis in patients with

acute coronary syndromes or chest pain [8,9]. The circulating
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form of MPO can bind to LDL [10] because of its highly cationic

isoelectric point (pI .10).

Early circumstantial observations also correlated fibrin deposi-

tion with atheroma plaque formation. It has, therefore, been

proposed that a decrease in plasma or pericellular fibrinolytic

capacity may predispose to atherogenesis [11,12]. Recent clinical

studies indeed confirm a hypofibrinolytic state in atherosclerotic

patients [13].

The endothelial cell plasma membrane is a place where

coagulation and fibrinolysis are balanced in a continuous, dynamic

equilibrium. Endothelial cells themselves feed this process by

secreting coagulation and fibrinolysis factors. For example,

endothelial cells secrete at least three fibrinolysis regulators:

Tissue-plasminogen activator (t-PA), urokinase-plasminogen acti-

vator (u-PA) and plasminogen activator inhibitor-1 (PAI-1). They

also express specific receptors, which bind fibrinolysis factors (such

as u-PA, t-PA, t-PA-PAI-1 complex or plasminogen) and, thereby,

modulate their activity [14]. Therefore, any interference with the

endothelial cell surface or gene expression has possible implica-

tions for fibrinolysis and vice-versa. For example, physical forces or

clinical conditions confer a prothrombotic environment on the

endothelial membrane because they enhance fibrin generation

[15]. Conversely, fibrin deposition on confluent endothelial cells

disorganizes their regular cobblestone arrangement and increases

the monolayer permeability [16,17,18]. Fibrin also induces

endothelial cells to produce and release interleukin (IL)-8, a

leukocyte chemotactic factor [19].

Because of technical limitations, the interplay between endo-

thelial cells, oxidized LDLs and fibrinolysis has never been

properly analyzed. Using an up-to-date technical device that

allows real-time monitoring of fibrinolysis, we show a negative

effect of MPO-modified LDLs (Mox-LDLs) on pericellular

fibrinolysis. We propose a model involving increased fibrin levels

as an early event in the progression of atheroma lesions.

Results

Fibrinolytic Process at the Cell Surface
EA.hy926 endothelial cells and primary human smooth muscle

cells (SMCs) were inoculated on semiporous PET membranes

located inside cuvettes adapted to the lysis timer, and grown to

confluence. Fig. 1 shows the equipment (cuvette, membrane, ring

in metacrylate) used for cell culture and fibrinolysis recordings. An

euglobulin fraction was added to the cuvette, coagulation was

triggered by addition of thrombin, and fibrinolysis was allowed to

proceed. The course of the lysis process is shown in Fig. 2. The

lysis time calculated from the fibrinolysis curve, plotted on

Figure 3, was significantly decreased (by 30%) in the presence of

EA.hy926 endothelial cells, compared to a control, unseeded PET

membrane. In contrast, PET membrane inoculation with SMCs

did not significantly alter the lysis time (Fig. 3). To check the

integrity of the culture cells, they were analyzed by optical

microscopy before and after fibrinolysis. Fig. 4 shows that, despite

the presence of fibrin residues after the fibrinolysis assay,

EA.hy926 endothelial cells and SMCs displayed unaltered

cobblestone and spindle-shaped morphology, respectively. LDH

analysis confirmed that the cells were in good health (results not

shown).

Effects of TNF-a on the Fibrinolytic Process at the Surface
of EA.hy926 Endothelial Cells and SMCs

In a second experiment, EA.hy926 endothelial cells and SMCs

were exposed to tumor necrosis factor (TNF)-a for 24 hours prior

to washing and loading with the euglobin fraction. TNF-a is

known to have an antifibrinolytic action. Results are displayed in

Fig. 5. The profibrinolytic activity of the EA.hy926 endothelial

cells was confirmed. However, when EA.hy926 endothelial cells

were exposed to TNF-a (1 ng/ml and 10 ng/ml), a stepwise

increase in the lysis time was observed. The lack of effect of SMCs

on clot lysis time was also confirmed, even when the cells were

exposed to TNF-a. In an attempt to understand the differential

reactivity of the two cell types to TNF-a, we measured t-PA and

PAI-1 levels in the culture medium after a 24 h treatment period.

