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Abstract

Early stages of vertebrate embryogenesis are characterized by a remarkable series of shape changes. The resulting
morphological complexity is driven by molecular, cellular, and tissue-scale biophysical alterations. Operating at the cellular
level, extracellular matrix (ECM) networks facilitate cell motility. At the tissue level, ECM networks provide material
properties required to accommodate the large-scale deformations and forces that shape amniote embryos. In other words,
the primordial biomaterial from which reptilian, avian, and mammalian embryos are molded is a dynamic composite
comprised of cells and ECM. Despite its central importance during early morphogenesis we know little about the intrinsic
micrometer-scale surface properties of primordial ECM networks. Here we computed, using avian embryos, five textural
properties of fluorescently tagged ECM networks — (a) inertia, (b) correlation, (c) uniformity, (d) homogeneity, and (e)
entropy. We analyzed fibronectin and fibrillin-2 as examples of fibrous ECM constituents. Our quantitative data
demonstrated differences in the surface texture between the fibronectin and fibrillin-2 network in Day 1 (gastrulating)
embryos, with the fibronectin network being relatively coarse compared to the fibrillin-2 network. Stage-specific regional
anisotropy in fibronectin texture was also discovered. Relatively smooth fibronectin texture was exhibited in medial regions
adjoining the primitive streak (PS) compared with the fibronectin network investing the lateral plate mesoderm (LPM), at
embryonic stage 5. However, the texture differences had changed by embryonic stage 6, with the LPM fibronectin network
exhibiting a relatively smooth texture compared with the medial PS-oriented network. Our data identify, and partially
characterize, stage-specific regional anisotropy of fibronectin texture within tissues of a warm-blooded embryo. The data
suggest that changes in ECM textural properties reflect orderly time-dependent rearrangements of a primordial biomaterial.
We conclude that the ECM microenvironment changes markedly in time and space during the most important period of
amniote morphogenesis—as determined by fluctuating textural properties.
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Introduction

Early vertebrate embryogenesis is a complex biological process

encompassing parallel phenomena occurring at multiple spatial

and temporal scales [1]. Molecular, cellular and tissue level

processes all contribute to regulation of vertebrate morphogenesis

[2–4]. With respect to tissue scale events, the importance of

observing extracellular matrix (ECM) networks during morpho-

genesis has been highlighted in recent years [5–10].

Studies on the properties of ECM networks have traditionally

addressed the maintenance of structural integrity in adult tissues.

However it is axiomatic that the orderly progression of morpho-

genesis requires ECM network assembly, de novo, leading to a

precise set of ECM biomechanical properties. Defining the

physical properties of ECM such as rigidity [11], the physical

state of fibril assembly [9], elasticity [12] and the ability to mediate

stress/strain through tissue- scale deformations [8,13] are all

integral to understanding early vertebrate embryogenesis.

Evolutionary selection has specified a set of ECM mechanical

properties that are required for early bird and mammalian

embryos to engage in a number of striking morphogenetic

deformations – the most critical being gastrulation. The process

of gastrulation encompasses elaborate motion patterns as an

embryo transitions from being a single sheet of cells (epiblast) into

a three-layered structure with definitive positions assumed by the

ectoderm, mesoderm and endoderm [14]. The material properties

of embryonic tissue such as the viscoelasticity, as well as the

transmission of Newtonian forces by ECM filaments, must comply

with the mechanical demands required for gastrulation to proceed

[9,15].

But what are the requisite characteristics of embryonic ECM

networks? Despite their central role in morphogenesis the surface

textural properties of ECM networks are essentially unknown. We

PLoS ONE | www.plosone.org 1 May 2012 | Volume 7 | Issue 5 | e38266



hypothesize that textural properties reflect the forces that shape

gastrulating embryos; similarly, other workers hypothesize that

ECM networks establish cellular adhesion gradients (haptotaxis)

[16,17] during gastrulation [13].

In this study we sought to characterize the textural properties of

ECM networks in gastrulating avian embryos, and thereby

quantify an emergent characteristic of such networks. Using a

statistical analysis (Gray Level Co-occurrence Method, GLCM)

[18], we explored the textural properties of fibronectin and

fibrillin-2 assemblies in Hamburger and Hamilton (HH) stage 5

[19] quail embryos. Texture measures were designed to quantify

informative aspects of texture, but may not correspond to our

intuitive notions of ‘‘rough texture’’ or ‘‘smooth texture’’. We

measured the inertia, correlation, uniformity, homogeneity and

entropy of the embryonic ECM networks from pre-defined

region(s) of interest (ROI). Briefly, inertia measured the frequency

of strong transitions in pixel intensity. Correlation referred to the

Pearson correlation between a pixel and its neighbor. Uniformity

quantified smoothness. Homogeneity measured roughness. Entro-

py measured the Shannon entropy of pixel intensities within the

ROI.

