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Abstract

South American subterranean rodents (Ctenomys aff. knighti), commonly known as tuco-tucos, display nocturnal, wheel-
running behavior under light-dark (LD) conditions, and free-running periods .24 h in constant darkness (DD). However,
several reports in the field suggested that a substantial amount of activity occurs during daylight hours, leading us to
question whether circadian entrainment in the laboratory accurately reflects behavior in natural conditions. We compared
circadian patterns of locomotor activity in DD of animals previously entrained to full laboratory LD cycles (LD12:12) with
those of animals that were trapped directly from the field. In both cases, activity onsets in DD immediately reflected the
previous dark onset or sundown. Furthermore, freerunning periods upon release into DD were close to 24 h indicating
aftereffects of prior entrainment, similarly in both conditions. No difference was detected in the phase of activity measured
with and without access to a running wheel. However, when individuals were observed continuously during daylight hours
in a semi-natural enclosure, they emerged above-ground on a daily basis. These day-time activities consisted of foraging
and burrow maintenance, suggesting that the designation of this species as nocturnal might be inaccurate in the field. Our
study of a solitary subterranean species suggests that the circadian clock is entrained similarly under field and laboratory
conditions and that day-time activity expressed only in the field is required for foraging and may not be time-dictated by
the circadian pacemaker.
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Introduction

Daily photic entrainment mechanisms of circadian systems have

been traditionally studied in the laboratory settings, where light-

dark cycles are artificially controlled. However, the large

discrepancy between laboratory and natural lighting conditions

and the species-specificity in daily light exposure patterns has also

motivated studies that check whether entrainment mechanisms are

similar under those different conditions. This concern is particu-

larly important when studying animals that live in dens or

burrows, including many rodent species. DeCoursey [1] measured

the activity of flying squirrels (Glaucomys volans) in simulated den

systems to achieve a model of natural entrainment based on daily

‘‘light-sampling’’ patterns in the laboratory setting. Hut et al. [2]

addressed this same question outside the laboratory by measuring

the activity of ground squirrels (Spermophilus citellus) that were

released into semi-natural enclosures carrying light sensors. These

studies provided new perspectives on entrainment research and

showed that animals with unusual light exposure patterns can be

useful models for understanding synchronization in nature.

The underground environment offers unique opportunities for

circadian research, due to its presumed constant darkness and low

amplitude of other environmental cycles. Subterranean animals

are interesting candidates for this line of research because even

synchronization to day-night and the occurrence of light exposure

is uncertain in nature.The circadian organization of subterranean

species may provide interesting insights into whether and how

synchronization to the external day and night occurs in this poorly

cyclical natural environment [3][4]. Members of the South

American genus Ctenomys, popularly known as ‘‘tuco-tucos’’,

comprise the greatest number of species among subterranean

rodents with more than 60 species ranging from 12u south latitude

to Patagonia [5,6]. Previous laboratory studies with solitary tuco-

tucos from La Rioja, Argentina (Ctenomys aff. knighti) have shown

that this species are clearly nocturnal under conditions of LD

12:12 (12 hours of light and 12 hours of dark), constant

temperature and ad libitum food [7]. Notably, upon release of

these animals into DD conditions, a rhythm with 24 h period

persists for several days before attaining its free-running value,

which is greater than 24 h. These ‘‘aftereffects’’ of laboratory

entrainment [8–11] are also noticeable in bats as a result of natural
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entrainment [12]. We conducted a comparative study of

rhythmicity in DD, of animals previously entrained to full

laboratory LD cycles (LD12:12) against animals that were trapped

directly from the field. In both cases, the initial phase and the long-

lasting 24 h period of activity rhythms indicated that animals had

been previously synchronized, displaying aftereffects of laboratory

and field entrainment, respectively. This comparison suggested

that the circadian clock is entrained similarly under field and

laboratory conditions.

To verify the temporal light exposure patterns that allowed

entrainment of subterranean rodents in the field, individuals were

continuously observed in semi-natural enclosures during day-light

hours. These observations revealed that tuco-tucos express

considerable amount of aboveground activity during day-light

hours, which is a time with no counterpart in the laboratory

conditions. Moreover, these activities comprise foraging and soil

removal behaviors, which are typically from the field. By

combining the data gathered observing a South American wild

species both in the field and in the laboratory, we provide novel

elements to the recently generated views regarding the meaning of

diurnal/nocturnal divisions displayed by rodents in the field [13–

19].

