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Abstract

The present study applied both metagenomic and metatranscriptomic approaches to characterize microbial structure and
gene expression of an activated sludge community from a municipal wastewater treatment plant in Hong Kong. DNA and
cDNA were sequenced by Illumina Hi-seq2000 at a depth of 2.4 Gbp. Taxonomic analysis by MG-RAST showed bacteria were
dominant in both DNA and cDNA datasets. The taxonomic profile obtained by BLAST against SILVA SSUref database and
annotation by MEGAN showed that activated sludge was dominated by Proteobacteria, Actinobacteria, Bacteroidetes,
Firmicutes and Verrucomicrobia phyla in both DNA and cDNA datasets. Global gene expression annotation based on KEGG
metabolism pathway displayed slight disagreement between the DNA and cDNA datasets. Further gene expression
annotation focusing on nitrogen removal revealed that denitrification-related genes sequences dominated in both DNA and
cDNA datasets, while nitrifying genes were also expressed in relative high levels. Specially, ammonia monooxygenase and
hydroxylamine oxidase demonstrated the high cDNA/DNA ratios in the present study, indicating strong nitrification activity.
Enzyme subunits gene sequences annotation discovered that subunits of ammonia monooxygenase (amoA, amoB, amoC)
and hydroxylamine oxygenase had higher expression levels compared with subunits of the other enzymes genes.
Taxonomic profiles of selected enzymes (ammonia monooxygenase and hydroxylamine oxygenase) showed that ammonia-
oxidizing bacteria present mainly belonged to Nitrosomonas and Nitrosospira species and no ammonia-oxidizing Archaea
sequences were detected in both DNA and cDNA datasets.

Citation: Yu K, Zhang T (2012) Metagenomic and Metatranscriptomic Analysis of Microbial Community Structure and Gene Expression of Activated Sludge. PLoS
ONE 7(5): e38183. doi:10.1371/journal.pone.0038183

Editor: Mark R. Liles, Auburn University, United States of America

Received February 18, 2012; Accepted May 1, 2012; Published May 30, 2012

Copyright: � 2012 Yu, Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors wish to thank the Hong Kong Research Grants Council for the financial support of this study (7198/10E). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: zhangt@hku.hk

Introduction

Molecular methods based on 16S rRNA genes and function

genes, including fluorescence in situ hybridization [1], denaturing

gradient gel electrophoresis [2], qRT-PCR [3,4], microarray [5],

and proteomics [6], have been conducted to analyze the microbial

community structure and gene diversities at various environments.

Although those methods are still useful for less diversity

communities, those methods may not integrally reflect microbial

diversity and couple microbial taxonomy diversity with diversified

functions due to low throughput.

High-throughput sequencing methods, such as 454 pyrosequen-

cing and Illumina sequencing technologies, have been recently

applied as novel promising methods to investigate the genes and

genes expressions levels of microbial community in different

habits. DNA based high-throughput sequencing metagenomics

have been applied to reveal microbial communities in marine

water [7], soil [8], human guts [9], and oral cavities [10].

However, only a few metatranscriptomic studies have been applied

to the microbial communities in marine water [11,12], and soil

[8]. No metatranscriptomic work has been conducted on microbial

community of activated sludge (AS) from municipal wastewater

treatment plant and only a few limited high-throughput sequenc-

ing metagenomic studies on AS have been reported [13,14].

Activated sludge is a widely applied biological process in

wastewater treatment plants (WWTP). Similar to soil and

sediment, the AS floc is a highly complex microbial system of

eukaryotes, bacteria, archaea, and viruses, in which bacteria are

dominant and play important roles in removal of organic

pollutants and nutrients (nitrogen and phosphorus). To prevent

the adverse environmental impacts (including toxicity, oxygen

depletion, and algal blooms) caused by ammonia discharge from

WWTP, biological nitrification is conducted using AS to oxidize

ammonia to nitrite/nitrate via nitrification, and then to nitrogen

gas via denitrification. Nitrification is usually the limiting step of

the above nitrogen removal process, and catalyzed by two groups

of microorganisms, i.e. ammonia-oxidizing microorganism [15,16]

and nitrite-oxidizing bacteria [17]. Although several studies have

analyzed ammonia-oxidizing microorganism, nitrite-oxidizing

bacteria and denitrifying bacteria using different genes as bio-

markers, e.g. ammonia monooxygenase (amo) [14,18,19], nitrite

reductase subunits (nirK and nirS) [20], etc., a comprehensive

study on these genes and their expression levels in AS were never

conducted.

In the present study, we studied the microbial community

structure and the gene expression levels of an AS from Stanley

WWTP in Hong Kong using coupled metatranscriptomic and
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metagenomic approaches. The aims of the present study were 1) to

explore microbial metabolic potential using DNA dataset and

transcriptional activity RNA/cDNA dataset in parallel; 2) to

characterize the nitrogen metabolism in AS, specifically nitrifica-

tion and denitrification and the related genes; and 3) to identify the

active microorganisms responsible for nitrogen removal in AS.

Results and Discussion

Taxon-specific Patterns of rRNA and Protein Coding
Sequences
After being filtered by MG-RAST based on length and number

of ambiguous bases, totally 26,597,304 DNA clean reads (100 bp

per read) (,2.4 Gbp dataset) and 27,999,804 cDNA clean reads

(90 bp per read) (,2.4 Gbp dataset) were used for the analysis.

Combined taxonomic results generated based on all the available

annotation source databases in MG-RAST are summarized in

Figure 1.

Figure 1 showed that bacteria were the dominant domain in

both DNA and cDNA datasets, accounting for 92.16% and

68.42% of DNA and cDNA sequences, respectively, while

eukaryota comprised approx. 6.43% and 30.97% of total

sequences in DNA and cDNA, respectively. Sequences from

Archaea and viruses only accounted for 1.10% and 0.18% in DNA

sequences, and 0.34% and 0.03% in cDNA, respectively.