Table 1 shows that, in the medium conditioned with non-exposed

cells, the PAI-1/t-PA ratio was similar for both cell types.

Exposure to TNF-a (10 ng/ml) significantly increased the PAI-

1/t-PA ratio for both cell types, with a larger effect on SMCs.

Effect of Native LDL and Mox-LDL on the Fibrinolytic
Processes at the Surface of EA.hy926 Endothelial Cells

In a third experiment, we monitored the effects of LDL and

Mox-LDL exposure on the clot lysis time. There were no

changes in fibrinolysis when EA.hy926 endothelial cells were

exposed to native LDL (24 hours) at doses of 10, 50, 100 and

up to 1250 mg/ml, Fig. 6. However, treatment of EA.hy926

endothelial cells with 10 and 50 mg/ml of Mox-LDL increased

the lysis time by 15 and 13%, respectively, although this effect

was decreased at higher concentrations of 100 mg/ml. A final

concentration of 1250 mg/ml could not be reached in this case

because of the dilution related to MPO treatment. The effects

of Mox-LDL were very reproducible: Identical results were

obtained during the course of three independent complete

procedures involving healthy donor LDL isolation, LDL

oxidation, cell culture, healthy donor euglobulin fraction

preparation and fibrinolysis. Again, we monitored PAI-1 and

t-PA secretion subsequent to LDL and Mox-LDL treatment

and, as shown in figure 7, there was no effect (except for a

decrease of t-PA expression upon LDL treatment), in contrast to

what was observed with TNF-a treatment.

We, therefore, sought to investigate the effect of mox-LDL on

the expression of factors that have a major influence on

fibrinolysis, namely, in addition to PAI-1 and t-PA, uPAR and

annexin II, the PA receptors known to be expressed by

endothelial cells, and also plasminogen, a2-antiplasmin, a2-

macroglobulin, FXIII, FXI, FXII, and kallikrein, which are

believed to be expressed by hepatocytes, and LRP (a PAI-1/t-

PA complex receptor), expressed by macrophages [20,21]. Note

that the activity of the plasminogen receptor and another t-PA

receptor recently characterized [22,23,24] could not be tested

because the genes have not yet been identified. Thus, RNA was

extracted from EA.hy926 endothelial cells treated for 24 hours

with LDL and Mox-LDL and analyzed by qRTPCR using

appropriate primers. This experiment confirmed that plasmin-

ogen, a2-antiplasmin and a2-macroglobulin, FXIII, FXI, FXII,

kallikrein and LRP are not expressed in EA.hy926 endothelial

cells, even at basal levels (results not shown). There were no

changes observed in mRNA levels of annexin II (a t-PA

receptor [t-PAR]), LOX-1 and CL-P1 (the two scavenger

receptors previously reported to be expressed by endothelial

cells [25,26]) t-PA, PAI-1 and u-PAR.and ELISA showed that

there was no significant variation in the protein levels of PAI-1,

t-PA and the membrane or soluble forms of uPAR either.

Native LDL however slightly decreased t-PA expression.

In contrast to another pro-inflammatory stimulus, TNF-a,

which acts on PAI-1 and tPA levels, Mox-LDL at patho-

physiological concentrations did not interfere with the protein

levels (expressed by the EA.hy926 endothelial cell line) of any

known fibrinolysis factors, as recorded by ELISA.

Myeloperoxidase Modified-LDL and Fibrinolysis
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Figure 1. The experimental device. Fibrin formation and degradation occurred in adapted circular microcuvettes and were recorded by an
automated device. To monitor the effect of cells on fibrinolysis taking place at their surface, cells were inoculated on collagen coated membranes;
stuck at the bottom of glass circular micro-cuvettes; by a ring; and grown to confluence. The microcuvettes were inserted in the apparatus at 37uC,
the euglobin fraction added and clot formation started by addition of thrombin. Coagulation and fibrinolysis were then monitored by the device. In
control experiments, monitoring was performed in the presence of empty (cell-devoid) membranes or after addition of TNF-a to the cuvettes as
described.
doi:10.1371/journal.pone.0038810.g001

