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Abstract

Epithelial-mesenchymal transition (EMT) is an important mechanism in carcinogenesis. To determine the mechanisms that
are involved in the regulation of EMT, it is crucial to develop new biomarkers and therapeutic targets towards cancers. In
this study, when TGFb1 and TNFa were used to induce EMT in human lung carcinoma A549 cells, we found an increase in an
epithelial cell tight junction marker, Claudin 1. We further identified that it was the TNFa and not the TGFb1 that induced
the fibroblast-like morphology changes. TNFa also caused the increase in Claudin-1 gene expression and protein levels in
Triton X-100 soluble cytoplasm fraction. Down-regulation of Claudin-1, using small interfering RNA (siRNA), inhibited 75% of
TNFa-induced gene expression changes. Claudin-1 siRNA effectively blocked TNFa-induced molecular functional networks
related to inflammation and cell movement. Claudin-1 siRNA was able to significantly reduce TNF-enhanced cell migration
and fibroblast-like morphology. Furthermore, over expression of Claudin 1 with a Claudin 1-pcDNA3.1/V5-His vector
enhanced cell migration. In conclusion, these observations indicate that Claudin 1 acts as a critical signal mediator in TNFa-
induced gene expression and cell migration in human lung cancer cells. Further analyses of these cellular processes may be
helpful in developing novel therapeutic strategies.
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Introduction

Inflammatory mediators are important constituents of local

environment for tumors, and evidences suggest that they are

closely linked to cancer and inflammation [1]. For instance, many

chronic inflammatory diseases are associated with greater risk of

cancer [2]. One of the key mediators implicated in inflammation-

associated cancer is tumor necrosis factor alpha (TNFa) [3].

Although TNFa was first identified for its ability to induce rapid

hemorrhagic necrosis of experimental cancers, TNFa is now

known to be produced in cancer cells as an endogenous tumor

promoter [2,3]. Animal model studies demonstrate that TNFa has

pro-cancer actions [4,5]. TNFa2/2 and TNFR12/2 mice are

resistant to chemically induced carcinogenesis in the skin [6].

TNFR12/2 mice are resistant to chemical carcinogenesis in the

liver [7], and in the development of liver metastasis in

experimental colon cancer [8]. Furthermore, TNFa is frequently

detected in human cancers with poor prognosis, such as ovarian,

renal and breast cancers [9]. TNFa has been suggested as a target

for renal-cell carcinoma treatment [10].

TNFa is involved in epithelial-mesenchymal transition (EMT)

[11]. It enhances transforming-growth factor b1 (TGFb1)-induced

EMT in multiple cancer cell types [12,13]. TNFa induces the

malignant progression of epithelial tumors by controlling cell

migration, invasion and metastasis. During the progression of

EMT, tight junction (TJ) proteins, such as Claudins and

Occludins, and adherens junction proteins, such as E-Cadherin,

are usually down-regulated [12–17]. TNFa also induces internal-

ization of TJ proteins [18], decreases trans-epithelial electrical

resistance, and increases the paracellular permeability of ions and

normally impermeable molecules [19].

The Claudin family of proteins consists of 24 members and

plays an integral role in the formation and function of tight

junctions [20,21]. Claudin family members interact with each

other through homo- and heterophilic interactions [21,22]. As TJ

proteins, Claudins are crucial for the maintenance of cellular

polarity and paracellular transportation of molecules. Claudin

proteins can be up-regulated and mis-localized in cancer cells [21].

The expression of Claudin 1 increases during tumorigenesis of

colon cancer [23], melanoma [24], oral squamous cell carcinoma

[25] and hepatocellular carcinoma [26].

In the present study, human lung carcinoma A549 cells were

treated with TNFa and TGFb1 to induce EMT. The expression of

Claudin 1 was increased in response to TNFa challenge. Further

studies indicated that Claudin 1 plays a crucial role in TNFa-

induced gene expression and cell migration in human lung

carcinoma cells.
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Materials and Methods

Cell line, antibodies and other reagents
Human lung adenocarcinoma A549 cells and MDCK cells were

grown in DMEM medium supplied with 10% fetal bovine serum,

1% penicillin-streptomycin, and 1% glutamine. Cells were

cultured in a standard humidified incubator at 37uC with 5%

CO2.

Antibodies for ZO-1, E-Cadherin, Occludin and Claudin-1

were from Zymed Laboratories (S. San Francisco, CA). Antibody

for Vimentin was from Cell Signaling Technology (Beverly, MA).

Antibody for GAPDH was from Santa Cruz Biotechnology (Santa

Cruz, CA). Horseradish peroxidase (HRP)-conjugated goat anti-

mouse and anti-rabbit secondary antibodies were from Amersham

Pharmacia Biotech (Piscataway, NJ). Alexa Fluor 488 labeled goat

anti-mouse and anti-rabbit secondary antibodies, rhodamine

phalloidin, and Hoechst dye 33342 were from Invitrogen

(Carlsbad, CA). Human TNFa was from R&D Systems Inc.

(Minneapolis, MN). Human TGFb1 was from Austral Biological

(San Ramon, CA).

Immunofluorescent staining and microscopy
Cells were stained as previously described [27–29]. A549 cells

were cultured on glass coverslips (VWR, Mississauga, Canada).