Comparing metagenomic dataset with metatranscriptomic

dataset may reveal the relative activity levels of different

populations in a microbial community. In the present study, we

defined that the relative activity of a microbial population was its

abundance/percentage in cDNA dataset over its abundance/

percentage in DNA dataset.

As summarized in Figure 1, the %cDNA/%DNA ratios of Archaea,

Bacteria, Eukaryota, and viruses were 0.31, 0.74, 4.82, and 0.17,

respectively. Although bacterial sequences were the most abun-

dance sequences in both metagenomic and metatranscriptomic

datasets, the increase of eukaryotic %cDNA/%DNA ratio probably

resulted from that the more quick degradation of bacterial mRNA

than eukaryotic mRNA.

For better understanding of the expression level of microorgan-

isms in AS, taxonomic affiliation of rRNA/DNA and protein-

coding sequences (mRNA and their genes) were annotated with

SSU database or Genbank database of MG-RAST. To simplify

the comparison, only taxonomic groups occupying .1% of Best

Hit annotated reads in DNA or cDNA dataset were included.

Figure 2 showed that the most abundant bacterial populations

were Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes, which

accounted for 22.35%, 15.03%, 5.72%, and 3.22% in SSU rDNA

reads, respectively, 49.46%, 6.04%, 8.06%, and 3.04% in SSU

rRNA reads, 78.47%, 10.93%, 1.64%, and 0.14% in protein

coding DNA reads, and 62.82%, 6.62%, 0.47%, and 1.26% of

mRNA reads. Verrucomicrobia had high abundance in SSU rRNA

reads (3.03%), but relatively low abundance in SSU rDNA reads

(0.53%), mRNA reads (0.01%), and their corresponding protein

coding DNA reads (0.02%). The phylum of nitrite-oxidizing

bacteria, Nitrospirae, showed high abundance in protein coding

DNA reads (5.36%), relative high abundance in SSU rDNA

(0.83%), as well as rRNA (0.91%), but low abundance in mRNA

(,0.01%). Euryarchaeota, an archaeal phylum, also had very high

percentage in SSU rDNA (19.38%), but low percentage in SSU

rRNA (0.05%), protein coding DNA (0.01%), and mRNA

(,0.01%).

High abundance of eukaryotic phyla had been observed in SSU

rRNA, SSU rRNA, protein coding DNA, or mRNA sequences.

Proportions of mRNA and rRNA in dominant eukaryotic phyla

were generally higher than their proportions in protein coding

DNA and rDNA. Chordata (15.98% in mRNA reads, 0.05% in

protein coding DNA reads, 0.21% in SSU rRNA reads and 4.38%

in SSU rDNA reads) was the most dominant eukaryote in both

DNA and cDNA datasets. High abundance of Chordata mRNA

was mostly comprised ofMammalia, Aves, and Actinopterygii (70.65%,

Figure 1. Combined taxonomic domain information of DNA and cDNA datasets. Total DNA sequences and cDNA sequences were assigned
to Bacteria, Eukaryota, Archaea, viruses, and other sequences.
doi:10.1371/journal.pone.0038183.g001
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24.52%, and 4.99% in total Chordata sequences, respectively).

Although living Chordata cell may reach aerobic tank by influent, it

is interesting that high abundance of Mammalia, Aves, and

Actinopterygii mRNA survive in aerobic tank. Streptophyta also has

high gene expression activity in mRNA (4.82%), but relative low

percentages in protein coding DNA reads (0.23%), SSU rRNA

(0.53%) and SSU rDNA reads (0.39%), suggesting that Streptophyta

in AS may adapt to a low light condition, due to Stanley WWTP is

a treatment plant inside an artificial cave with low light condition.

The other phyla, such as Arthropoda and Ascomycota, also had

relatively high abundance in mRNA (1.92%) and SSU rDNA

(1.60%), respectively.

Table 1 showed that bacteria had much lower expression

activity level in terms of protein coding genes than eukaryotes,

although their rRNA expression levels were generally higher than

eukaryotes. Consistent results were observed in high abundant

bacterial and eukaryotic phyla. The %SSU rRNA/%SSU rDNA ratios

of the top four abundant eukaryotes ranged from less than 0.01 to

1.36, while %SSU rRNA/%SSU rDNA ratios ranged from 0.40 to 5.72

for the top six abundant bacterial phyla. Except for Firmicutes,

which had a similar %mRNA/%protein coding DNA ratio to Arthropoda,

dominant bacterial %mRNA/%protein coding DNA were dramatically

lower than those of eukaryotes. The extremely low expression ratio

of rRNA and high expression level of mRNA in the most

abundance eukaryotic phylum (Chordata), as well as low mRNA

expression ratio but relative high ratio of rRNA expression in the

most abundant bacterial phyla may largely be responsible for the

phenomenon. These results also indicated that bacteria possibly

expressed higher levels of rRNA, but their mRNA degraded faster

than eukaryotic mRNA. High expression levels of rRNA and fast

mRNA degradation possibly help bacteria to fast response to

changing environment.