Figure 2. The course of the lysis process. A typical fibrinolysis monitoring. Euglobulin Clot Lysis Time (ECLT) is expressed in minutes. It is
calculated from a clot lysis primary graph; this graph records the light transmittance at 680 nm as a function of time (measured in seconds): blue
curve. Typically the transmittance decreases very quickly after thrombin addition which triggers clot formation and, after a latency time, fibrinolysis
progressively restores transmittance. The ECLT is then determined from a mathematical analysis of the recorded lysis curve. Primary and secondary
derivations of the recorded values generate the red and green graphs respectively. These graphs allow calculation of the B point, the peak to fibrin
clot lysis, and the C point, the end of the complete fibrinolysis process.
doi:10.1371/journal.pone.0038810.g002
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Discussion

Several hypotheses have been proposed to explain atheroma

plaque development, two of which involve fibrin deposition and

lipid accumulation as causal agents. Although involvement of the

latter factor has now been extensively documented, the role of

fibrin deposition has been investigated much less. To explore

whether there could be a link between these two hypotheses, we

adapted a device [27] (the lysis timer) so as to be able to monitor

fibrinolysis in real-time at the endothelial cell surface. Our

observations enable us to propose a new model integrating the

two hypotheses, in which exposure of endothelial cells to Mox-

LDLs, even at low concentrations, was associated with a reduced

capacity to eliminate the fibrin clot, thereby enhancing endothelial

permeability and foam cell accumulation.

Our data are in agreement with previous findings suggesting

that the endothelial cell membrane plays a central role in the

balance between coagulation and fibrinolysis. The normal

endothelium is known for its capacity to inhibit coagulation and

to favor fibrinolysis [28]. However, most studies performed in vitro

have monitored fibrinolysis indirectly by quantification of endo-

thelial cell production of t-PA and PAI-1. Rare attempts to

monitor fibrinolysis itself used technically complicated methods

and a system in which not all components involved in fibrinolysis

were reconstituted simultaneously [29]; the results regarding the

effects of endothelial cells on fibrinolysis were inconclusive. In

contrast, we directly monitored pericellular fibrinolysis in real-

time. We started with an euglobulin fraction containing the main

factors involved in fibrin network formation and lysis, i.e., FXIII,

fibrinogen, plasminogen, PAI-1 and t-PA; these factors were

simultaneously put into contact with EA.hy926 endothelial cells

before thrombin addition, allowing spontaneous lysis. This method

allowed us to observe a profibrinolytic effect of EA.hy926

endothelial cells that was physiologically relevant because it was

not observed with control SMCs.