After observing the intermolecular textural variations (Fibro-

nectin vs. Fibrillin-2) within an embryo, we further sought to

explore the possibility of regional textural anisotropy by examining

Figure 1. Schematic representation of extracellular matrix textural analysis. A. The embryonic extracellular matrix (ECM) was categorized
into three spatial distributions (networks). The ECM associated with the antero-posterior (AP) axis was referred to as the medial network (blue). The
ECM adjacent to the medial network, but not associated directly with the AP axis structures, was referred as the lateral network (red). The ECM
distributions anterior and anterolateral to the Hensen’s node (HN), the cranial networks (purple), were not included in the analysis. Textural analysis
was performed on the immunofluorescence images of medial and lateral ECM networks. Gray-level co-occurrence matrices (GLCMs) were obtained
and Haralick features were computed from the GLCMs defining the regions of interest (ROI), for four orientations (0u, 45u, 90u and 135u). Under each
orientation, GLCM was computed for four offsets (1, 2, 3 and 4 pixels) thus totaling 16 offsets (464) for each texture parameter (inertia, correlation,
uniformity and homogeneity). The entropy of the ROIs, another Haralick statistic, was used to assign a relative qualitative texture to the ROIs (ECM
networks) during HH stages 5 through 7. B. A pictorial demonstration of the qualitative textural changes of the fibronectin network, assigned on the
basis of scalar entropy. The approximate length of an embryo along the AP axis is 3 mm (HH stage 5), 5 mm (HH stage 6) and 7 mm (HH stage 7)
respectively. The medial (blue) and lateral (red) fibronectin networks demonstrate distinct qualitative textures (coarse or smooth) at HH5 and HH6
stages. However, during HH7 there is an absence of distinct regional qualitative texture which is represented by a single oval enclosing both the
medial and lateral fibronectin networks.
doi:10.1371/journal.pone.0038266.g001
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Figure 2. The relative textural differences between fibronectin and fibrillin-2 networks during HH stage 5 of embryonic
development. A comparison of textural features between the lateral fibronectin (a) and fibrillin-2 (b) networks during HH stage 5 revealed the
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the properties of a single ECM constituent during Day 1.

Accordingly, we characterized the textural properties of the

fibronectin network within the ‘‘lateral network’’ region associated

with lateral plate mesoderm and along the ‘‘medial network’’

region associated with anterior-posterior axis structures (see

Operational and Anatomical Definitions section). We also

quantified the textural properties of the fibronectin network over

progressive embryonic stages to test the possibility that temporal

fluctuations exist within specific ROI. Our data reveal highly

dynamic ECM surface texture changes within avian gastrulae. We

propose that progressive alterations in texture reflect changes in

tissue material properties and coincide with a haptotactic gradient

of adhesiveness for gastrulating mesendodermal precursor cells.

Alternatively, the textural changes may reflect the dynamics of

ECM fiber maturation during embryogenesis.

Results

Due to inherent variation in staging bird embryos it is difficult to

compare specimens directly. To facilitate understanding, here we

present the textural parameters (inertia, correlation, uniformity,

homogeneity and local entropy) for a single embryo (n.8 total)

from each developmental stage that was typical of the composite

results. Meanwhile, the global entropy values and the textural

parameters averaged across orientations and scales are presented

as mean 6 S.D. The qualitative textural assignments of the ECM

networks were weighted upon global entropy values.

Figure 1 summarizes the computational aspects of texture

analysis employed in this study. Texture parameters were obtained

for four different orientations of a ROI and for each orientation,

GLCM was computed for four different pixel offsets (1, 2, 3 and 4

pixels), thus obtaining sixteen (464) offsets for a ROI. Sub-plots C

through F in figures 2, 3, 4, and 5 display the texture parameters

on a continuous offset scale of 1 through 16. Offsets 1 through 4

correspond to 0u orientation. Offsets 5 through 8 correspond to

45u orientation. Offsets 9 through 12 correspond to 90u
orientation and offsets 13 through 16 correspond to 135u
orientation.

Intermolecular variations in surface texture during
gastrulation

We analyzed the LPM of HH stage 5 embryos for textural

properties of fibronectin and fibrillin-2 (Figure 2). The texture

inertia characterizes the mosaicity of the network clusters on the

image [20]. Textural objects on the image with approximately

similar pixel brightness yield a zero inertia coefficient. According-

ly, textural inertia captures the variance of ECM network

distributions. At this stage of gastrulation, the textural inertia of

the LPM fibrillin-2 network was lower than the fibronectin

network (Figure 2c). Meanwhile the correlation (Figure 2d) values

from both ECM networks were comparable with respect to the

spatial offsets analyzed in this study. Both the uniformity

(Figure 2e) and homogeneity (Figure 2f) values of fibrillin-2 were

higher compared with the fibronectin network. The fibronectin

network was characterized by a more scattered distribution than

the fibrillin-2 network, resulting in a greater number of transitions,

and thus lower values of uniformity and homogeneity. However,

transitions were generally stronger in the fibrillin network, which

was characterized by sizeable connected regions of high concen-

tration surrounded by regions of low concentration, and compar-

atively few regions of moderate concentration. Thus, intertia,

which weighs transition magnitude more strongly, showed less

difference between fibrillin-2 and fibronectin than uniformity,

which is not affected by transition magnitude.