Further analysis was also performed to calculate the proportions

of Archaea, Bacteria, and Eukaryota between annotated SSU and LSU

sequences. Best Hit results by MG-RAST using SSU and LSU

databases, showed disagreement of the proportions of Archaea,

Bacteria, and Eukaryota, which probably resulted from different

coverage of SSU and LSU databases. Archaeal, bacterial, or

eukaryotic rDNA sequences accounted for 17.6%, 52.1% and

10.9% of annotated SSU sequences, and 0.02%, 86.1%, and 9.6%

Figure 2. Microbial community composition assessed by taxonomic classification of metagenomic and metatranscriptomic
datasets. SSU and LSU rDNA reads, and protein coding DNA reads from metagenomic dataset as well as those reads from metatranscriptomic
datasets identified as SSU rRNA, LSU rRNA, and mRNA. Only taxonomic groups that represented .1% of total reads in at least one dataset were
included.
doi:10.1371/journal.pone.0038183.g002
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of annotated LSU sequences, respectively (Table 2). 18.4% of

annotated SSU rDNA sequences could not be assigned to Archaea,

Bacteria, or Eukaryota. In cDNA dataset, the proportion of Eukaryota

varied from 6.5% (SSU) to 19.4% (LSU). However, the

percentages of both Archaea and Bacteria in cDNA dataset were at

similar levels using different annotation sources. In addition, the

percentages of unassigned reads in DNA dataset were almost at

the same level, while they varied in cDNA dataset from 18.4%

(SSU) to 6.2% (LSU).

Taxonomic Classification
BLASTN results showed that portion of SSU coding genes

(16S/18S rDNA) and LSU coding genes (23S/28S rDNA) in total

DNA sequences (,2.4 Gbp DNA dataset) was roughly 0.3%;

while assigned SSU and LSU rRNA sequences accounted for

,71.2% in total cDNA sequences, which is similar to the SSU and

LSU rRNA portion in soil (74.8%) [8], but higher than marine

environment (37.1%,58.1%) [12].

BLAST results, which were annotated by MEGAN by lowest

common ancestor algorithm, showed that archaeal, bacterial, or

eukaryotic rDNA sequences accounted for 17.1%, 63.1% and

15.8% of annotated SSU sequences, which was in agreement with

those results using Best Hit of MG-RAST. Because there was

roughly 71.2% of total RNA sequences came from SSU and LSU

rRNA, for a fair comparison with DNA dataset, total 117855

cDNA sequences were randomly picked out from the total

2.4 Gbp cDNA for SSU taxonomic annotation. Bacteria and

Eukaryota took 73.2% and 18.9% in total assigned SSU rRNA

reads, respectively, while there was almost no Archaea SSU rRNA

reads. These findings showed slight difference between activated

sludge and soil microbial community, in which 87.2%, 1.5%, and

10.3% of SSU rRNA belonged to Bacteria, Archaea, and Eukaryota,

respectively [12]. The different between soil and AS, such as low

oxygen concentration in soil but high oxygen concentration in AS,

may be responsible for the different. Comparing to archaeal SSU

rDNA accounting for 17.1% in SSU rDNA, low level of archaeal

SSU rRNA indicated their low activity in the AS system, which

was very reasonable due to the aerobic condition.

MEGAN analysis at the phylum level (Figure S1) showed similar

results withMG-RAST Best Hit results. Most of the bacterial phyla,

all the archaeal phyla, and many of the eukaryotic phyla

(Actinobacteria, Firmicutes, Planctomycetes, Euryarchaeota, Foraminifera,

etc.) had %SSU rRNA/% SSU rDNA ratios lower than 1. Meanwhile,

the %SSU rRNA/% SSU rDNA ratios of many bacteria phyla (e.g.

Proteobacteria, Acidobacteria, Bacteroidetes, Verrucomicrobia, etc.), almost of

all fungi (Chytridiomycota, Ascomycota, and Basidiomycota), and some

phyla of the metazoan group (Ciliophora, Nematoda and Rotifera) were

higher than 1. These findings indicated the different SSU expression

abilities among phyla and, possibly, their relative activities in the

activated sludge. What should be pointed out that because of the

limitation of metagenomic information, which based on DNA from

both live and dead cells, taxonomic analysis based on metatran-

scriptome reflected live/active microbial community more accu-

rately than metagenomic data.

Table 1. Microbial community composition assessed by taxonomic classification of metagenomic and metatranscriptomic
sequence reads.

SSU rRNA (%)/SSU rDNA (%) mRNA (%)/protein coding DNA (%)

Archaea ,0.01 ,0.01

Bacteria 1.47 0.74

Eukaryota 0.66 23.03

Virus 0.67 3.83

Euryarchaeota ,0.01 ,0.01

Proteobacteria 2.21 0.80

Actinobacteria 0.40 0.61

Bacteroidetes 1.41 0.29

Firmicutes 0.93 9.00

Nitrospirae 1.10 ,0.01

Verrucomicrobia 5.72 0.50

Chordata ,0.01 319.60

Ascomycota 0.20 8.00

Arthropoda 0.99 8.73

Streptophyta 1.36 20.96

Results showed that bacteria have much lower community expression efficiency of protein coding genes, compared with eukaryote. However, their rRNA expression
levels were generally higher than eukaryote.
doi:10.1371/journal.pone.0038183.t001

Table 2. Percentage (%) of Archaea, Bacteria, and Eukaryota
in annotated SSU and LSU sequences.

DNA cDNA

SSU (%) LSU (%) SSU (%) LSU (%)

Archaea 17.6 0.02 0.05 0.01

Bacteria 52.1 86.1 75 74.4

Eukaryota 10.9 9.6 6.5 19.4

Unassigned 0.01 0.02 18.4 6.2

Disagreement was found in DNA dataset between annotated SSU and LSU
sequences. As well, the percentages of Eukaryota in annotated SSU and LSU
sequences varied while Archaea and Bacteria kept at similar levels.
doi:10.1371/journal.pone.0038183.t002
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Proteobacteria were the most abundant phyla in AS, accounting

for 37.5% and 56.1% of annotated bacterial SSU rDNA and

rRNA sequences, respectively, followed by Bacteroidetes, Verrucomi-

crobia, and Actinobacteria, in agreement with our results using V4

16S rRNA gene pyrotags obtained using 454 pyrosequencing [14].