After different treatments, cells were fixed with 4% paraformal-

dehyde, permeabilized with 0.1% Triton X-100, blocked with 1%

BSA, stained with designated antibodies, rhodamine phalloidin

and Hoechst dye 33342. After gentle washing, coverslips were

mounted on glass slides with Dako fluorescence mounting medium

(Dako, Mississauga, Canada). Slides were examined as previously

described [27–29]. Isotype-matched mouse or rabbit IgG were

used as negative control with the same dilutions as the primary

antibodies.

Figure 1. TNFa and TGFb1 induce EMT in A549 cells. (A) The combined treatment of TNFa (20 ng/ml) and TGFb1 (10 ng/ml) for 72 h induced
morphological alterations characterized as fibroblast-like cells. (B) TNFa and TGFb1 treatment reduced expression of E-Cadherin at cell-to-cell
contacts, and increased formation of F-actin stress fibers. Cells were immunostained with an anti-E-Cadherin antibody and counterstained F-actin and
nuclei with rhodamine phalloidin and Hoechst 33342, respectively. (C) The redistribution of E-cadherin after TGFb and TNFa treatment from the cell-
to-cell contacts to cytosol was further demonstrated with confocal microscopy at higher maginification. (D) The 72 h treatment with TNFa and TGFb1
decreased expressions of E-Cadherin and Occludin, epithelial markers, and increased expressions of Vimentin, a mesenchymal marker, in A549 cells.
Surprisingly, the expression of Claudin 1, an epithelial marker, was increased as analyzed by western blotting.
doi:10.1371/journal.pone.0038049.g001
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Protein studies
Immunoblotting experiments were performed according to

procedures described previously [30–33]. Triton X-100 soluble

and insoluble protein fractions were prepared as described by

Nishiyama and coworkers [34]. Briefly, cells were lysed with

modified radioimmune precipitation assay buffer containing 1%

Triton X-100. Cell lysate was centrifuged (12,000 rpm for 10 min

at 4uC), and the supernatant was collected as the Trinton X-

soluble fraction. The remaining pellet was resuspended in 60 ml of

lysis buffer containing 1% SDS. The resulting suspension was

centrifuged (12,000 rpm for 10 min at 4uC) and the supernatant

was collected as the Triton-X insoluble fraction.

Real-time quantitative RT-PCR
The qRT-PCR primers used for human Claudin-1 were 59-

GCGCGATATTTCTTCTTGCAGG-39 (Forward) and 59-

TTCGTACCTGGCATTGACTGG-39 (Reverse) [35]. The

primers used for human succinate dehydrogenase complex subunit

A (SDHA) were 59-CGGCATTCCCACCAACTAC-39 (Forward)

and 59-GGCCGGGCACAATCTG-39 (Reverse) [36]. Primers for

other genes are available upon request. Total RNA was extracted

from A549 cells with TRIZOL Reagent (Invitrogen). qRT-PCR

was performed using 26QuantiTect SYBR Green PCR kit

(Qiagen, Mississauga, Canada) on LightCycler480 (Roche,

Mannheim, Germany) as described [37,38]. Each assay included

a standard curve of five serial dilutions and a no-template negative

control. The gene expression levels were normalized to the level of

SDHA as a house-keeping gene.

siRNA transfection
Claudin 1 siRNA was purchased from Santa Cruz Biotechnol-

ogy. Cells were transfected with 50 nM Claudin 1 siRNAs using

the oligofectamine reagent (Invitrogen) [31–33,36,39]. The

medium containing siRNA was replaced with a fresh medium

with or without TNFa 24 h after transfection. The siSTABLE V2

non-targeting siRNA#1 from Dharmacon (Lafayette, CO) was

Figure 2. TNFa alone induces fibroblast-like morphology and Claudin 1 expression. (A) TNFa alone induced fibroblast-like morphological
alteration, reduced cell-to-cell contacts, and increased F-actin stress fibers. A549 cells treated with TNFa, TGFb1 or TNFa and TGFb1 together for 72 h
were examined with light microscopy and stained with rhodamine phalloidin to visualize F-actin structures. TNFa-induced changes were similar as
that of the TNFa and TGFb1 treatment, whereas TGFb1 alone did not induce these changes. (B) Protein levels of E-Cadherin were more effectively
reduced by TGFb1 than TNFa. TNFa alone increased Claudin 1 expression, whereas TGFb1 had little effects on Claudin 1 after 24 h or 48 h treatment,
and even increased it after 72 h treatment, as determined by western blotting. (C) In MDCK cells, TGFb1 reduced Claudin 1 after 24, 48 or 72 h
treatment. (D) Expression levels of Claudin 1 mRNA were significantly increased by TNFa in a time-dependent manner as measured by real-time
quantitative RT-PCR. Mean 6 SEM. n = 3 experiments. *p,0.05 (compared with control at 24 h). #p,0.05 (compared with control at 48 h).
doi:10.1371/journal.pone.0038049.g002
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used as a negative control. For protein studies, the siRNA

transfected cells were harvested at different days after transfection.