The diversity of the ECM network is given by the measure of

statistical randomness (entropy). The local fibronectin entropy

maps produced an array of neighborhood entropy values

(Figure 2g) higher than the fibrillin-2 network (Figure 2h) that

was reiterated by the global entropy function for the networks

(fibronectin: 5.8560.33, fibrillin-2: 5.6360.06; p,0.05, student’s

t-test). Textural parameters, measured from similar ROI, demon-

strated intrinsic variation between fibronectin and fibrillin-2.

Thus, measurable differences in surface texture represent quan-

titative evidence for supra-molecular variations between fibronec-

tin and fibrillin-2 networks. Based on the global entropy values of

the molecular distributions, we assigned a qualitative identifier of

relative texture for LPM fibronectin (coarse/rough) compared

with fibrillin-2 (smooth/fine) [21] [See Operational Definitions].

Intra-molecular (fibronectin) textural anisotropy during
gastrulation

In order to verify the possibility of intra-molecular textural

anisotropy, we continued our analysis, with fibronectin; in this

instance within regions that we delineated as ‘‘medial networks’’

(here defined as along the embryonic AP axis, associated with the

PS and HN, Figure 1 and Figure 3b) and ‘‘lateral networks’’ ( that

define embryonic LPM, Figure 1 and Figure 3a) [Operational

Definitions]. During HH5, the medial fibronectin network showed

lower values of inertia compared with the lateral network

(Figure 3c). The rate of change of inertia along a given spatial

offset was also lower in the medial network compared with the

lateral network although the correlation values were similar

between the regions (Figure 3d). The medial network demonstrat-

ed higher uniformity (Figure 3e) and homogeneity values

(Figure 3f) than the lateral network. The lower variance of the

medial network was also reiterated as a lower array of local

entropy values (Figure 3h) compared with the lateral network

(Figure 3g). The qualitative texture of the medial network was

operationally designated as ‘‘relatively smooth’’ compared with the

‘‘coarse’’ lateral network based on the global network entropy

values (medial: 5.0260.18, lateral: 5.8560.33; p,0.05, student’s

t-test). This set of results indicated textural anisotropy of the

fibronectin molecular networks during gastrulation.

Fluctuations in regional textural properties of fibronectin
We next asked whether the regional fibronectin textures were

stable while gastrulation proceeds (HH6 and HH7) in medial

compared with lateral fibronectin networks (Figures 4 and 5).

Within the medial ROI at HH6 the fibronectin network (Figure 4b)

demonstrated higher variance (Figure 4c) indicative of very high

magnitude transitions. The medial fibronectin network also

demonstrated increased correlation values compared with the

lateral network (Figure 4a, Figure 4d). A high value of correlation

for the medial network indicated large cluster sizes.

Both the uniformity (Figure 4e) and homogeneity (Figure 4f)

values of the medial network were lower than the lateral network.

In concert with the inertia values, the local entropy values were

also higher for the medial network (Figure 4h) compared with the

relatively higher values of inertia (c) and correlation (d) for the fibronectin network. The values for uniformity (e) and homogeneity (f) were relatively
lower for the fibronectin network compared with the fibrillin-2 network. Meanwhile, the local entropy array of values was higher for fibronectin
network (g) compared with the fibrillin-2 network (h). Scale bar: 100 mm.
doi:10.1371/journal.pone.0038266.g002
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Figure 3. The relative textural differences between lateral and medial fibronectin networks during HH stage 5 of embryonic
development. Textural profiling of lateral (a, same region used in Figure 2a for comparison) and medial (b) fibronectin networks within an embryo
during HH stage 5 showed relatively higher values and higher rates of change of inertia (c) with respect to offset for the lateral network compared
with the medial network. Although the textural correlation values (d) fell similarly across offsets (with the exception of the left diagonal offset) for
both the lateral and medial networks, there were remarkable differences in uniformity (e) and homogeneity (f) between the regional fibronectin

Embryonic Extracellular Matrix Texture
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lateral network (Figure 4g). Consequently, the global entropy

values were also higher for the medial network (6.7460.18)

compared with the lateral network (5.7660.33) (p,0.05, student’s

t-test), thus, resulting in a qualitative texture of ‘‘relatively coarse’’

for the medial network. These results show that the regional

textures were not stable across the time-span of gastrulation as the

medial network fluctuated from being relatively smooth/fine

during HH stage 5 to relatively coarse/rough during HH stage 6,

a period of three hours.

As the embryogenesis progressed to HH7, we observed that the

lateral network (Figure 5a) showed relatively higher values of

inertia (Figure 5c) and local entropy (Figure 5g) compared with the

medial network (Figure 5b, Figure 5h). The correlation of the

lateral network as a function of distance was lower than the medial

network (Figure 5d).