Similar results were also found in a few previous studies on

activated sludge using microarray [5] and cloning [21], as well as

the analysis results of bacteria communities in sewage influent

[22], in which Proteobacteria was the most dominant community.

Global Gene Expression Analysis
Although metatranscriptomes might be expected to have lower

microbial richness compared with metagenomes as expression is

limited to some populations in the whole microbial community at

a given time, for some cases, they may have higher coverage than

metagenomes at the same size of a sequence library [7,23].

2.4 Gbp DNA and cDNA datasets were used to analysis. The

mapping results (Figure S2) showed slight different annotation

coverage of the KEGG global metabolism pathway between the

two datasets. The blue regions showed those metabolisms only

covered by DNA sequences, indicating the expression of these

metabolism pathways may not be detectable or activated in the

sample at the applied sequencing depth. The red regions only

covered by cDNA dataset indicated those metabolisms expression

could be detected at the applied sequencing depth in spite of its

lower abundance in metagenomic dataset. The purple regions in

the metabolic map suggest those pathways detected in both DNA

and cDNA datasets.

To supplement the information of hit reads abundance in

KEGG mapper, the datasets were further annotated with SEED

Level1 Subsystems of MG-RAST. Figure 3 shows sequences

abundance of 27 basic metabolic categories in six datasets.

495036, 681532, 807124, sequences were annotated from 0.5 Gbp

DNA, 1.0 Gbp DNA, and 2.4 Gbp DNA datasets, respectively,

while 24425, 41846, and 67014 sequences were annotated from

0.5 Gbp cDNA, 1.0 Gbp cDNA, and 2.4 Gbp cDNA datasets,

respectively. Results showed that at the same sequencing depth,

abundance of annotated genes in cDNA datasets were generally an

order of magnitude lower than those in DNA datasets. Deeper

sequencing significantly increased the numbers of the annotated

sequences in all groups for both DNA and cDNA datasets. Similar

to the findings about soil [8], and marine microbial communities

[7], protein metabolism, carbohydrates, amino acids and deriva-

tives, as well as miscellaneous (e.g. translation elongation factor

LepA, DNA-directed RNA polymerase alpha subunit, etc.) were

the four most abundant categories in the global metabolism of AS

microbial communities, suggesting the dominant roles of these

categories in microorganisms. Although the total hit numbers of

sequences were different between DNA (807124 reads in total

2.4 Gbp DNA data) and cDNA (67014 reads in total 2.4 Gbp

cDNA data), the percentages of most categories were similar in

DNA and cDNA datasets, for instance, carbohydrates (11.81%

and 11.57% in 2.4 Gbp DNA and 2.4 Gbp cDNA, respectively),

amino acids and derivatives (9.78% and 9.72% in 2.4 Gbp DNA

and 2.4 Gbp cDNA, respectively). However, percentages of

protein metabolism, which was the most abundant process found

in both datasets, showed a difference between 2.4 Gbp DNA

(10.87%) and 2.4 Gbp cDNA (18.10%), suggesting their critical

roles and high expression activity in AS. These results were quite

lower than that reported in a study on soil microbial community

[8], where sequences annotated to protein metabolism accounted

for more than 40% in soil microbial community, but slightly

higher than that of marine microbial communities, which was

around 8% in both DNA and cDNA datasets [7].

Another category which is important in biological nitrogen

removal of wastewater, nitrogen metabolism, had hit numbers of

8255, 10062 and 12138 in 0.5 Gbp, 1.0 Gbp, and 2.4 Gbp DNA

datasets, and 624, 1042, and 1603 in 0.5 Gbp, 1.0 Gbp, and

2.4 Gbp cDNA datasets, respectively. Accounting for ,1.5% in

2.4 Gbp DNA dataset and ,2.4% in 2.4 Gbp cDNA dataset, the

portion of nitrogen metabolism related sequences in the total

sequences were very similar to the portion in marine microbial

communities (around 1.2% in both DNA and cDNA datasets) [7]

and soil microbial community (around 2.1% in cDNA dataset) [8].

In addition, extremely low abundant categories, e.g. dormancy

and sporulation, and photosynthesis processes, were observed in

the present study, possibly due to that Stanley WWTP located in

a cave and had average temperature above 20uC, even in winter

time.

Nitrogen Metabolism Analysis
Sequences associated with nitrogen metabolism, especially

nitrification, denitrification, ammonification, and nitrogen fixation

processes were analyzed in the present study because of their

critical roles in nitrogen removal in WWTPs. For the nitrogen

metabolism classification analysis, Level 2 SEED Subsystems were

used for annotation using MG-RAST. Ammonia assimilation- and

nitrite/nitrate ammonification-related genes had the highest hit

numbers in both DNA and cDNA datasets, followed by

denitrification, nitric oxide synthesis, and nitrogen fixation pro-

cesses (Figure 4).

Sequences associated with these four processes, i.e. ammonifi-

cation, nitrification, denitrification, and nitrogen fixation, were

extracted according to BLAT results for further BLAST against

NCBI-nr database and then mapped with MEGAN KEGG

analyzer based on the BLAST results. Relevant genes and genes

expression levels of nitrification, denitrification, ammonification,

and nitrogen fixation processes were displayed in Figure 4 based

on the six datasets mentioned in Section 2. Overall, at all three

sequencing depths, denitrification had the highest hits among the

four processes, followed by ammonification, nitrogen fixation and

nitrification (Figure 5). For 2.4 Gbp DNA and cDNA datasets,

denitrification accounted for 78.57% and 76.75% of the sum of

the four processes, respectively (Figure 5), while ammonification

only accounted for 17.30% and 14.81%, nitrogen fixation 3.22%

and 2.29%, and nitrification 0.91% and 6.15% of the sum of the

four processes, respectively. The results suggested that, both

denitrification coding genes sequences and their expression

activities were dominant among these four processes. Although

the present results showed a small proportion of nitrification-

related gene existed in AS microbial community, these genes

displayed vigorously expression activity in AS, which expression

ratio (cDNA/DNA ratio) was much higher than denitrification,

ammonification, and nitrogen fixation.