Thus, despite a similar secreted PAI-1/t-PA ratio (with or

without treatment with TNF-a, an inflammatory factor known to

interfere with fibrinolysis), only EA.hy926 endothelial cells and not

SMCs had an effect on fibrin clot lysis time (in agreement with

Handt et al [29]). These observations suggest that factors other

than the two main fibrinolysis modulators could be involved. From

this point of view, the action of endothelial cells is reminiscent of

the observed profibrinolytic activity of monocytes/macrophages

[30], these two cell types share direct contact with blood in

physiological conditions and the expression of specific receptors

that are documented to enhance the fibrinolytic action of t-PA,

urokinase and plasminogen [14,24,31]. Thus, in the presence of

soluble t-PAR and t-PA bound to immobilized t-PAR, t-PA

exhibited 34- and 90-fold increases in plasminogen activation,

respectively. We, therefore, attempted as extensive a study as

possible of genes coding for PAI-1, PA and their receptors but also

other proteins involved in the control of fibrinolysis. We confirmed

that genes previously reported not to be expressed in endothelial

cells (plasminogen, a2-antiplasmin and a2-macroglobulin, LRP,

FXIII, FXII, FXI, kallikrein were not expressed in EA.hy926

endothelial cells even under basal conditions, as their mRNA was

undetectable in qRTPCR. In contrast, genes coding for annexin

II, u-PAR, PAI-1 and t-PA were expressed although not regulated

by Mox-LDL treatment. ELISA analyses of t-PA, PAI-1 and

soluble and membrane u-PAR confirmed that there was no

change at the protein level. However native LDL treatment

induced a slight but significant reduction in t-PA secretion even if

this did not come with any change in fibrinolysis. Therefore, all

our results suggest that none of the molecules well known to

regulate fibrinolysis is involved in the antifibrinolytic effect of

Mox-LDL. This is in contrast to another pro-inflammatory

stimulus, TNF-a, which we found exerted a similar action through

different factors, namely PAI-1 and t-PA. This finding raises the

question as to whether the receptor and signal transduction

pathways activated by Mox-LDL and TNF-a are different.

The TNF-a receptor and signal transduction pathways have

been well described [32], and as they were only used as a control

in order to analyze the effects of Mox-LDL in our experiments, we

believe that an extensive analysis of these pathways is beyond the

scope of this paper. However, much less information is available

on the oxLDL signal transduction pathways and none regarding

Mox-LDL. Therefore, we attempted a preliminary dissection of

Figure 3. Fibrinolytic process at the surface of endothelial cells and smooth muscle cells. A. The lysis time was compared in the presence
of EA.hy926 endothelial cells (endoth), smooth muscle cells (SMC) or without cells (control). Results are expressed as fold over control ratio (mean 6
SEM on 6 [EC and SMC] or 4 [membrane alone] independent experiments performed in triplicate). ANOVA p,0.001, *,0.05 vs control, Dunnett’s
post-hoc test.
doi:10.1371/journal.pone.0038810.g003

Myeloperoxidase Modified-LDL and Fibrinolysis
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the molecules involved in signal transmission after Mox-LDL

treatment.

A first experiment targeted LOX-1, the scavenger receptor that

has been reported in the literature to bind oxLDL and to mediate

its effects [33]. The results showed that neutralizing anti-LOX-1

antibodies are not able to interfere with Mox-LDL signal

transduction (as monitored by IL-8 induction) at concentrations

that inhibit oxLDL signaling (results not shown). This finding

suggests that Mox-LDL signal transduction is not mediated by

LOX-1, which was confirmed by the lack of effect of Mox-LDL on

the expression of the LOX-1 gene (results not shown) as opposed

to oxLDL that has been reported to increase LOX-1 expression

[34]. We, therefore, analyzed the expression of other putative

receptors of the scavenger family and confirmed that most

receptors of the family, namely SRB, SRD and SRF (reported

to be expressed in macrophages or non endothelial cell types), are

not expressed in endothelial cells. Of the two receptors (CL-P1 and

LOX1) reported to be expressed in endothelial cells, only LOX-1

was expressed in the EA.hy926 cell line. It is, therefore, likely that

Mox-LDL acts through an as yet unknown receptor. Finally, the

use of specific inhibitors allowed us to investigate the involvement

of the main pathways that have been reported to be involved in

oxLDL signal transduction. Thus, we co-treated cells with Mox-

LDL and either PD98059, SP600125, SB202190, GW5074,

wortmanin or calphostin C, specific inhibitors of ERK 1 and 2,

JNK, p38, Raf, IP3K and pKC, respectively. Although some of

the inhibitors demonstrated an effect on the basal level of IL-8,

none specifically interfered (neither increasing nor decreasing) with

the Mox-LDL-increased IL-8 mRNA level. This finding again

suggests that Mox-LDL elicits a signal transduction pathway

different from that triggered by Cu-oxLDL. Finally, an intriguing

observation was the effect of Mox-LDL on fibrinolysis at low but

not at higher concentrations. This result is reminiscent of previous

observations, for example the biphasic and contrasting effects on

tPA and PAI-1 secretion of different concentrations of steroid

hormones, such as 17bestradiol or progesterone [35]. Although we

Figure 4. Morphology of cells. Fibrinolysis does not affect cell health. EA.hy926 endothelial cells (panels C and D) show a cobblestone
morphology and smooth muscle cells (panels A and B) present a spindle shape, both of which are conserved after fibrinolysis (panels B and D). The
arrows in panel B indicate fibrin residues on the surface of SMCs after fibrinolysis.
doi:10.1371/journal.pone.0038810.g004

Myeloperoxidase Modified-LDL and Fibrinolysis
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do not have a definite explanation for this phenomenon, it may be

related to various mechanisms, including a template effect,

aggregation of the LDL particles, a negative feedback loop or

uptake of oxLDLs by 2 different receptors. That our Mox-LDL

preparations are able to enhance IL-8 production argues against a

loss of effect subsequent to aggregation. To assess the two last

hypotheses would require identification of the receptor(s).