In alignment with these findings, the uniformity (Figure 5e) and

homogeneity (Figure 5f) values of the lateral network were

relatively lower than the medial network. However, since the

global entropy values were not different between the medial and

lateral networks (medial: 6.4160.35, lateral: 6.4860.10; p.0.05,

student’s t-test, Figure 6), there was a loss of relative qualitative

textural differences between the ROIs resulting in mediolateral

textural homogeneity of the fibronectin network during HH stage

7.

Overall, the textural parameters demonstrated rotational

invariance and the results were always monotonic (Figures 2, 3,

4, and 5) with respect to the four spatial offsets for a given

orientation, thus demonstrating the robustness of these measure-

ments across orientation and scale (Figure 7). The relative

qualitative textural categories (smooth vs. coarse) for fibronectin

networks weighted on global entropy values obtained from the

ROI was represented as a texture timing diagram across

developmental stages (Figure 8a).

Discussion

Textural analysis of the ECM
The ECM is a complex network of glycoproteins and

proteoglycans that has been classically implicated in structural

roles, by imposing physical properties on the tissue architecture

and consequently maintaining the mechanical integrity of tissues

in multicellular organisms [22]. The ECM has also been

implicated in physiological contexts such as the inflammatory

response [23,24] and tissue remodeling/repair [25,26]. However,

the dynamic role of ECM molecules as a shape determinant

during development has only in the recent decades come under

intense investigation [1,27]. The ECM molecular network

influences the shape of the embryo by providing a substrate for

cell motility and mechanosensing, a physical scaffold and source of

growth factor signaling and morphogen gradients [28].

Fibronectin and fibrillin-2, the two molecules analyzed in this

study, are both members of the ECM networks present in

gastrulating embryos [5,7,9,29]. Fibronectin is a modular protein

constructed from repeated autonomously folding modules [30]. It

is the substrate for mesendodermal precursor cell motility during

gastrulation and is assembled along the AP axis associated with the

PS and also the LPM [8,13]. During embryogenesis, fibronectin

networks enable cell adhesion, cell proliferation, cell migration,

cytoskeletal organization, cell differentiation, and tissue-scale

morphogenetic movements [13,31]. Fibronectin null mutants are

embryonic lethal due to defects in mesendodermal cell migration

and defective blood vessel formation [29]. Meanwhile, fibrillin-1

and 2 molecules form the cladding of elastic fibers with an elastin

molecular core, along with microfibrils containing other glyco-

proteins, having a widespread distribution in tissues rich in elastic

fibers [6,32]. Fibrillin-2 delineates the primary axis of the early

avian embryo and it aggregates at multiple sites of cellular

rearrangement along the craniocaudal axis [5] and heart forming

regions of the LPM [33]. Fibrillins are intrinsic players during

craniocaudal morphogenetic events, among them the regression of

Hensen’s node, extension of the notochord, somite formation and

regression of the anterior intestinal portal [6]. Although the spatial

distribution of fibronectin and fibrillin-2 during early embryogen-

esis was known from earlier investigations, the intrinsic properties

of the networks that are relevant to morphogenesis, especially

gastrulation, have not been investigated or systematically quanti-

fied.

One of the defining characteristics of optical texture is the

spatial distribution of gray values [18,34]. Characterization of the

object texture has been accomplished by various structural,

statistical and spectral methods [21,35]. We utilized the GLCM

(see materials and methods section), which provides a statistical

framework, to estimate image properties related to second-order

statistics that determine texture quality [36]. The co-occurrence

mathematical matrix has been utilized to derive the textural

characteristics of the objects on image fields and has found

widespread applications in automated surface inspection, medical

image analysis, document processing, remote sensing and hydro-

dynamic studies, among others [20,34]. In order to detect and

define the distribution of nearly ubiquitous protein networks such

as the ECM in embryonic tissue, quantitative tools such as texture

analysis could complement commonly used methods for protein

detection such as immunohistochemistry and immunofluorescence

microscopy. Our analysis in this study was motivated by the lack of

availability of quantitative techniques to characterize the ECM

during early stages of morphogenesis. A previous study described

microscopic physical inhomogeneity of blood islands and meso-

derm, detected by an in vivo shadowgraph technique [37]. The

textural quality of the embryonic tissue, presumably resulting from

the morphogenetic movements during gastrulation, was hypoth-

esized to prepattern the substrate for vasculogenesis. Ours is the

first report, to our knowledge, to extend a computational method

of texture analysis to the study of biological ECM networks in the

context of embryonic morphogenesis. The results of our study

demonstrate differences in textural properties not only between

two different ECM molecules (fibronectin and fibrillin-2) during

embryonic development, but also textural anisotropy of a single

ECM constituent (fibronectin) across the embryonic tissue space

during gastrulation. In addition, our results show the fluctuation in

textural properties of a spatially localized ECM network during

the time span of the gastrulation.