Microarray and data analysis
For microarray study, four groups were prepared (i.e., cells

treated with or without TNFa and in the presence of Claudin 1

siRNA or control siRNA) and were tested with three biological

replicates for each group. Total RNA was extracted using RNeasy

kit (Qiagen, Valencia, CA), and cDNA was synthesized with High-

Capacity cDNA Reverse Transcription kits (Applied Biosystems,

Foster City, CA) on a PTC-100TM Programmable Thermal

controller (MJ Research Inc., Watertown, MA). The RNA

Integrity Number (RIN) was determined by Agilent Bioanalyzer

2100 (Agilent Technologies, Inc., Santa Clara, CA). Human Gene

ST 1.0 chips (28,132 spotted genes) from Affymetrix (Santa Clara,

CA) were used. Affymetrix CEL files were imported into Partek

software (Partek Inc., St. Louis, MO) using the default Partek

normalization parameters. Probe-level data were pre-processed

with robust multi-array average (RMA) analyses, which include

background correction, normalization, and summarization. Data

normalization was performed across all arrays, using quartile

normalization. The processed values were then compiled, or

summarized, using the median polish technique, to generate a

single measure of expression. Principle Component Analysis (PCA)

was performed using Partek. Hierarchical cluster analysis was

performed with significantly changed genes (p,0.001) using two-

way ANOVA. Differential expression analysis was performed

using Significance Analysis of Microarray (SAM) [40]. Signal

transduction network was analyzed with Ingenuity Pathway

Analysis (IPA)(Ingenuity Systems, Inc., Redwood City, CA) [36].

The original microarray data have been deposited to GEO

Repository (accession number GSE 32254).

Wound-healing assay
Wounds were created in confluent cells using a pipette tip [28].

The cells were then rinsed with medium to remove floating cells

and debris. TNFa and/or TGFb1 containing medium was added.

To test the effects of serum and/or EGF on cell migration, after

siRNA transfection confluent cells were serum starved before

wounding. Cells were then treated with 10% FBS, and/or 50 ng/

ml EGF [41]. The culture plates were incubated at 37uC. Wounds

were measured at 0, 6, 12 and 18 h. Assays were repeated four

times for each condition.

Cell proliferation assay
The proliferation assays were performed to determine the effect

of TNFa and/or TGFb1 on the cell growth over time as described

previously [42]. In brief, A549 cells were seeded into 96-well cell

culture plates at a density of 56103 cells/well and incubated for

48 h prior to the treatments. The medium was replaced with

100 ml fresh one containing 20 ng/ml TNFa and/or 10 ng/ml

TGFb1. The assay was performed at 0, 8, 18 and 24 h after the

treatments in quadruplicates with CellTiter 96R AQueous One

Solution Cell Proliferation Assay (Promega, Madison, WI). At

Figure 3. TNFa-induced Claudin 1 protein is mainly in the cytosolic fraction. (A) At 24, 48 h after treating the cells with TNFa, expression of
Claudin 1 protein was increased mainly in cytoplasm. A549 cells were immunostained with an anti-Claudin 1 antibody and counterstained F-actin and
nuclei with rhodamine phalloidin and Hoechst 33342, respectively. (B) Confocal microscopy further confirmed the cytosolic distribution of Claudin 1
in both control and TNFa groups. (C) Claudin 1 and GAPDH were mainly found in the Triton X-100 soluble (S) cytoplasm fraction, whereas ZO-1 and
Occludin were mainly in the Triton X-100 insoluble cytoskeletal pellets (P). A549 cells treated with or without TNFa (20 ng/ml for 24 h) were lyzed and
separated into Triton X-100 soluble and insoluble fractions for immunoblotting.
doi:10.1371/journal.pone.0038049.g003

Claudin 1 in TNFa Signaling and Cell Migration

PLoS ONE | www.plosone.org 4 May 2012 | Volume 7 | Issue 5 | e38049



each time point, 20 ml of the assay solution was added to each well

and incubated for 1 h at 37uC. The plate was then read on a 96

well plate reader (ThermoLab system, Opsys MR) at 490 nm. The

absorbance values were plotted as a function of time for each

treatment to show the cell proliferation profile.

Gelatin zymography
The cell-conditioned media were diluted with sample buffer

(5% SDS, 20% glycerol in 0.5 M Tris, pH 6.8, containing 0.02%

bromophenol blue), and loaded in a 10% zymogram gel

containing 0.1% gelatin (Sigma-Aldrich, St. Louis, MO) [27].

After electrophoresis, the gels were washed for 30 min in 2.5%

Triton X-100 and incubated overnight at 37uC in 50 mM Tris,

pH 7.4, 5 mM CaCl2, 0.02% Brij 35. The gels were stained with

0.5% Coomassie Blue R-250 in 50% methanol and 10% acetic

acid overnight at room temperature on a rotary shaker. The gels

were de-stained for 5 h in 50% methanol and 10% acetic acid.

The areas where the staining was digested were identified.

Claudin 1-pcDNA transfection
Claudin 1-pcDNA3.1/V5-His plasmid was given by Dr.

Patricia Pintor dos Reis and Dr. Suzanne Kamel-Reid (University

of Toronto), and an empty-pcDNA3.1/V5-His plasmid was used

as a negative control [25]. Cells were seeded in a 6-well plate at

5.06105 cells/well and incubated overnight at 37uC. Cells were

transfected with 500 ng/well Claudin 1-pcDNA or empty-pcDNA

plasmids using LipofectamineTM 2000 reagent (Invitrogen). The

media containing plasmids were replaced with fresh medium with

or without TNFa at 24 h after transfection. For protein studies,

the siRNA transfected cells were harvested at 48 h after

transfection.