OxLDL (Mox-LDL) plays a role in cardiovascular disease.

Another factor, impaired fibrinolytic function, was also proposed

as a main participant a long time ago. This suggestion originated

from observations by Virchow and was later supported by

circumstantial observations [36,37]. Clinical studies, always based

on plasma tPA and PAI-1 levels, have reported that the risk of

ischemic cardiovascular events is increased in patients with

impaired plasma fibrinolytic function [38,39,40]. Our observations

establish that physiological concentrations of Mox-LDL impairs

bona fide fibrinolysis at the endothelial cell surface and suggest a

different pathway than that involving TNF-a. This pathway and

the receptor triggering it remain to be identified.

In summary, our data link the current favorite hypothesis that

modified LDL has a role in atheroma plaque formation and an old

suggestion that fibrin may also play a causal role. Our data suggest

a means of completing the paradigm of atherosclerosis: Modified

LDL enhances fibrin deposition locally (current results); fibrin

deposits enhance endothelial permeability [17,18,19]; and this

effect allows subendothelial accumulation of lipid and foam cells

[41].

The mechanisms by which Mox-LDL can modify pericellular

fibrinolysis will be the subject of future investigations.

Materials and Methods

Ethics Statement
Blood sampling was approved by the CHU Charleroi hospital

ethics committee (Comité d’Ethique I.S.P.PC: OM008). The

studies conform to the principles outlined in the Declaration of

Helsinki. Written consent was obtained from the donors.

Cell Culture
EA.hy926, an endothelial cell line derived from the human

umbilical vein was used. This cell line results from the fusion

between HUVEC (human umbilical vein endothelial cells)

primary cells and a thioguanine resistant clone of A549 a

pulmonary adenocarcinomic human alveolar basal epithelial cell

line. EA.hy926 endothelial cells closely resemble HUVEC and

retain characteristics of differentiated endothelium such as Weibel-

Palade bodies, expression and or secretion of fibrinolysis and

Figure 5. Effects of TNF-a on the fibrinolytic process at the surface of cells. The ECLT time was compared in the absence or presence of
EA.hy926 endothelial cells (endoth) or smooth muscle cells (SMC) in culture medium supplemented with TNF-a at the indicated concentrations. Black
histograms: SMC; gray histograms: EA.hy926 endothelial cells (endoth). Results are expressed as fold over control ratio (mean 6 SEM on 4
independent experiments performed in triplicate). ANOVA ,0.001, * ,0.05 versus control, Dunnett’s post-hoc test.
doi:10.1371/journal.pone.0038810.g005

Table 1. PAI-1 and t-PA in the culture medium after
stimulation.

Mean ± SD PAI-1 (ng/ml) t-PA (ng/ml) PAI/t-PA ratio

Endothelial cells

Control 351656 19.864.9 7.161.8

TNF (10 ng/ml) 6546225 23.964.3 11.762.8

SMCs

Control 135616 46.464.8 7.661.5

TNF (10 ng/ml) 273638 36.562.7 18.267

TNF-a triggers an anti-fibrinolytic response in endothelial cells (ECs) and
smooth muscle cells (SMCs). TNF-a was added to the culture medium of the
indicated cells at a 10 ng/ml final concentration. After 24 hours, the culture
supernatant was harvested and the total (active, latent and complexed) PAI-1
and t-PA protein concentrations were quantified by an ELISA test. Results were
expressed as PAI-1 concentration (column 1), t-PA concentration (column 2)
and PAI-1 concentration/t-PA concentration ratio (column 3) (mean 6 SEM on 3
independent experiments performed in duplicate). ANOVA ,0.001, * ,0.05 vs
control, Dunnett’s post-hoc test.
doi:10.1371/journal.pone.0038810.t001