Textural anisotropy and fluctuation of regional textural
properties during gastrulation

We initiated the texture analysis, as an exploration of the

sensitivity of the texture parameters, to distinguish variations in

fibronectin and fibrillin-2 networks in gastrulating HH stage 5

embryos. The spatial properties of ECM, represented on the

immunofluorescent images, provided a qualitative description of

smoothness, coarseness and regularity that were characteristic of

networks. Furthermore, the local entropy maps of the lateral (g) and medial (h) fibronectin networks showed remarkable differences in the
randomness of the matrix distribution. PS: Primitive Streak, Scale bar: 100 mm.
doi:10.1371/journal.pone.0038266.g003

Embryonic Extracellular Matrix Texture

PLoS ONE | www.plosone.org 6 May 2012 | Volume 7 | Issue 5 | e38266



Figure 4. The relative textural differences between lateral and medial fibronectin networks during HH stage 6 of embryonic
development. During HH stage 6 of embryonic development, the medial fibronectin network (b) demonstrated increased values of inertia across all
offsets (c) compared with the lateral fibronectin network (a). The correlation values (d) in both medial and lateral networks demonstrated similar fall-off
trends as a function of offset whereas a relative decrease in uniformity (e) and homogeneity (f) values marked the medial fibronectin distribution along
the PS. The local entropy values of the medial network (h) were higher than the lateral network (g) as well. PS: Primitive Streak, Scale bar: 100 mm.
doi:10.1371/journal.pone.0038266.g004
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Figure 5. The relative textural differences between lateral and medial fibronectin networks during HH stage 7 of embryonic
development. The lateral fibronectin network (a) showed a relative increase in the rate of change of inertia values with respect to offset (c)
compared with the medial fibronectin network (b) during HH stage 7. The rate of fall of correlation as a function of offset was also increased in the

Embryonic Extracellular Matrix Texture
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texture. It must be noted that textural measures such as inertia,

correlation, uniformity, homogeneity and entropy were used to

quantify relative differences obtained from computational neigh-

borhoods.

Qualitative textural identifiers, weighted on global entropy

measures, suggested that the fibronectin network was relatively

coarse/rough compared with the fibrillin-2 network in the LPM.

There were discernible differences in the textural parameters of

inertia, correlation, uniformity, homogeneity and entropy. The

results delineated the relatively high textural structure of

fibronectin compared with fibrillin-2 and also demonstrated the

sensitivity of the texture analysis technique as a means of

quantifying ECM distributions during embryogenesis. The data

also suggested that the relative smoothness of fibrillin-2 during

gastrulation might confer the embryonic tissue with important

material properties during AP axis elongation and PS regression,

two morphogenetic events that accompany gastrulation in avian

embryos.

Having confirmed intermolecular textural variations in the

ECM (between fibronectin and fibrillin-2) in HH stage 5 embryos

we proceeded to verify spatially localized intramolecular textural

variations that imply anisotropy of texture attributes of a single

ECM molecule. We investigated the possibility that textural

variations exist between PS associated medial fibronectin network

versus the LPM associated lateral fibronectin network. Our results

suggested that, qualitatively, the lateral fibronectin network was

coarse compared to the smooth medial distribution. Relatively

lower entropy and inertia values along with high uniformity and

homogeneity values of the PS associated medial fibronectin

network (qualitatively smooth) may serve the embryo with the

functional equivalence of the fibrillin-2 elastic interface during AP

axis elongation. Following the findings of anisotropic fibronectin

texture in HH stage 5 embryos, we asked whether the anatomical

(lateral vs. medial) textural variations are maintained as gastrula-

tion proceeds through HH stage 7 – a time of vast morphological

change. Since the embryonic ECM is displaced fast enough

(,100 mm/hr.) to substantially reorganize its distribution within

the time scale of interest [10], we expected the regional textural

variations to fluctuate as gastrulation proceeds through HH stage

7.

We noticed that the relative quality of the lateral fibronectin

network switched to a smooth texture at HH stage 6 compared

with the medial network. This finding confirmed our expectation

that anatomical textural variations of embryonic ECM networks

are dynamic, thus changing the relative textural properties. These

changes in texture might locally influence morphogenetic

processes during gastrulation. Interestingly, we found regions of

mediolateral textural homogeneity in the fibronectin distribution

during HH stage 7. Absence of mediolateral textural anisotropies

suggested the possibility of periods of regional ECM homogeneity

during development despite the large scale fluctuations that result

from its reorganization. The functional significance of the

mediolateral textural isotropy is less clear although it could be

expected to represent a brief period of mesodermal stabilization or

maturation to enable the initiation of somitogenesis.

Functional significance of ECM textural anisotropy
The textural analysis of fibronectin networks in gastrulating

embryos provided the evidence for: a) existence of a mediolateral

textural anisotropy during HH stages 5 and 6 and b) fluctuation of

lateral network (d). Both uniformity (e) and homogeneity (f) of the lateral network decreased compared with the medial network. Meanwhile, the
local regional entropy values of the lateral network (g) were higher compared with the medial network (h). PS: Primitive Streak, Scale bar: 100 mm.
doi:10.1371/journal.pone.0038266.g005