Materials and Methods

a) Ethics Statement
The capture and laboratory experimentation protocols were

approved and authorized by the Legal and Technical board

(Oficina de Técnica legal) of the Environmental Department of La

Rioja (Secretaria de Ambiente, Ministerio de Producción y Desarrollo Local),

permission nu 062-08. Every procedure of this study followed the

guidelines of the American Society of Mammalogists for animal

care and handling [20].

b) Study location
Ctenomys aff. knighti is found in the province of La Rioja,

Argentina (26u489S; 66u569W; 1,445 m). This location’s arid

climate has a mean annual rainfall ranging from 100–200 mm

that is almost exclusively limited to the summer months (between

December and February) [21]. The soil is sandy and poor, and the

predominant vegetation is a shrubby steppe with characteristic

flora from the Zygophyllaceae, Fabaceae and Cactaceae families

[21,22]. There are also extensive grape, walnut and olive

plantations that C. aff knighti seems to occupy as successfully as

natural areas; not only does the local community consider this

species to be an agriculture plague, but the animals frequently

leave fresh mounds and are easily captured in these cultivated

areas.

c) Animals
The animals found in the study area were first identified as

Ctenomys knighti Thomas, 1919. A final identification is currently

being confirmed with karyotypic and genetic analysis at the Grupo

de Investigaciones de la Biodiversidad (GIB) IADIZA-CCT Mendoza-

CONICET. Additionally, skins and skeleton samples of these

animals were sent to three Argentinean Natural Science Museums:

Centro Nacional Patagónico-CENPAT, Puerto Madryn, Chubut (specimens

CNP-2429 to -2432), Colección de Mamı́feros de la Fundación Miguel

Lillo, Tucumán (still unnumbered) and Colección Mastozoológica del

IADIZA, Mendoza (still unnumbered). The animals were live-

trapped within a 15 km2 area surrounding the laboratory, with

buried traps constructed from a 25-cm long PVC plumbing pipe

with a 7.5-cm outer diameter. The traps were set by opening a

burrow beneath a fresh mound of soil and positioning the pipe

horizontally along the floor of the tunnel. Because the animals

sometimes plugged the traps with loose soil, the traps were checked

every 1–2 h, cleaned and reset as needed.

d) Laboratory constant conditions
To facilitate animal care, the laboratory was maintained in

‘‘constant darkness’’ that actually consisted of a dim red light with

an intensity of 1–5 lux, which corresponds to the full moon at

night. This illumination was provided by two incandescent red

lamps (Philips 40/25 W) connected to a dimmer (200 W,

Teclastar Milano, San Martı́n, Buenos Aires, Argentina). The

temperature was maintained at 2362uC. Food (carrots, sweet

potatoes, lettuce, rabbit pellets, sunflower seeds and/or grass) was

offered every day at random times. Tuco-tucos obtain water

exclusively from food; therefore, it was not necessary to provide

water [23]. The animals were housed individually either in acrylic

cages (53629627 cm) with computer monitored running wheels

(23 cm in diameter, 10 cm wide, 1 cm between the bars) or in

glass cages (37626621 cm) with infrared motion sensors located

in the middle of the cage lid. The cages were filled with a layer of

shredded paper and cleaned weekly at random times.

General motor activity detected by the infrared sensors and

wheel-running activity were both continuously recorded with the

ArChron Data Acquisition System (Simonetta System, Universidad

Nacional de Quilmes, Buenos Aires) at 5-minute intervals. Graphical

output (actograms) and rhythm analysis were carried out using the

El Temps software (A. Dı́ez-Noguera, Universitat de Barcelona, 1999).

The mean activity onset was calculated by fitting a line through 3–

5 onsets before the rhythm began to free-run. Student’s t-test was

used to compare the average onset of each group (wheel-running

activity and infrared sensors).

e) Semi-natural enclosure
An outdoor enclosure was built in a rural area that is naturally

occupied by wild tuco-tucos. The enclosure measured 10 m65 m

and was protected with wire mesh on top and sides (1.2 m above-

ground and 1 m underground) to keep foxes and flying predators

away. The enclosure was designed to accommodate only one

animal at a time because this species is strictly solitary. Using an

enclosure is the best and most controlled way to follow the

behavior of a single animal because tuco-tucos are small, have a

sandy color that easily blends with the environment and often

emerge unpredictably from new holes. The size of the enclosure

was based both on the home-range size determined for C. talarum

[24] and our telemetry-based area estimation of C. aff. knighti

during the summer. Upon release, each animal readily excavated

its own burrow systems.

A meteorological station located only 80 m away from the field

enclosure allowed the recording of the ambient temperature, wind

speed, rain and humidity during observation days. Exclusively

during the 2011 summer observation phase, the environmental

temperature was continuously measured at a fixed 60-cm

underground location inside the burrow using HOBO data

loggers U10/003 (Onset Computer Corporation, Bourne, MA).