Myeloperoxidase Modified-LDL and Fibrinolysis
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coagulation factors, expression of cell adhesion molecules as well

as uptake modified LDL [42,43,44,45] and uptake modified LDL

[46]. Endothelial cell lines are commonly used in in vitro studies to

avoid problems associated with the use of primary culture, because

primary endothelial cells have a limited lifespan and display

characteristics that differ from batch to batch as a result of their

multidonor origin. Immortalized endothelial cell lines are gener-

ally better characterized and more stable in their endothelial traits

than endothelial cell primocultures [47]. Cells were grown in T-75

flasks with Dulbecco’s modified Eagles’ medium (DMEM)

containing 10% fetal bovine serum (FBS), 2% of a 506
concentrated HAT (1000 mM hypoxanthine, 0.4 mM aminopterin,

16 mM thymidine) solution, 1% of a 1006concentrated solution of

non essential amino acids, sodium pyruvate (1 mM) and antibi-

otics (penicillin 100 U/ml, streptomycin 100 ug/ml), all from

Lonza, Verviers, Belgium. Primary human aortic Smooth Muscle

Cells (AoSMC, Lonza) were grown in T-75 flasks with Smooth

Muscle Cell Growth Medium-2 BuletkitH (SMGM-2, Lonza).

Assessment of Pericellular Fibrinolysis
A fully computerized semi-automatic 8-channel device was

designed to measure fibrin formation and degradation in adapted

circular microcuvettes [27]. The method has been fully described

previously [27]. In brief, 40000 cells (EA.hy926 endothelial cells or

SMC) were inoculated on a polyethylene terephthalate (PET,

Whatman SA, Louvain-la-Neuve, Belgium) microporous mem-

brane (coated overnight with Type I collagen, 0.1%, Roche), in

glass circular micro-cuvettes (51 mm2, Fig. 1) and grown for 5 days

until confluence. The cells were incubated for 24 h in DMEM

medium containing the studied molecules. The medium was

discarded and the cells were washed three times with HBSS before

fibrinolytic tests. Euglobulin fractions (EF) were prepared from a

frozen plasma pool from 5 volunteers. Three hundred microliters

of acetic acid (0.25%) and 3.6 ml of desionized water were added

to 400 ml of plasma (final pH > 5.2). The samples were put into

melting ice for 20 min and centrifuged at 4000 g for 10 min at

4uC. The supernatant was discarded and the pellet was

resuspended in 400 ml of HBSS (HEPES 25 mM, pH: 7.3). This

fraction contains fibrinogen, PAI-1, t-PA, plasminogen, and to a

lesser extent alpha 2-antiplasmin and factor VIII [48]. Two

hundred and fifty microliters of EF were added in cell-seeded

cuvettes. The microcuvettes were inserted in the apparatus at

37uC. Clot formation was started by the addition of 50 ml of

thrombin (Hyphen-Biomed, reconstituted with RPMI 1640,

25 mM HEPES, 1.5 U/ml). Coagulation and fibrinolysis were

then allowed to proceed. The Euglobulin Clot Lysis Time (ECLT)

expressed in minutes (range: from 5 to 9999) was determined from

a mathematical analysis of the recorded lysis curve. As the ECLT

results in part from the balance between t-PA and PAI-1 activities,

recombinant human TNF-a (1 and 10 ng/ml) (Sigma, St Louis,

MO) was used to verify the reactivity of cells because it is known to

increase the ratio of PAI-1/t-PA secreted by the endothelium. The

cytotoxicity of the process was assessed by measuring the lactate

dehydrogenase (LDH) activity in the cell supernatant and was

always found to be ,10% of the cellular content.

Computer Fibrinolysis Analysis
The course of the lysis process is shown in Fig. 2. The x- and y-

axis represent, respectively, the time and evolution of the signal

recorded by the device. At the end of fibrinolysis, the curve is

analyzed with a mathematical algorithm. The first and second

derivatives are computed by convolution matrix. These calcula-

tions determine the peak time to clot lysis (B point, first derivative),

and the end of the complete fibrinolysis process (C point, when the

first and the second derivatives are at the background level >0).