Figure 6. Fluctuations in global medio-lateral entropy of fibronectin networks during gastrulation. A scalar entropy value composite of
the fibronectin distribution in a given region of interest (lateral/medial) was obtained. The mean6s.d. of global entropy values of the groups
(according to the stage of development) not only demonstrated regional differences in the medio-lateral statistical randomness of the fibronectin
distribution, but also fluctuations in the relative state of randomness of a distribution across the developmental span. These results reveal the
variations of textural properties of the ECM molecular network in both the spatial (regional anisotropy during a particular stage of development) and
temporal (textural fluctuations of a ROI across the stages of development) dimensions. The summary data for scalar entropy was obtained from 12
embryos stained for fibrillin-2 and fibronectin (stage 5). Also, 9 and 10 embryos were stained for fibronectin stages 6 and 7 respectively. A single non-
overlapping region of interest for each network (lateral and medial) from each embryo was included for the analysis. Statistically significant
differences (P,0.05) between ROIs were represented by ‘‘ * ’’.
doi:10.1371/journal.pone.0038266.g006
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local textural properties over the time span of hours during

embryogenesis. Taken together, our data provide analytical

support for the presence of a textural ‘‘gradient’’ of fibronectin

networks in gastrulating embryos that might affect mesendodermal

precursor cell trajectories. We note that our data do not indicate

an absolute mass gradient (for e.g., chemotaxis) but a relative and

qualitative textural gradient (Figure 8b). The relative qualitative

differences in texture (rough/smooth) at the spatial scale coinci-

dent with the functional density of cellular ECM receptors may

influence both cell-autonomous and convective tissue motion

during gastrulation. In fact, an increasing cell-autonomous motility

gradient in the cranio-caudal direction with caudal cells moving

away from the PS faster than cranial cells [13] was reported

earlier. Although the role of a mediolateral textural/adhesion

gradient coincident with this motility gradient is not readily

apparent, it is interesting to note that the caudal cells in the HH

stage 5 embryos have to traverse a shorter mediolateral

(smoothRcoarse) texture transition than the cranial cells during

gastrulation, due to the morphology of the early avian embryo.

Since contact guidance occurs due to the path of preferential

adhesion chosen by migrating cells on a haptotactic adhesion

gradient [16,38,39], a mediolateral surface texture gradient of

fibronectin, coincident and complementary to the adhesion

gradient, may aid mesendodermal precursor cell motility. Gastru-

lating cells might be prompted to choose thermodynamically stable

haptotactic paths on the fibronectin adhesion/texture gradients

akin to the motility of mesodermal pronephric duct cells as they

move along the ventral edge of somitic file from their anterior

origin to cloaca in the Ambystoma [17]. Since the haptotactic

gradient is a function of ‘‘textural’’ properties of fibronectin, it

might correlate with the adhesion gradient at spatial scales

coincident with the ECM receptor, for e.g., integrins, density

[40,41] of the mesendodermal cells during gastrulation (Figure 8b).

Biophysical correlate(s) of ECM texture
Although this study demonstrates the intrinsic textural differ-

ences (anisotropies) in the distribution of ECM networks in the

developing embryo, the biophysical correlates of these textural

differences remain unclear. We are able to speculate on a few

possibilities based on prior findings in textural analysis and ECM

biology. One of the basic correlates for regional textural

asymmetry might be the differential local concentrations of

ECM molecular aggregates in the embryonic tissues. Left – right

asymmetry of ECM molecular distribution (and consequent

anisotropy in the mechanical property of the embryonic tissue)

has been demonstrated as a critical determinant in providing the

biophysical framework for the initial tilting of the primary midgut

tube, which in turn biases the subsequent morphogenesis of the

primary gut tube during avian embryogenesis [42]. A similar left-

right asymmetry of an ECM molecule (flectin) was reported in the

developmental context of heart looping during avian embryogen-

esis [43].

Local concentration differences of ECM distribution may

potentially influence the regional dynamics of ECM fiber assembly

[44] and consequently its architecture [28] to manifest as

fluctuations in edgeness per unit area, a conceptual definition of

optical texture [45]. Local concentration differences of ECM may

also manifest as differences in fiber size that affect qualitative

texture. The motility and maturation of fibronectin networks

during embryogenesis may underlie spatial anisotropy and

temporal fluctuations in fibronectin texture (Figures 8a & 8b).

Furthermore, lack of data from the 3rd dimension from complex

matrices like those in the avian embryo and intrinsic variability in

antibody-antigen binding due to fiber clustering that affects pixel

intensity on immunofluorescent images limit explanation of

possible biophysical correlates of ECM textural variations.

In summary, we have characterized the textural properties of

the regional fibronectin and fibrillin-2 ECM during HH stage 5 of

avian gastrulation. We have also delineated the relative textural

qualities of the medial and lateral fibronectin network across the

time-span of avian gastrulation, thus, providing evidence for the

spatial anisotropy and temporal fluctuations in the ECM

molecular texture during early embryogenesis.