Experiments
Experiment 1. Tuco-tucos (n = 10, 7 adult males and 3

females) were trapped directly from the field and were immedi-

ately placed in the laboratory under constant conditions. The

trapping was conducted from late May to August 2010 at

randomly distributed times throughout the day. By allowing half

of the animals access to a running wheel, it was also possible to

verify any effect of wheel running in phase determination.

Synchronization in Field and Laboratory
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Additionally, a second group of five adult laboratory animals (2

males and 3 females) kept in wheel-running cages was synchro-

nized to a standard full 12:12 h LD cycle and then transferred to

the same constant dim light conditions as the field-captured

animals. This allowed us to compare synchronization in the field

with synchronization in the laboratory.

Experiment 2. Three adult, non-pregnant females were

individually observed during March 2010, July 2010 and March

2011. A continuous observation was maintained during daylight

hours (from 06:30 to 20:30 in March (summer) and from 07:50 to

19:10 in July (winter)), and both the timing of surface emergence

and a behavioral description were recorded with 1 minute

precision. This implied 400 hours spent by 6 persons working in

3 hour shifts, in continuous, highly alert observation.

These observations started 12, 4 and 6 days, respectively, after

the release of the animals into the enclosure. Importantly, the

environmental conditions differed among the 3 observations, with

one dry and one rainy March month, in 2010 and 2011,

respectively (Table 1). During the 2010 dry March observation,

plants collected outside the enclosure were delivered daily on the

surface. No external food was offered in the March 2011 humid

summer observation. As for the July observation, sunflower seeds

were offered only during the first 4 days. Very few of the offered

items were, apparently, transported into the burrows.

At the end of each series of observations, animals were

transferred directly from the field enclosure to constant laboratory

conditions and their activity was monitored by infrared motion

sensors. The lab is located within walking distance from the

enclosures. The March 2010 animal was kept in this constant dim

red light for 15 days, the July 2010 animal for 10 days and the

March 2011 March animal for 5 days.

Results

Experiment 1
Fig. 1 (left and middle panel) shows the double-plotted

actograms of animals trapped in the field and brought directly

to the constant laboratory conditions. All animals displayed 24 h

rhythms under constant conditions indicating that they had been

entrained in the field. Regardless of the presence of running

wheels, the 24 h activity of all animals was concentrated in the

phase corresponding to night in the field. Moreover, when a line

was fitted through the onsets and offsets, the average onset of

animals with activity that was measured by infrared motion

sensors was 19 h 30 (616 min), and the average offset was 8 h 43

(624 min), while animals with access to running wheels displayed

an average onset of 19 h 30 (617 min) and an average offset of

8 h 48 (651 min); there was no significant difference between the

two conditions (Student’s t-test: onset p = 1, offset p = 0,8),

discarding possible influence of wheel access [19] in the phase of

activity, in our species.

The right panel of Fig. 1 shows the five control animals that

were previously entrained to a full LD cycle in the lab (showing

clear synchronized nocturnal wheel-running activity), and when

placed in DD maintained the 24 h period and the same night

concentrated activity for the following 10 days.

This comparison of activity phase of previously field and

laboratory entrained animals, indicates that synchronization is

similar in both conditions. That is, tuco-tucos exhibited robust

activity during the night, or dark phase of the previous

entrainment cycle in both conditions, and activity onsets in DD

corresponded to the beginning of dark on the entraining cycles,

without transient changes.

Experiment 2
In all our 3 continuous observations, subterranean tuco-tucos

emerged above-ground very often, exposing themselves to light on

a daily basis. The upper actogram sections of Fig. 2 show the daily

light exposure patterns during 10 days in each of the three

observations. This light exposure occurs in short, randomly

distributed episodes that may last from a few minutes to one hour.

The most perplexing feature of a total of 30 observation days

was the high frequency of surface emergences that were observed

during the day, which were not expected for a nocturnal,

subterranean animal. Some freely living individuals were also

seen sporadically (Table S1), as well as neighborhood vocalizations

heard during day-light hours outside the enclosure every day. Our

continuous observations revealed that tuco-tucos exposed them-

selves to light to accomplish two vital activities. First, the animals

emerged above-ground to forage. In most of the episodes, they

alternated between a vigilant posture and brief excursions toward

plants located close to the opening of the burrow. During several

excursions, they carried whole branches with leaves back to their

burrows. While burrow openings were not sealed, animals were

expected to re-emerge either a few minutes or several hours later.