In our experiments, the lysis time was determined by the C point

and expressed in minutes.

Figure 6. Effects of native LDL and Mox-LDL on the fibrinolytic process. Mox-LDL antagonizes the profibrinolytic effect of endothelial cells.
The clot lysis time (ECLT) in the presence of EA.hy926 endothelial cells was measured after addition of native-LDL (open circles) or Mox-LDL (solid
circles) at 10, 50, and 100 mg/ml final concentrations and compared to control conditions. Results are expressed as fold over control ratio (mean 6
SEM on 3 Mox-LDL and 3 native LDL independent experiments performed in triplicate). ANOVA ,0.001, *,0.05 vs control, Dunnett’s post-hoc test.
doi:10.1371/journal.pone.0038810.g006
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Protein Analysis
The PAI-1, t-PA and u-PAR protein concentrations in the

medium were quantified using ELISA tests (Zymutest PAI-1

Antigen, Zymutest t-PA Antigen, u-PAR antigen Hyphen-Biomed,

France), which detect active and inactive (latent) forms of PAI-1

and t-PA, as well as t-PA/PAI-1 complexes or u-PAR respectively.

Raw data are presented as supernatant concentrations. Results are

also expressed as the ratio of PAI-1 antigen to t-PA antigen (PAI-

1/t-PA ratio).

Recombinant MPO Preparation
Recombinant MPO was prepared as described previously [49].

Each batch solution was characterized by its activity (U/ml),

protein concentration (mg/ml) and specific activity. Peroxidative

activity was determined using o-dianiside as the substrate. Protein

concentration was measured using the Lowry assay, with

ovalbumin as a standard. Each batch was checked for endotoxin

using the LONZA Kit. Concentration was always less than

100 pg/ml, which, taking into account the final dilution of the

MPO-treated LDL fraction, would contribute a final concentra-

tion of less than 0.1 pg/ml to the Mox-LDL supplemented

medium added to the cells. This concentration is 50006 less than

Figure 7. Effects of native LDL and Mox-LDL on the PAi-1 and t-PA release. MoxLDL does not interfere with PAI-1 or t-PA expression in
EA.hy926 endothelial cells. Native(nat)- or Mox (Mox)-LDL were added to the endothelial cell line EA.hy926 culture medium at final concentrations of
10, 50 and 100 mg/ml and TNF-a at 10 ng/ml. After 24 h, the culture supernatant was harvested and the total (active, latent and complexed) PAI-1
and t-PA concentrations were quantified by an ELISA test. Results are expressed as fold over control of PAI-1(panel A) and t-PA (panel B)
concentrations (mean 6SEM on 6 [control native and Mox-LDL] or 4 [TNF] independent experiments performed in duplicate). ANOVA ,0.001, *,0.05
vs control, Dunnett’s post-hoc test.
doi:10.1371/journal.pone.0038810.g007
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the amount shown not to have any effect on IL-8 production by

EA.hy926 cells.

Isolation of LDL and Mox-LDL Preparation
Both lipoprotein particles were isolated from plasma from sterile

blood pouches using density-gradient ultracentrifugation. The LDL

fraction (d = 1.019–1.063) was stored under nitrogen at 4uC in the

dark and oxidized according to the procedure described below: Prior

to oxidation, LDL were gel filtered (PD-10 column, Pharmacia) and

1.6 mg of LDL were oxidized by 2.1 chlorinating units of

recombinant MPO, to form the oxidized LDL (Mox-LDL) in the

presence of 1 mM H2O2 in 2 ml PBS at pH 6.5 for 5 minutes [50].

LDLs were desalted again after MPO treatment. Protein concentra-

tionwasmeasuredbytheLowryassay,usingovalbuminasastandard.

Statistics
SigmaStatH software (SPSS, 3.0) was used for the analysis. Data

are presented as mean 6 SEM and were evaluated by one-way

ANOVA, with Dunnett’s post-hoc test.
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