Our results demonstrated that the texture analysis parameters of

fibronectin networks in gastrulating embryos were sensitive

enough to discern local textural anisotropies. Consequently, this

study provides a proof of principle to investigate, quantitatively,

the asymmetry and anisotropy of ECM molecular networks during

critical morphogenetic events like gastrulation, axis elongation,

cardiac looping and gut looping [8,42,43]. Although our results

(along with earlier findings) allowed us to propose the relevance of

intramolecular textural anisotropies during gastrulation, the

functional significance of intermolecular textural heterogeneities

(for e.g., fibronectin vs. fibrillin-2) of the ECM network during

early embryogenesis remains to be explored.

Materials and Methods

Ethics Statement
No ethics approval is required for avian embryos used in this

study as the stages of development (HH5 through HH7; day 1) are

prior to mid-gestational period (ca. nine days) for the Japanese

quail.

Embryos Staging and Preparation
Locally raised fertilized quail eggs (Coturnix coturnix japonica,

Ozark Eggs, Stover, MO) were incubated for approximately 20–

25 h at 38uC to obtain HH stages 5 through 7 embryos [19]. The

embryo was dissected from the egg, mounted on filter paper rings,

placed ventral side up on a semi-solid mixture of agar/albumen

(egg whites) (modified after the method of New [46–48]), and

cultured at 38uC until approximately HH stage was obtained.

Whole-mount immunolabeling
The embryos (n.8/stage/antigen) were fixed in a solution of

3% paraformaldehyde in PBS and permeabilized by adding 100%

methanol. Following fixation and dehydration, a step-wise

rehydration through graded ethanols was performed prior to the

removal of vitelline membrane from specimens. After blocking the

specimens in BSA blocking solution (3% bovine serum albumin in

PBS+azide) overnight at 4uC, the fibrillin-2 and fibronectin

networks were immunolabeled with JB3 (1:20,000) and B3D6 (1:

10,000) primary monoclonal antibodies respectively (Developmen-

tal Studies Hybridoma Bank, University of Iowa, Iowa City)

[6,13]. Goat anti-mouse secondary antibody conjugated to Alexa-

555 (2 mg/mL) was used to visualize both fibrillin-2 and

fibronectin networks in whole embryos.

Image acquisition and preprocessing
Images were acquired with a Nikon eclipse TE300 microscope

equipped with a spot RTKE camera (Diagnostic instruments, Inc.,

Sterling Heights, MI) using a 106 objective. Regions of interest

were captured under two categories in all the specimens: 1) Medial

(regions including the primitive streak in the early stages, or

somites in the later stages) and 2) Lateral (regions that are adjacent

to the streak/somites and are part of the lateral plate mesoderm).

The stored tiff files were preprocessed in image J (http://

rsbweb.nih.gov/ij/) (a freely downloadable Java based image
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processing environment) to subtract background fluorescence. A

standard cropping of the region of interest under actual pixel view

to obtain a 4296510 array was performed with Adobe photoshop

elements 6.0 (www.adobe.com).

Texture analysis
All preprocessed images were next analyzed using a variety of

popular texture analysis techniques. Figure 1 shows our analysis

process diagrammatically. Texture measurements known as

Figure 7. Texture measures at each embryonic stage (HH5 through HH7), averaged over orientation and spatial scale. The overall
trend (spatial anisotropy and temporal fluctuations) in the textural measures during stages 5 through 7 was evident upon averaging the Haralick
feature values (from figures 2 through 5) over orientation (0u, 45u, 90u and135u) and scale (offsets 1 through 4 corresponding to each orientation).
Values are mean 6 S.D. Fibrillin-2 lateral network at stage 5 is shown in green, while lateral and medial fibronectin networks are shown in red and
blue, respectively. Statistically significant differences (P,0.05) between ROIs were represented by ‘‘ * ’’.
doi:10.1371/journal.pone.0038266.g007
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inertia, correlation, uniformity, homogeneity, and entropy were

computed for each image. Each of these measurements is intended

to quantify a different aspect of smoothness or coarseness. Here,

we define each texture property and provide intuitive descriptions

of their meanings.

The first four texture measurements were obtained by first

computing the gray level co-occurrence matrix (GLCM). In an

NxN image with G gray levels denoted by {I(x,y), 0#x#N21,

0#y#N21}, the GLCM Pd for a displacement vector (offset)

d = (dx,dy) is a GxG matrix defined as follows. The element (i,j) of

Pd is the percentage of occurrences in the image such that a pixel

intensity of intensity i and a pixel of intensity j appear at a

displacement of d. More formally,

Pd (i,j)~
1

N2
D (r,s) : I(r,s)~i,I(rzdx,szdy)~jf gD

where (r,s) J NxN and |.| is the cardinality of the set [34]. For the

experiments in this paper, G was given a value of eight intensity

levels.

Note that a different GLCM is computed for each displacement

vector d, yielding texture properties that occur at different

rotations and spatial scales. This allows us to verify that all

measurements are consistent across different scales and orienta-

tions. For all GLCM measurements, we repeat all analysis for four

rotations (0u, 45u, 90u, and 135u), and four spatial scales (1, 2, 3,

and 4 pixels).