Statistical analysis
Statistical analyses were carried out using Tukey-Kramer HSD

test. Differences are considered significant when the P value was

less than 0.05. Statistical analyses were performed using JMP

version 5 (SAS Institute Inc., Cary, NC).

Figure 4. Down-regulation of Claudin 1 with siRNA significantly blocked TNFa-induced gene expression. (A) Claudin 1 siRNA effectively
reduced both basal and TNFa-induced gene expression of Claudin 1 (reading from microarray). (B) Principle Component Analysis (PCA) showed that
the overall gene expression profiles are separated based on the Claudin 1 siRNA transfection and TNFa treatment. (C) Hierarchical clustering analysis
demonstrates that gene expression patterns are highly dependent upon Claudin 1 siRNA transfection and TNFa treatments. A two-way ANOVA
showed that 2,490 genes were significantly different. Red: up-regulated; blue: down-regulated. (D) Claudin 1 siRNA blocked 75% of the TNFa-induced
gene expression changes. The gene expressions that were significantly changed by TNFa were defined with FDR q value less than 5.0% and fold of
change greater than 1.3 by SAM analysis. Venn diagram shows that 75% of TNFa-induced expression changes were not shown in Claudin 1 siRNA
transfected cells.
doi:10.1371/journal.pone.0038049.g004
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Results

Induction of EMT by TGFb1 and TNFa in human lung
carcinoma A549 cells

To investigate EMT in human lung carcinoma A549 cells, we

treated cells with TNFa (20 ng/ml) and TGFb1 (10 ng/ml) for

72 h. The combined treatment of TNFa and TGFb1 induced

morphological changes characterized as fibroblast-like cells

(Figure 1A). Immunofluorescent staining demonstrated that the

combined treatment with TNFa and TGFb1 reduced expression

of E-Cadherin, and re-distributed E-Cadherin from surface

membrane to more diffuse in the cytoplasm (Figure 1B left panel).

These changes were confirmed with confocal microscopy at higher

magnification (Figure 1C). The F-actin staining showed strong

cortical staining in the control cells, whereas more stress fibers can

be seen in elongated fibroblast-like cells after TGFb1 and TNFa
treatment (Figure 1B, middle panel). Western blotting revealed

that TNFa and TGFb1 together decreased expressions of E-

Cadherin and Occludin, typical epithelial adherens and TJ marker

proteins, and increased expressions of Vimentin, a typical

mesenchymal marker (Figure 1D). Claudin 1, one of the epithelial

TJ markers, however, was increased after TGFb1 and TNFa
treatment (Figure 1D).

TNFa induces morphologic alteration and Claudin 1
expression in A549 cells

To investigate the main signal that induces the morphologic

alternation, we treated A549 cells with TNFa and/or TGFb1 for

72 h. The changes in cell morphology and F-actin structures were

determined with phase contrast microscopy and F-actin staining.

TNFa alone induced the fibroblast-like morphological change of

the cells with formation of F-actin stress fibers, and reduced cell-to-

cell contact. On the other hand, TGFb1 alone did not induce

these changes (Figure 2A).

To investigate whether the change in the morphology of the

cells are associated with changes of EMT markers, we treated cells

with TNFa, TGFb1, or the both. In untreated cells, the protein

levels of E-Cadherin continued to increase from 24 h to 72 h. In

TGFb1 treated cells, E-Cadherin levels were inhibited; the band

was seen only at the 72 h. In TNFa treated cells, E-Cadherin

protein was found at 48 h and 72 h groups at lower levels than

untreated controls. The inhibitory effect was enhanced by the

combined TNFa and TGFb1 treatment (Figure 2B). Claudin 1

expression was increased by TNFa alone. TGFb1 alone slightly

reduced Claudin 1 at 24 h and 48 h. The effects of the combined

use of TNFa and TGFb1 on Claudin 1 levels were very similar to

the effect of TNFa alone (Figure 2B). In MDCK cells, TGFb1

decreased Claudin 1 expression in a time dependent fashion [15].

When we stimulated MDCK cells with TGFb1 (10 ng/ml),

decreased Claudin 1 was also found (Figure 2C), suggesting the less

inhibitory of TGFb1 to Claudin 1 in A549 cells could be cell type

specific. The basal expression level of Claudin 1 mRNA was

increased in a time-dependent manner between 24 and 48 h,

which was significantly enhanced by TNFa stimulation as

determined by real-time quantitative RT-PCR (Figure 2D).

Furthermore, immunofluorescent staining demonstrated that

TNFa-induced Claudin 1 protein expression was mainly found in

the cytoplasm and not at the boundary of cell-to-cell contacts

(Figure 3A). The cytosolic distribution of Claudin 1 was further

demonstrated with confocal microscopy at higher magnification

(Figure 3B). Assembly of tight junctions recruits tight junction

proteins into complexes; therefore, make them resistant to

detergent-salt extractions. Conversely, disassembly of tight junc-

tion may result in internalization or diffuse cytoplasmic distribu-

Figure 5. Validation of gene expression by real-time quantita-
tive RT-PCR. The expression of six genes (BAAT, TM4SF4, CCL5,
TNFAIP3, IL-6, and IL-8) in Claudin 1 siRNA transfected cells were
compared with control siRNA transfected cells treated with or without
TNFa. The microarray results are plotted in the left column. The qRT-
PCR results normalized to the level of SDHA are plotted in the right
column. N = 4, Mean 6 SEM.
doi:10.1371/journal.pone.0038049.g005
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tion of tight junction proteins, making them more extractable with