Abundance of DNA sequences related to ammonification,

denitrification, nitrification, and nitrogen fixation (ammonia

monooxygenase (amo), hydroxylamine reductase (har), hydroxyl-

amine oxidase (hao), nitrate reductase (nar), nitric oxide reductase

(nor), nitrite reductase (nir), nitrous oxide reductase (nos), and

nitrogenase (nif) were also calculated and shown in Figure 6.

In 2.4 Gbp DNA dataset, coding genes of denitrification

enzymes (red line in Figure 6), such as nir (including enzymes

EC 1.7.1.1, EC 1.7.7.2, and mainly EC 1.7.99.4) coding gene

sequences (with total hit number of 44748), nor (EC 1.7.2.4) coding

gene sequences (12691 hits), and nos (EC 1.7.99.6) coding gene

sequences (9467 hits) had high abundance, while nir (EC 1.7.2.1)

(forming NO) coding gene sequences only had 2610 hits. High

abundance of ammonification enzymes coding gene sequences

Metagenomic and Metatranscriptomic Analysis of AS
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Figure 3. Gene expression classification based on automated SEED subsystem in MG-RAST. Total six datasets were annotated by Level 1
subsystems.
doi:10.1371/journal.pone.0038183.g003

Figure 4. Nitrogen metabolism classification analysis based on level 2 SEED subsystems. Six datasets have been analyzed.
doi:10.1371/journal.pone.0038183.g004
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Figure 5. Functional genes and their expression levels in nitrification, denitrification, ammonification, and nitrogen fixation
processes.
doi:10.1371/journal.pone.0038183.g005

Figure 6. Community abundance of enzymes sequences in ammonification, denitrification, nitrification, and nitrogen fixation
(ammonia monooxygenase, hydroxylamine reductase, hydroxylamine oxidase, nitrate reductase, nitric oxide reductase, nitrite
reductase, nitrous oxide reductase, and nitrogenase).
doi:10.1371/journal.pone.0038183.g006
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were also found, including nir (EC 1.7.1.4, EC 1.7.7.1, and EC

1.7.2.2) coding gene sequences (13400 hits) and har (EC 1.7.99.1)

coding gene sequences (1905 hits). In nitrogen fixation process,

2855 sequences were annotated with nif (EC 1.18.6.1) coding gene.

In all the four processes, abundance of nitrification enzymes

coding gene sequences was the lowest. amo (EC 1.13.12.-) and hao

(EC 1.7.3.4) coding gene sequences only got 518 and 286 hits,

respectively. The hit number of nar coding gene sequences was

,86 times of amo coding gene sequences and ,156 times of hao

coding gene sequences, while abundance of nos (EC 1.7.2.4) coding

gene sequences were ,18 and ,44 times of amo and hao coding

genes sequences, respectively; and nir coding sequences were ,5

and ,12 times of amo and hao coding genes sequences,

respectively.

The abundance of annotated cDNA sequences in all the four

processes were only 1/60 to 1/10 of those in DNA dataset of the

same depth (Figure 6). In 2.4 Gbp cDNA dataset, the most

abundant enzyme mRNA sequence was nar (EC 1.7.1.1, EC

1.7.72, and EC 1.7.99.4, total 1104 hits) (Figure 6), followed by nos

(EC 1.7.2.4) mRNA sequences (308 hits), nir (EC 1.7.1.4, EC

1.7.7.1, and EC 1.7.2.2) mRNA sequences (total 264 hits), nor (EC

1.7.2.4) mRNA sequences (228 hits), amo (EC 1.13.12.-) mRNA

sequences (117 hits), har (EC 1.7.99.1) mRNA sequences (78 hits),

nir (EC 1.7.2.4) mRNA sequences (76 hits), nif (EC 1.18.16.1)

mRNA sequences (53 hits), and hao (EC 1.7.3.4) mRNA sequences

(25 hits).

Nitrifying enzymes coding genes were highly expressed in AS.

The cDNA/DNA ratio of amo was 0.23, 6.9 to 12.6 times higher

than those of denitrification enzymes sequences, which ranged

from ,0.02 (nor) to ,0.03 (nos). Hydroxylamine oxidase, as well,

had a cDNA/DNA ratio of ,0.09. These ratios suggest that the

two nitrification enzymes, especially amo, have much higher

expression activities in AS. Ammonia monooxygenase had also

been found at high expression levels in other ecosystems. Gifford et

al. [23] reported that N cycle expression was dominated amo

transcripts in marine Alphaproteobacteria, Gammaproteobacteria, and

Bacteroidetes genomes, when the concentrations of NH4
+ and NOx

were about 2.5 mM, and 1.1 mM, respectively. One possible

reason responsible for the higher expression of amo in AS could be

the high concentration of ammonia in the sewage. A previous

study based on reverse-transcription PCR found that higher

ammonia concentration increase expression of amoA-like gene in

bulk soil samples [24]. Table S1 showed that the monthly average

NH3-N concentration of Stanley WWTP influent and effluent

were 1.3 mM and 0.02 mM, respectively, from the year 2010 to

2011. Considering the ammonia concentration (average concen-

tration .20 mM) in aerobic tank in Stanley WWTP, which was

much higher than that in the ocean [23], high expression levels of

amo was expected.

Consistent with above results, most subunits of nar, nir, nor, and

nos coding genes had very high abundance in DNA dataset (e.g.

narG, 20344 hits; narH, 11713 hits; nirB, 10153 hits; norB, 9985 hits;

nosZ, 9467 hits), but relatively low in cDNA dataset (e.g. narG, 502

hits; narH, 358 hits; nirB, 230 hits; norB, 218 hits; nosZ, 308 hits).