One or two openings were used each day, and some were

reopened on subsequent days. New earth mounds early in the

morning, indicative of night-time emergence, were only detected

once in a total of 30 day observations. Second, the animals

exposed themselves to light while vigorously throwing out earth in

long soil removal episodes that could last more than 60 minutes.

This behavior is presumably the final step of an underground

behavior of excavation of new paths leading to new tunnel

openings [25]. During the July 2010 observation, one freely living

Table 1. Environmental conditions and food availability levels of the three observation seasons.

food availability
mean relative
humidity (%) total rain (mm) temperature (6C) wind speed (km/h)

mean (±SD) max min mean (±SD) max min

Summer 2010
(March 01–March
11)

scarce 32.3 0 22.7 (64.12) 31.6 15.4 6.7 (63.13) 17.7 0

Winter 2010 (July
26–August 06)

scarce 14.6 0.01297 (rain
and snow)

5.66 (65.21) 18.6 22.1 4.13 (62.85) 12.9 0

Summer 2011
(March 01–March
10)

abundant 32.3 11.5 20.73 (63.21) 28.5 15.1 4.52 (62.2) 11.3 0

doi:10.1371/journal.pone.0037918.t001
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animal was observed to emerge in the outside vicinity of the

enclosure, performing a similar 40-minute average daily soil

removal episode during three consecutive days (Table S1). Other

several excavation and foraging episodes occurred daily clearly

indicating that the observed animals exhibited an important day-

time activity component in the field.

Our March, (summer) observations occurred exactly one year

apart in radically different environmental conditions. Rains in the

study area are variable among different years, but are always low

(100–300 ml/year), and the climate, consequently, is usually dry.

Nevertheless, the summer of 2011 was exceptionally rainy;

consequently, the amount of vegetation in the study area was

spectacularly much higher than in the previous year. Under this

new condition, tuco-tucos exhibited fewer excursions, carrying a

greater amount of plant material to the burrows. As a

consequence, less time was spent in foraging, compared to the

other observations (Fig. 3). In every observation, animals spent

more time removing soil from their burrows than foraging.

Although the direct modulation of above-ground emergence by

environmental factors was not investigated systematically, obser-

vation during March 2011 (summer) suggested that the peak of

above-ground emergence may be correlated in time with lower

underground temperatures (Fig. S1). Furthermore, two occur-

rences are worth noting. During the third day of the March 2010

observation , the animal emerged during the afternoon, which was

unusually late, compared to the other days for this individual (day

3 in Fig. S2). Coincidently, the wind was unusually high during

that morning. This was witnessed by the observer, who described

high levels of wind and harsh, dusty conditions at the site and was

later confirmed with the regional wind parameters obtained by the

meteorological station (Fig. S2). As for the influence of rain, no

emergence at all was observed during one rainy day during March

2011. Interestingly, this event was followed by intensified soil

removal activity on subsequent days (Fig. S3). Rains are known to

fill pores in the soil, decreasing the gas exchange capacity and

consequently favoring a decrease in oxygen content and increase

Figure 1. Comparison of activity phase in constant lab conditions of animals entrained previously to lab and field conditions.
Double-plotted actograms show infrared motion detected general activity of five individuals (left panel), and wheel-running activity of another five
individuals (middle panel) that were trapped directly from the field. Laboratory animals (right panel) show wheel-running activity entrained to LD
12:12 and then released into constant conditions. In all cases, activity was concentrated in the phase corresponding to night in the field or dark phase
in the lab (from 19:00 to 07:00). Vertical arrows indicate the time when the animal was released into its lab cage and activity measurement began. The
light gray background represents the constant darkness of the lab, while the dark gray and white backgrounds represent the timing of natural light/
dark cycles (civil twilights according to the U.S. Naval Oceanography Portal, www.usno.navy.mil).
doi:10.1371/journal.pone.0037918.g001
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in carbon dioxide in inhabited tunnels. This has been suggested to

induce digging activity in subterranean rodents to replenish

burrow atmosphere [26].

Animal weights before release into the enclosure and at the end

of each observation (March 2010, July 2010 and March 2011)

were: 186.4 g/165.5 g, 141 g/128.8 g, 142 g/125.7 g, respective-

ly.