detergent salt solutions [34]. Thus, to further determine the

distribution of Claudin 1, we used Triton-X100 extraction

followed by western blotting. Claudin 1 was found mainly in

Triton X-100 soluble cytoplasm fractions, and increased after 24 h

of TNFa stimulation. In contrast, ZO-1 and Occludin (epithelial

surface markers) were mainly found in Triton X-100 insoluble

precipitates. GAPDH, a cytosolic protein was found mainly in

Triton X-100 soluble fraction (Figure 3C). Therefore, our results

suggest that the increased Claudin 1 is not mainly in tight junction

but diffusely distributed in the cytoplasm.

Table 1. Top 20 up-regulated genes induced by TNFa in Control-siRNA or Claudin 1-siRNA transfected A549 cells.

Up-Regulated Genes

Gene Symbol Gene Name Gene ID Control-siRNA Claudin 1-siRNA

Fold Change q-value (%) Fold Change q-value (%)

CCL5 chemokine (C-C motif) ligand 5 NM_002985 21.729 ,0.001 11.471 ,0.001

CLEC4E C-type lectin domain family 4, member E NM_014358 14.712 ,0.001 6.523 ,0.001

IL8 interleukin 8 NM_000584 9.634 ,0.001 3.136 ,0.001

IL6 interleukin 6 (interferon, beta 2) NM_000600 8.530 ,0.001 5.958 ,0.001

TNFAIP3 tumor necrosis factor, alpha-induced protein 3 NM_006290 8.188 ,0.001 3.764 ,0.001

CCL2 chemokine (C-C motif) ligand 2 NM_002982 4.466 ,0.001 2.387 ,0.001

SOD2 superoxide dismutase 2, mitochondrial NM_001024465 4.404 ,0.001 2.617 ,0.001

IL1A interleukin 1, alpha NM_000575 4.258 ,0.001 4.128 ,0.001

CFB complement factor B NM_001710 4.202 ,0.001 2.020 ,0.001

IFI44 interferon-induced protein 44 NM_006417 3.833 ,0.001 2.448 3.500

EFNA1 ephrin-A1 NM_004428 3.819 ,0.001 1.718 $5.0

PTX3 pentraxin-related gene, rapidly induced by IL-1 beta NM_002852 3.762 ,0.001 1.982 4.154

ASS1 argininosuccinate synthetase 1 NM_000050 3.589 ,0.001 2.003 ,0.001

PTPLAD2 protein tyrosine phosphatase-like A domain containing 2 NM_001010915 3.432 ,0.001 1.988 ,0.001

VCAM1 vascular cell adhesion molecule 1 NM_001078 3.418 ,0.001 1.961 4.221

GPR141 G protein-coupled receptor 141 NM_181791 3.343 ,0.001 2.805 ,0.001

C15orf48 chromosome 15 open reading frame 48 NM_032413 3.239 ,0.001 2.476 ,0.001

LAMC2 laminin, gamma 2 NM_005562 3.082 ,0.001 2.696 ,0.001

IFIT1 interferon-induced protein with tetratricopeptide repeats 1 NM_001548 3.002 ,0.001 2.240 $5.0

TNFRSF9 tumor necrosis factor receptor superfamily, member 9 NM_001561 2.984 ,0.001 2.721 ,0.001

doi:10.1371/journal.pone.0038049.t001

Table 2. Top 10 down-regulated genes induced by TNFa in Control-siRNA or Claudin 1-siRNA transfected A549 cells.

Down-Regulated Genes

Gene
Symbol Gene Name Gene ID Control-siRNA Claudin 1-siRNA

Fold Change q-value (%) Fold Change q-value (%)

BAAT bile acid Coenzyme A: amino acid N-acyltransferase (glycine N-
choloyltransferase)

NM_001701 23.632 ,0.001 22.580 $5.0

TM4SF4 transmembrane 4 L six family member 4 NM_004617 22.289 0.387 21.943 $5.0

HLA-DMB major histocompatibility complex, class II, DM beta NM_002118 21.963 2.306 21.985 $5.0

OLFML3 olfactomedin-like 3 NM_020190 21.865 3.152 21.623 $5.0

C12orf27 chromosome 12 open reading frame 27 ENST00000315185 21.822 3.186 21.579 $5.0

METTL7A methyltransferase like 7A NM_014033 21.733 3.818 21.324 $5.0

C5 complement component 5 NM_001735 21.644 3.818 21.521 $5.0

ACSM3 acyl-CoA synthetase medium-chain family member 3 NM_005622 21.630 3.152 21.651 $5.0

TRIML2 tripartite motif family-like 2 NM_173553 21.626 3.152 21.440 $5.0

SEMA3E sema domain, immunoglobulin domain (Ig), short basic domain NM_012431 21.609 3.152 21.262 $5.0

doi:10.1371/journal.pone.0038049.t002
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Knocking down Claudin 1 with siRNA significantly
blocked TNFa-induced gene expression