Consequently, the ratios of cDNA/DNA of these subunits were

lower than 0.04 in the applied sequencing depth (2.4 Gbp)

(Figure 7). In comparison, amoA, amoB, and amoC (three subunits of

amo) have very high cDNA/DNA ratios, which were 0.24, 0.38,

and 0.18, respectively, confirming the subunits of amo have much

higher expression activities as above discussed. This is consistent

with the conditions at the sampling point, which was the aeration

tank with high DO level (2.5,3.0 mg L21) favoring nitrification

but not denitrification. What should be pointed out is that even

though low abundance of nitrification-related genes were observed

in DNA dataset, which also suggested that nitrifying microorgan-

isms possibly comprised only a little proportion in AS microbial

community, these nitrifying microorganisms with high expression

activity performed efficiently in nitrification in AS, reducing

ammonia concentration from 1,1.6 mM in influent to 7,43 mM
in effluent.

Taxonomic Analysis of the Five Enzymes Coding
Sequences and mRNA Sequences
MG-RAST BLAT results containing taxonomic information of

hit sequences were further applied to identify species performing

nitrification and denitrification. For the nitrification process, the

numbers of hit sequences of five enzymes cDNA/DNA sequences

and their correlating species were summarized in Figure 8. There

were 37 genera of bacteria, containing sequences of at least one of

the five enzymes, i.e. ammonia monooxygenase, hydroxylamine

reductase, hydroxylamine oxidase, nitric oxide reductase, and

nitrous oxide reductase.

Results from 2.4 Gbp DNA dataset showed Nitrosomonas (63 hits)

and Nitrosospira (63 hits) had the highest abundance of ammonia

monooxygenase. Methylocystis and Methylosinus have also been

annotated with low abundance of the methanol/ammonia

monooxygenase (7 hits and 10 hits, respectively). These two

genera have been reported that contain methanol/ammonia

monooxygenase in a previous study [25]. The other annotated amo

sequences mainly came from several groups of uncultured

bacteria, e.g. uncultured ammonia-oxidizing beta proteobacterium

(total 32 hits), uncultured ammonia-oxidizing bacterium (total 27

hits), and uncultured bacterium (total 22 hits). For another

nitrification enzyme, hao, the corresponding highest abundant

bacteria in the 2.4 Gbp DNA dataset was Nitrosomonas (47 hits),

followed by Nitrosospira (8 hits), Methylocystis (4 hits), and Anaeromyx-

obacter (2 hits). The other sequences hit hao from uncultured

bacterium (57 hits) suggested the potential uncultured bacteria in

nitrification. For hydroxylamine reductase, most of the hit

sequences came from Acidovorax (104 hits), Cupriavidus (48 hits),

Leptothrix (46 hits), Alicycliphilus (38 hits), Paracoccus (24 hits),

Escherichia (20 hits), and so on. For nitrous oxide reductase, high

abundant annotated bacteria included Riemerella (118 hits),

Dyadobacter (107 hits), Dechloromonas (100 hits), Candidatus accumuli-

bacter (71 hits), Acidovorax (58 hits), and etc. However, the datasets

also contained 612 hits of nitrous oxide reductase from uncultured

bacterium, indicating the roles of some uncultured bacteria in

denitrification.

In comparison, hit reads from cDNA dataset were relative

lower. Comparing with DNA dataset, cDNA contained only very

little sequences of amo, which were assigned to two well-descripted

genera, i.e. Nitrosomonas (27 hits) and Nitrosospira (20 hits), and

a group of uncultured ammonia-oxidizing beta proteobacterium

(20 hits). Hydroxylamine oxidase was only been annotated to

Nitrosomonas (6 hits), Nitrosospira (2 hits) and a group of uncultured

bacterium (8 hits). Hydroxylamine reductase also only had

relatively low abundance in Acidovorax (12 hits), Leptothrix (8 hits),

Vibrio (5 hits), Lutiella (4 hits), Alicycliphilus (3 hits). For nitrous oxide

reductase, the highest abundant annotated bacteria was Riemerella

(10 hits), followed by Ralstonia (9 hits), Dyadobacter (8 hits),

Dechloromonas (7 hits), Candidatus accumulibacter (7 hits), and etc.

For nitric oxide reductase, only two genera (Leptospira and

Dechloromonas) with hit sequences were higher than 5.

Further taxonomy-related gene expression activity analysis

suggested that Nitrosomonas and Nitrosospira vigorously expressed

ammonia monooxygenase in AS. The present results showed that

ammonia monooxygenase relative expression ratios (mRNA/

DNA coding sequence) in Nitrosomonas and Nitrosospira were 0.43

Metagenomic and Metatranscriptomic Analysis of AS
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and 0.32, respectively. Except for Marivirga, a genus expressed

nitrous oxide reductase in ratio of about 0.36, the two genera had

the highest expression activity, indicating Nitrosomonas and

Nitrosospira functioned as high efficient amo expressers and played

dominant roles in nitrification of AS. The present taxonomic

analysis results based on SSU showed Nitrosomonas and Nitrosospira

were accounted for 0.11% and 0.02% in DNA dataset, but 0.50%

and 0.18% in cDNA dataset. %SSU rRNA/%SSU rDNA ratios of

these genera were 4.5 and 9, respectively, while the average

bacterial %SSU rRNA/%SSU rDNA ratio was 1.47 (Table 1). These

results suggested Nitrosomonas and Nitrosospira have high transcrip-

tion activity in spite of their low abundance in AS. In addition,

another genus of nitrifying bacteria, Nitrosovibrio, was also detected

in both DNA and cDNA datasets from SSU based taxonomic

analysis (0.02% and 0.11%, respectively). However, none of amo or

hao was annotated with Nitrosovibrio, possibly due to Nitrosovibrio

have low abundance amo or hao gene or expressed low abundance

of amo or hao in AS. The insufficient sequencing depth in cDNA

dataset may be also responsible for this phenomenon. The present

SSU results also showed Methylocystis accounted for 0.57% and

0.51% in total SSU rDNA and rRNA, respectively, which %SSU

rRNA/%SSU rDNA ratio was lower than average bacterial %SSU

Figure 7. Community abundance of enzymes subunits associated with ammonification, denitrification, nitrification, and nitrogen
fixation.
doi:10.1371/journal.pone.0038183.g007