Uniformity is a measurement of the GLCM that quantifies

smoothness. Uniformity is the sum of the square of the elements of

the GLCM. Formally, U~
P

i

P
j Pd (i,j)2. Uniformity achieves

its maximal value of one for a uniform image, which has a GLCM

that is zero everywhere except for a single element. Uniformity

values lower than one indicate a wide variety of intensity

transitions, which corresponds to rougher textures.

Homogeneity is another GLCM measure of roughness that

differs from uniformity in that it is weighted by the inverse

magnitude of the transition. Homogeneity is high when pixel

transitions tend to be low in magnitude. Formally,

H~
P

i

P
j

Pd (i,j)

1zDi{jD
. Like uniformity, homogeneity has a max-

imum value of one, achieved by a uniform image. Lower values of

homogeneity indicate that abrupt intensity changes are common,

suggesting roughness.

Inertia also measures the frequency of strong transitions in

pixel intensity. Inertia gives the expected value of the square of the

transition magnitude, or I~
P

i

P
j Pd (i,j)Di{jD2. Unlike the

previous measures, inertia increases with texture roughness. An

inertia value of zero implies a uniform image, with higher values

indicating that abrupt intensity changes are common. Inertia

differs from homogeneity in that it is more sensitive to extreme

transition values.

Correlation refers to the Pearson correlation between a pixel

(x,y) and its neighbor (x+dx,y+dy). Correlation is zero for white

noise. Higher values of correlation indicate lower variation

between nearby pixels, and correspond to smoother surfaces.

Note that because correlation is normalized by pixel variance, it is

insensitive to image contrast. Neither overall image brightness nor

gain can affect correlation measurements. Strong differences in

correlation between two images cannot be explained by either

additive or multiplicative scale factors between the two images.

Entropy measures the Shannon entropy of pixel intensities

within an image region, and is highest for images with a wide

variety of pixel intensities. To compute entropy, pixel intensity

values were first discretized into 256 bins, ranging from 0 to 255.

Entropy is then measured as E~{
1

256

X255

i~0
P½i�log2P½i�, where

P[i] denotes the probability of pixel intensity i within the region.

Entropy was computed for each 9-by-9 patch within the image; we

report mean and standard deviations across all patches within the

image. Pixel entropy reaches its minimal value of zero for uniform

Figure 8. Texture timing-diagram summarizing the relative
textural quality of medio-lateral fibronectin networks during
avian developmental stages 5 through 7. A. Texture timing-
diagram that captures the relative qualitative descriptors of texture in
the ROI, weighted solely upon the scalar entropy values obtained
during the stages of development (Figure 6), maps the texture as
relatively ‘‘coarse/rough’’ and ‘‘smooth/fine.’’ From this qualitative
perspective, the lateral fibronectin network is relatively coarse
compared with the medial fibronectin network during HH stage 5 of
development. However, the lateral network evolves into a relatively
smooth texture during HH stage 6 of development. An absence of
qualitative medio-lateral textural anisotropy in fibronectin networks
during HH stage 7 is represented as overlapping diamonds that don’t
belong to a precise textual category. B. Embryonic ECM exhibits
regional inhomogeneity of texture. The schematic demonstrates the
hypothesized textural ‘‘gradient’’ of fibronectin (a difference in color
represents a difference in the relative quality of texture) that might be
relevant to mesendodermal cell motility during gastrulation. At scales
coincident with the relative density of integrin (a cellular receptor for
fibronectin) distribution on a mesendodermal cell, the textural
anisotropy of the fibronectin network could potentially manifest as a
qualitative textural ‘‘gradient’’ in the embryonic space, thus, influencing
regional cell motility.
doi:10.1371/journal.pone.0038266.g008
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images, and it reaches its maximal value of 8 for white-noise

images (where each pixel is independently assigned a random

value, distributed uniformly between 0 and 1). . Note that unlike

GLCM measurements, pixel entropy does not describe pixel

intensity transitions, but instead describes the distribution of

intensities within the image.

Statistical differences on texture measures (mean 6 S.D.) were

determined with Sigmaplot version 11 (www.sigmaplot.com).

Between-group differences were analyzed using a student’s t-test

with a level of significance held at p = 0.05.

Operational and Anatomical Definitions
For clarity in the present communication, here we present some

specific operational definitions.

Texture. An organized area phenomenon that intuitively

provides a qualitative description of the properties of smoothness,

coarseness and regularity of the objects on the image [21,35].

Smooth and Coarse Texture. Qualitative texture descrip-

tors that were based on the global entropy value of the image.

Accordingly, smoothness captures the relative randomness of the

object distribution (as a function of gray levels) on the image

weighted on global entropy [21]. For example, a uniform image

has entropy of zero and hence is smooth. Relatively high values of

entropy label the coarseness (decreasing smoothness) of a given

texture.
Medial ECM Network. ECM associated with the embryonic

anteroposterior (AP) axis, namely the primitive streak (PS),

Hensen’s node (HN), pre-somitic (paraxial) mesoderm and

somites.
Lateral ECM Network. ECM associated with embryonic

regions adjacent to the AP axis, namely the lateral plate mesoderm

and intermediate mesoderm (i.e., fibers not directly associated with

the AP axis structures).
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