To determine the role of Claudin 1 in TNFa related cellular

functions, we used microarray to analyze gene expression profiles

in cells treated with or without TNFa and in the presence of

Claudin 1 siRNA or control siRNA. TNFa stimulation (20 ng/ml

for 24 h) increased Claudin 1 mRNA expression, while Claudin 1

siRNA effectively reduced both basal level and TNFa-induced

Claudin 1 gene expression (Figure 4A). Interestingly, TNFa
reduced Claudin 2 gene expression, which was not affected by

Claudin 1 siRNA treatment. TNFa has no significant effects on

other Claudin family members (Table S1). Principle Component

Analysis (PCA) indicated that the overall gene expression patterns

were clearly separated based on either the TNFa stimulation or

Claudin 1 siRNA pre-treatments (Figure 4B). Hierarchical cluster

analysis showed that the down regulation of Claudin 1 with siRNA

has a profound effect on the gene expression profile. A group of

genes were up-regulated in Claudin 1 siRNA treated cells, and

another group of genes were down-regulated, regardless of TNFa
treatment (Figure 4C).

As expected, TNFa stimulation altered expression of many

genes. One group of genes was up-regulated by TNFa in both

Control and Claudin 1 siRNA transfected cells (Figure 4C, red

arrow). However, another group of genes regulated by TNFa in

Control siRNA transfected cells are less regulated in Claudin 1

siRNA transfected cells (Figure 4C, blue arrow). Significance

Analysis of Microarray (SAM) was performed to detect genes

significantly changed by TNFa treatment, which is indicated by

False Discovery Rate (FDR) q value less than 5.0% and fold

change greater than 1.3. In control siRNA transfected cells, TNFa
changed expression of 468 genes, of which 450 genes were up-

regulated, whereas only 18 genes were down-regulated. In

contrast, in Claudin 1 siRNA transfected cells, only 123 genes

were significantly changed by TNFa, and all of them were up-

regulated. The Venn diagram revealed that 353 of the genes

altered by TNFa in Control siRNA transfected cells are not

changed in Claudin 1 siRNA transfected cells. This means that

knock-down of Claudin 1 blocked 75% of the TNFa-induced gene

expression changes (Figure 4D). The top 20 genes up-regulated by

TNFa are listed in Table 1. The folds of changes were decreased

in Claudin 1 siRNA treated group in most of these genes. The top

20 down-regulated genes by TNFa are listed in Table 2. None of

them remains significantly changed in Claudin 1 siRNA treated

group. Six genes from up- or down-regulated genes were verified

with qRT-PCR. Similar trends between microarray and qRT-

PCR were observed (Figure 5). These results indicate that Claudin

1 plays an important role in mediating TNFa-induced gene

expression.

Claudin 1 siRNA blocked TNFa-induced genes are related
to cell migration

We further analyzed Bio-functions of the 353 genes, which were

blocked by Claudin 1 siRNA (highlighted area with dots on Venn

diagram in Figure 4D). Among these significantly changed genes,

Figure 6. Knocking down Claudin 1 with siRNA reduced gene expression related to inflammation and cell migration. Ingenuity
Pathway Analysis was performed on 353 genes which were significantly changed by TNFa treatment in Control siRNA transfected cells, but not in
Claudin 1 siRNA transfected cells (highlighted area with dots on Venn diagram in Fig. 4D). (A) Signal network related to inflammation. Note that NFkB
is located at the center of the network. (B) Signal network related to cell movement. Note MMP-9 is located at the center of the network.
doi:10.1371/journal.pone.0038049.g006

Table 3. Top Bio Functions of TNFa-Induced Genes Blocked
by Claudin 1 siRNA, as analyzed by Ingenuity Pathway
analysis.

Top Bio Functions

Molecular and Cellular Functions

Name p-value Number of Molecules

Antigen Presentation 8.33E-12–6.75E-03 74

Cellular Development 6.06E-09–6.75E-03 62

Gene Expression 2.94E-07–7.93E-03 21

Cellular Movement 2.16E-06–7.36E-03 53

Cell Death 2.90E-06–7.41E-03 86

doi:10.1371/journal.pone.0038049.t003
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103 genes showed Bio functions rerated to Cellular Development,

Cellular Movement, Cell-To-Cell Signaling and Interaction,

Tumor Morphology and/or Cell Morphology (Table S2).

Ingenuity Pathway Analysis shows that the top ranked functional

networks blocked by Claudin 1 siRNA treatment are related to

antigen presentation, cellular development, gene expression,

cellular movement and cell death (Table 3). In two of these

functional networks, NFkB is well connected as a central hub of

multiple molecules. One of them is related to antigen presentation

(data now shown) and another is related to inflammation

(Figure 6A, Table S3A). Recent studies have demonstrated that

NFkB promotes EMT, migration and invasion in cancer cells

[14,43,44]. In the functional network on Cellular Movement,

MMP-9 is located in the center (Figure 6B, Table S3B). MMP-9 is

one of the most important proteases for human lung epithelial cell

migration [27,45].