Metagenomic and Metatranscriptomic Analysis of AS

PLoS ONE | www.plosone.org 9 May 2012 | Volume 7 | Issue 5 | e38183



rRNA/%SSU rDNA ratio. But none of SSU rDNA and rRNA

sequence was annotated with Methylosinus. Combined with the amo

annotation data mentioned above, none of amo mRNA sequences

was assigned to Methylocystis and Methylosinus probably resulted

from their relatively low expression activity and insufficient

sequencing depth. In accordance with our recently published

papers [14,19], sequences of ammonia-oxidizing Archaea were not

detected in activated sludge of the present study, implying their

minor role in nitrification of sewage.

Summary
To our knowledge, the present study is the first research on

microbial community structure and gene expression of AS by

applying combined metagenomic and metatranscriptomic ap-

proaches. The present study is also the first study to reveal the

abundance and expression levels of genes involved in nitrification,

denitrification, ammonification and nitrogen fixation processes in

AS sample.

In conclusion, this study presented both metagenomic and

metatranscriptomic analysis of an activated sludge sample from

a municipal wastewater treatment plant of Hong Kong to

characterize microbial community structure and gene expression

level. Metagenomic and metatranscriptomic data were analyzed

by BLASTN against SILVA SSUref and LSUref databases for

taxonomic annotation and MG-RAST sever for functional

annotation simultaneously. Results revealed the microbial com-

munity structure of AS based on SSU rRNA gene and rRNA

(cDNA) sequences; explored nitrogen metabolism by three

sequencing depths; analyzed specific metabolism pathway, such

as ammonification, denitrification, nitrification, and nitrogen

fixation processes in AS; and investigated the taxonomic profile

of specific enzymes gene sequences involved in these processes.

Figure 8. Functional microorganisms in denitrification, nitrogen fixation, as well as nitrification processes. 37 genera of bacteria,
containing sequences at least one of the coding sequences of ammonia monooxygenase, hydroxylamine reductase, hydroxylamine oxidase, nitric
oxide reductase, and nitrous oxide reductase, were displayed with genus information.
doi:10.1371/journal.pone.0038183.g008
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In summary, SSU rDNA/rRNA results showed different

profiles of microbial community using DNA and cDNA datasets.

The percentage of bacterial sequences in AS shifted from 92.2%

(DNA) to 68.2% (cDNA). Global gene expression annotation

based on KEGG metabolism pathway displayed slight disagree-

ment between the DNA and cDNA datasets. Level 2 SEED

subsystems classification showed that ammonia assimilation,

nitrite/nitrate ammonification were the highest abundant pro-

cesses in nitrogen metabolism in both DNA and cDNA datasets,

followed by denitrification, nitric oxide synthesis, and nitrogen

fixation processes. Nitrification related genes, comprising only

,1% in DNA dataset but ,6.8% in cDNA dataset, suggested its

high relative expression level in AS microbial community. Enzyme

subunits gene sequences annotation discovered that subunits of

ammonia monooxygenase (amoA, amoB, amoC) and hydroxylamine

oxygenase had higher expression levels compared with subunits of

the other enzymes gene sequences. Further characterization of

taxonomic profile of five selected enzymes showed that nitrifying

bacteria present were affiliated with Nitrosomonas and Nitrosospira,

and, no ammonia oxidizing Archaea was in this AS sample at the

applied sequencing depth.

Materials and Methods

Activated Sludge Sampling
Activated sludge sample was collected from the aeration tank of

a local wastewater treatment plant (Stanley) in Hong Kong (N:

114.22, E: 22.21) using RNase and DNase-free tubes on Feb. 15th,

2011, immediately frozen in a liquid nitrogen container and

transported to the laboratory for future treatment. No specific

permits were required for the described field studies. We

a) confirm that the location is not privately-owned or protected

in any way;

b) confirm that the field studies did not involve endangered or

protected species.

DNA Extraction
DNA extraction was conducted within 48 hours after sampling.

Briefly, 10 mL samples were centrifuged at 10,0006g for 10 min

at 4uC. Two hundred milligrams of the pellet of sample were

collected in duplicate for two DNA independent extraction

reactions using the FastDNAH SPIN Kit for Soil (Q-Biogene,

CA) following the instruction of the manufacturer.

Total RNA Isolation and cDNA Synthesis
Total RNA isolation was carried out immediately after sampling

with the PowerSoil Total RNA Isolation Kit (MO-BIO Labora-

tories, Inc., CA). Briefly, the frozen sludge sample was quickly

thawed, and centrifuged immediately at 13,0006g for 2 min at

4uC. The pellet was collected in duplicate for two independent

total RNA isolation reactions following the instruction of the

manufacturer. RNA qualification was carried out by electropho-

resis (Figure S3). The extracted RNA was dissolved in RNase-free

water (Sigma, MO) and subsequently treated to remove genomic

DNA using the Amplification Grade DNase I Kit (Sigma, MO).

cDNA first-strand and second-strand cDNA were synthesized

using the Superscript III First-Strand Synthesis SuperMix

(Invitrogen, CA) and the Second-strand cDNA Synthesis Kit

(BeyoTime, Jiangsu, China), respectively, following instructions.