Claudin 1 is important for TNFa-induced cell migration in
A549 cells

To determine whether Claudin 1 is involved in TNFa-induced

cell migration, we first compared the role of TNFa and TGFb1 in

cell migration with a wound-healing assay. TNFa plus TGFb1

treatment significantly increased motility in A549 cells (Figure 7A

and 7B). TNFa alone, but not TGFb1, increased wound closure as

effectively as TNFa plus TGFb1 did (Figure 7B). To determine the

increased wound closure is due to increase cell proliferation and/

or migration, we examined the effects of TNFa and/or TGFb on

cell proliferation with MTS assay. Neither or both of them affected

cell proliferation within 24 h of treatment (Figure 7C). Microarray

and qRT-PCR demonstrated that TNFa increased MMP-9 gene

expression. A gelatin zymography assay demonstrated that the

level of active-MMP 9 was increased by TNFa treatment; while

the levels of both pro- and active-MMP 2 had no dramatic

changes (Figure 7D). These results indicate that TNFa is

responsible for increased cell migration.

Figure 7. TNFa promotes migration of A549 cells. (A) TNFa enhanced cell migration in a wound healing assay. After mechanical wounding,
confluent A549 cells were treated with TNFa (20 ng/ml), TGFb1 (10 ng/ml) or TNFa and TGFb1 together. Representative photomicrographs of the
wounded cell monolayer are shown. (B) Percentage of cell free area in each condition was calculated. n = 4. Mean 6 SEM. *p,0.05 (compared with
control at the same time point). (C) TNFa and/or TGFb1 did not affect cell proliferation determined by MTS assay. (D) TNFa treatment for 24 h
increased the gene expression of MMP-9 (as determined by microarray and qRT-PCR) and the level of active MMP-9, while the levels of both pro- and
active-MMP 2 had no dramatic changes, as determined by gelatin zymography assay.
doi:10.1371/journal.pone.0038049.g007
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Transfection of cells with Claudin 1 siRNA effectively reduced

both the basal and TNFa-induced expression of Claudin 1 mRNA

(Table S1) and protein (Figure 8C) levels and cell migration

(Figure 8A and 8B). Next, we transfected A549 cells with Claudin

1-pcDNA, which effectively enhanced cell migration (Figure 8D

and 8E). Western blotting confirmed that Claudin 1-pcDNA

transfection increased the expression level of Claudin 1 protein

(Figure 8F). Collectively, these results indicate that Claudin 1 has

important role in mediating TNFa-induced cell migration.

To determine whether the role of Claudin 1 in TNFa-induced

cell migration is specific, cells were serum-starved for 3 h and then

stimulated with 10% serum and/or EGF (50 ng/ml). Serum plus

EGF significantly increased cell migration. Interestingly, Claudin 1

siRNA transfected cells showed significantly increased migration

in either EGF or serum treated group. This is more significant in

cells treated with both serum and EGF (Figure 9A). We then

performed western blotting, serum and/or EGF slightly increased

Claudin 1 protein levels. Claudin 1 siRNA effectively reduced the

levels of Claudin 1 (Figure 9B). To test whether down-regulation of

Claudin 1 can alter TNFa-induced cell morphology changes, cells

were treated with control or Claudin 1 siRNA and stimulated with

TNFa, and/or TGFb.Claudin 1 siRNA reduced the morpholog-

ical changes induced by TNFa alone or by TNFa plus TGFb, and

TGFb alone had little effects on stress fiber formation and cell

morphology, as shown by F-actin staining (Figure 9C).

Discussion

One of the novel findings of the present study is the evidence

that in human lung cancer A549 cells TNFa alone induced

morphological changes, stress fiber formation, cell migration and

the alteration of gene expression. More importantly, we found that

these cellular functions are largely mediated through the induction

of Claudin 1.

TNFa is known to augment TGFb1-induced EMT in various

cells [12,13,46,47]. To investigate EMT in A549 cells, we treated

cells with TNFa, TGFb1 or in combination, and examined the

morphological changes, cytoskeletal structure and expression of

EMT markers. Through these experiments, we found that TNFa
and TGFb1 may have different roles in these human lung cancer

cells. TGFb1 is more effectively inhibiting expression of E-

Cadherin, a marker for the differentiation of epithelial cells,

whereas TNFa is more effective in increasing Claudin 1 expression

and through Claudin 1 to mediate down-stream gene expression

Figure 8. Claudin 1 expression levels affect cell migration. (A) Down regulation of Claudin 1 with siRNA reduced spontaneous as well as TNFa-
enhanced migration of A549 cells. The control or Claudin 1 siRNA transfected A549 cells were cultured until confluent, mechanically wounded, and
then treated with or without 20 ng/ml TNFa. Representative photomicrographs of wounded cell monolayer are shown. (B) Percentage of cell free
area in each condition was calculated. n = 4. Mean 6 SEM. *p,0.05 (compared with control siRNA transfected cells at the same time point). (C)
Claudin 1 siRNA effectively reduced both basal and TNFa induced expression levels of Claudin 1 in A549 cells. Control or Claudin 1 siRNA transfected
cells were treated with or without TNFa (20 ng/ml for 24 h) and harvested for western blotting. (D) Over-expression of Claudin 1 enhanced cell
migration. (E) Percentage of cell free area in each condition was calculated. n = 4. Mean 6 SEM. *p,0.05, compared with empty vector transfected
cells at the same time point. (F) Claudin 1-pcDNA effectively increased the expression level of Claudin 1. A549 cells were transfected with empty
vector or Claudin 1-pcDNA for 24 h, and harvested for western blotting.
doi:10.1371/journal.pone.0038049.g008
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and cell migration. It has been shown that TNFa stimulated EMT

of human colonic organoids [11], promoted EMT in renal

carcinoma cells [48,49] and in human skin cells [50]. In A549

cells, TNFa alone induced cell morphological changes and cell

migration. Although these changes are related to EMT, we do not

have enough evidence to support TNFa alone induced EMT in

this cell type.

Normally, Claudin 1 expresses in lung epithelial cells and

regulates tight junction permeability [51]. Claudin 1 expression is

generally known to be decreased by TNFa, and the decreased

protein expression and protein redistribution of Claudin 1 lead to

the decrease in the trans-epithelial electric resistance and the

increase in the paracellular permeability of epithelial cells [52,53].

TNFa increased Claudin 1 expression in human pancreatic cancer

cells [54], and in airway smooth muscle cells [55]. In the present

study, TNFa strongly increased Claudin 1 expression in human

lung cancer cells. The increased Claudin 1 is mainly in Triton-

soluble cytoplasm, not in the tight junction complex of Triton-

insoluble fraction. More importantly, knock-down of Claudin 1

blocked 75% of the TNFa-induced gene expression changes. Two

of the top five TNFa-induced functional networks effectively

blocked by Claudin 1 siRNA are related to NFkB. It has been

shown that NFkB signaling is involved in EMT [14,43,44]. In the

Table 1, we can see several cytokines and chemokines on the top

of the gene list up-regulated by TNFa, such as CCL5, CCL2, IL-

8, IL-6 and IL-1a. The folds of changes of these genes were

significantly lower in Claudin 1 siRNA treated cells. In the NFkB

related inflammatory signal network (Figure 6A, Table S3A), genes

encoding proteins related to inflammation can be identified, such

as CXCL10 (chemokine CXC motif ligand 10), CSF2 (colony

stimulating factor 2), PLA2G4A and PLA2G4C (phospholipase

A2, group IV members), KLRK1 and KLRC3 (killer cell lectin-

like receptor subfamily members), and S100A3 (S100 calcium

binding protein A3). TNFa is one of the most important

inflammatory mediators in tumorigenesis. Our results suggest that

Claudin 1 may be a crucial mediator in TNFa-initiated

inflammatory responses.

In the signal network related to cell migration, genes are

centered on MMP-9 (Figure 6B, Table S3B). Indeed, the gene

expression, protein level and activity of MMP-9 were increased

after TNFa stimulation. PLAT, PLAU and PLAUR (stands for

plasminogen activator, tissue type, urokinase type and PLAU

receptor, respectively) are among the genes blocked by Claudin 1

siRNA. They are important players in the cell migration. Collagen

type IV alpha-1 (COL4A1) and nidogen-2 (NID2) are components

of the basement membrane, and may play a role in cell

interactions with extracellular matrix. Furthermore, over 100

genes listed in Table S2 are related to cellular movements, cell-to-

cell interaction, tumor morphology and cell morphology. These

data indicate the importance of Claudin 1 in mediating TNFa
related lung cancer cell migration. The increased expression of

Claudin-1 in colon cancer cells resulted in increased tumor growth

Figure 9. Reducing Claudin 1 protein levels enhanced serum and/or EGF induced A549 cell migration, and Claudin 1 siRNA reduced
TNFa-induced morphological changes of A549 cells. Cells were transfected with Claudin 1 or control siRNA. The confluence monolayers were
serum starved, mechanically wounded and then stimulated with serum (10% FBS) and/or EGF (50 ng/ml). The wounded areas at 12 h were
quantified. N = 4, Mean 6 SEM. *P,0.05 vs. control siRNA treated group. (B). Claudin 1 siRNA clearly reduced Claudin 1 protein levels as shown by
Western blotting. (C). Claudin 1 siRNA reduced TNFa- and TNFa plus TGFb-induced morphological changes as shown by F-actin staining at 48 h.
Similar results were also found after 24 h or 72 h of TNFa treatment.
doi:10.1371/journal.pone.0038049.g009
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and metastasis in vivo, whereas the siRNA knock-down of Claudin

1 in metastatic colon cancer cells inhibited migration and invasion

[23]. Similarly, Claudin 1 over-expression increased cell motility in

oral squamous cell carcinoma, melanoma and hepatocellular

carcinoma [24–26].

In contrast to these findings, in human lung cancer CL1–5 cells,

over expression of Claudin 1 inhibited cell migration, whereas

knockdown of Claudin 1 restored the migration and invasive

ability of cells with stably transfection of Claudin 1 [56]. In the

present study, Claudin 1 siRNA transfection enhanced cell

migration stimulated by EGF and/or serum in A549 cells

(Figure 9). As a TJ protein Claudin 1 participates in the cell-to-

cell adhesion. Its down-regulation may reduce the TJs and thus,

promote cell migration. TNFa-induced Claudin 1, on other hand

is mainly in the cytoplasm, and is involved in TNFa-induced gene

expression. Since many of these Claudin 1 dependent genes are

related to cell movement and morphology, Claudin 1 may mediate

TNFa-initiated cell migration with multiple mechanisms.

In summary, we found that TNFa stimulation induces the gene

expression of Claudin 1 in human lung cancer cells, and the latter

acts as the signal mediator to regulate gene expression and cell

migration. Further study on this pathway may serve as a mean to

develop a novel therapeutic target for cancer.
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