DNA and cDNA Library Construction and Sequencing
DNA and cDNA library preparation was conducted following

the manufacturer’s instruction (Illumina). Briefly, DNA and cDNA

fragmentation were carried out by Covaris S2 (Covaris, 01801-

1721). The DNA and cDNA fragments were processed by end

reparation, A-tailing, adapter ligation, DNA/cDNA size-selection,

PCR reaction and products purification according to manufac-

turer’s instructions. A ,200 bp DNA fragment sequences library

and a ,180 bp cDNA fragment sequences library were con-

structed for further sequencing. The base-calling pipeline (version

Illumina Pipeline-0.3) was used to process the raw fluorescence

images and call sequences. Raw reads with .10% unknown

nucleotides or with .50% low quality nucleotides (quality value

,20) were discarded [9]. Three sequencing depths, i.e. 0.5 Gbp,

1.0 Gbp, and 2.4 Gbp reads, were applied for both metagenomic

and metatranscriptomic datasets.

Bioinformatic Analyses
Combined taxonomic domain information

analysis. Combined taxonomic domain information analysis

was conducted at the MG-RAST (Meta Genome Rapid Anno-

tation using Subsystem Technology, v3.1) server at the Argonne

National Library (http://metagenomics.nmpdr.org), which pro-

vides several methods to access the different data types, including

phylogenetic and metabolic reconstructions, and has the ability to

compare the metabolism and annotations of one or more

metagenomes [8,26]. MG-RAST also provides protein similarities

analysis for sequences pasted filtration, including both function

classification and function annotation. The protein similarity was

carried out using BLAT against M5NR protein database (http://

metagenomics.nmpdr.org), which is an integration of many

sequence databases into a single and searchable database. A

single similarity search at this server will allow retrieving

similarities to several databases, including NCBI-nr, KEGG,

SEED, and etc. In the present study, ,2.4 Gbp DNA dataset

(MG-RAST ID: 4467420.3 and 4467390.3) and ,2.4 Gbp RNA

dataset (MG-RAST ID: 446943.3 and 4466567.3) were used for

most of the analysis.

Taxonomic classification. Taxonomic classification was

conducted by BLASTN against SILVA SSUref and LSUref

databases release 108 with an e-value of 1e26 [8] first, respectively,

and then followed by annotation of BLAST output files using

MEGAN [27]. This was performed by the lowest common

ancestor algorithm that assigned rDNA or rRNA sequences to the

lowest common ancestor in the taxonomy from a subset of the best

scoring matches in the BLAST result (absolute cutoff: BLAST

bitscore 86, relative cutoff: 10% of the top hit) [8] using MEGAN

according to these cutoffs to select hit reads for annotation. SSU

rRNA sequences were selected to carry out taxonomic analysis.

Global gene expression classification. To get whole

metabolic pathways information, global gene expression was

annotated with SEED Subsystems in MG-RAST with the total

2.4 Gbp DNA and 2.4 Gbp cDNA datasets at a cutoff of e-value

,1e25 [28], and visualized using KEGG mapper (an internal tool

based on the KEGG pathway mapping system).

To evaluate the influence of different sequencing depths on

pathways annotations, four sub-datasets (DNA: 0.5, and 1.0 Gbp,

cDNA: 0.5 and 1.0 Gbp) were generated randomly generated

from the total 2.4 Gbp DNA and 2.4 Gbp cDNA datasets and

applied for annotation against SEED Subsystems at e-value,1e25

[28].

Nitrogen metabolic pathway analysis. To study further on

nitrogen metabolism, especially nitrification, denitrification, am-

monification, and nitrogen fixation processes, which closely related
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to nitrogen removal in the AS system, Level 2 SEED subsystems of

MG-RAST was applied to annotate nitrogen metabolism related

genes. Additionally the nitrogen removal related sequences

identified based on MG-RAST BLAT results were extracted and

applied to BLASTX against NCBI-nr database at an e-value of

1e25 [29]. The BLAST results were visualized with MEGAN

KEGG analyzer [27] at a threshold of bitscore .50.

Further analysis was conducted to count the hit numbers of the

sequences of corresponding enzymes subunits in nitrogen metab-

olism and the ratio of cDNA/DNA hit reads numbers of these

enzymes from MEGAN annotation data. The present results only

displayed the subunits whose minimal hit numbers were .10 in

either DNA or cDNA dataset.

Taxonomic analysis of the sources of five enzyme-coding

gene sequences and mRNA sequences. MG-RAST BLAT

results, which contained species information, were used to assign

the ammonia monooxygenase, hydroxylamine oxygenase, hydrox-

ylamine reductase, nitrous oxidase, and nitrogenase to specific

bacteria at the genus level. In detail, the BLAT results from two

2.4 Gbp DNA and cDNA datasets were filtrated at thresholds of

maximum e-value of 1e25, minimum identity cutoff of 85% and

minimum alignment length cutoff of 80%. Then enzymes coding

sequences, including both DNA and cDNA sequences, were

displayed in a heat map with genus level affiliations and gene

abundance. Only those genera with more than two hits in cDNA

dataset or more than 20 hits in DNA dataset were displayed in the

heat map which was generated using MATLAB (version 7.12.0).

Supporting Information

Figure S1 Microbial community profile revealed by
DNA and cDNA datasets. DNA and cDNA datasets were

BLASTed with SILVA SSUref database and assigned with

MEGAN.

(TIF)

Figure S2 Global functional analysis using KEGG
mapper in MG-RAST. Three colors represented the regions

covered by DNA only (blue), cDNA only (red), and both (purple).

(TIF)

Figure S3 RNA qualification was tested by electropho-
resis.
(TIF)

Table S1 Routine parameters monitored in Stanley
WWTP.
(DOCX)
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