Similarly to Experiment 1, upon transference to constant DD

conditions after each of the 3 observations, animals displayed

robust 24 h rhythms, indicating aftereffects of previous field

entrainment (Fig. 2, lower actogram). The lack of enclosure data

for several days before activity was monitored in the lab is due to

the time it normally takes to capture an animal in the enclosure. It

does not invalidate our conclusions, because the animals had been

in the same naturally cycling environment. Activity was again

concentrated in the phase corresponding to night in the field with

no signs of transients. This result, as in Experiment 1, again

indicated that the circadian oscillator had been entrained in the

field-enclosure condition in the same way as the LD laboratory

entrained animas and consequently the timing of observed intense

field day-activity was probably not dictated by the circadian

pacemaker.

Figure 2. Phase of activity of the three enclosure entrained animals transferred from the semi-natural enclosure to constant lab
conditions. A) March 2010 animal; B) July 2010 animal; C) March 2011 animal. Each actogram consists of two sections: upper section shows
aboveground emergence times (black marks) of one individual animal during enclosure observation; lower section shows subsequent infrared-
detected activity under constant laboratory conditions. Vertical arrows indicate the moment when the animal was released into its lab cage and
infrared-based motion detection was initiated. In the upper sections of each figure, the dark gray and white backgrounds represent the timing of
natural light/dark cycles. In the lower sections, the light gray background represents constant darkness (dim red light). Vertical lines show the
astronomical (A) and civil (C) twilights according to the U.S. Naval Oceanography Portal (www.usno.navy.mil). Differences in the interval between the
last observed activity in the enclosure and the first detected activity in the laboratory are caused by the differences in the time needed to trap each
animal.
doi:10.1371/journal.pone.0037918.g002
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Discussion

Our observations revealed that subterranean tuco-tucos emerge

to the surface frequently and expose themselves to light during

these surface emergences that occur at randomly distributed times

during the daylight hours. This is distinct from what is known for

other subterranean species such as mole-rats which hardly expose

themselves to the above-ground environment [25,27]. Close

examination of the behavioral repertoire of three tuco-tucos

revealed that animals emerge during the day mostly for foraging

and soil removal (burrow maintenance). On one hand, the timing

of these behaviors is of interest. On the other hand, and most

importantly, these behaviors are not allowed in the laboratory

condition, being expected in nature but not in a cage. Because we

cannot state that tuco-tucos are ‘‘diurnal’’ in the field or

enclosures, we limit our discussion over the appearance of activity

during the day-time. Surprisingly, when our day-active enclosure

animals were transferred to constant laboratory conditions, their

day-time component disappeared but rhythmicity persisted with

activity concentrated in the hours corresponding to night in the

field. The generality of this finding was shown by the other 10

animals that were trapped directly from the field and transferred to

constant laboratory conditions. The night-time activity in DD

displayed no transients, with a 24 h period that is notably different

from their free-running period [7]. This period aftereffect is a

hallmark of previous entrainment to an external cycle, which we

previously observed in tuco-tucos recorded in LD and then in DD

for many weeks [7]. It is a long-lasting modificationon the free-

running period of the circadian oscillator and decays slowly in

constant conditions [8–11]. In other words, it can be measured in

the present time, under constant conditions, to assess if the animal

was previously entrained. Most importantly, because the activity

phase of this 24 h period rhythm is restricted to external night

hours, both in previously lab and field entrained groups, it is

concluded that the circadian oscillator is equally entrained in these

two conditions (Fig. 1) and that day-time activity in the field

contradicts the expected diurnal inactivity that is supposedly

signaled by the circadian pacemaker [28].

There are at least 3 possible mechanisms responsible for timing

of daytime activity observed in the field. One possibility is that

these specific behaviors are controlled by the SCN pacemaker, but

are expressed at a different phase relative to other waking

behaviors. This possibility could not be further evaluated in the

laboratory because the cages used for recording activity did not

provide the opportunity to observe foraging or soil removal

behaviors.

A second possibility is that the daytime activities observed in the

field were not clock-controlled but were due to masking [29–31].

In this case, an environmental factor in the field would enhance

expression of activity during the day or presumably inhibit during

the night, without affecting the phase of the circadian pacemaker

[16,32,33]. For instance, the behaviors could be due to masking

effect of light, although different from behavioral masking effects

normally observed in nocturnal animals. In this case, light would

be interpreted as selectively stimulating foraging activity, whereas

in laboratory studies of nocturnal rodents, light typically inhibits

general activity [31,34]. This can be evaluated in future studies. It

is also possible that daytime activity is favored by other

environmental factors that differ considerably between lab and

field conditions such as the extreme daily temperatures of the

desert [35,36] and nocturnal predators [37]. Hints of environ-

mental factors with the ability to modulate activity expression in

tuco-tucos are presented in our Supplementary Material. Our

observation did not provide information about what is happening

during the night and underground. At most, we know that trap

occlusion and burrow entrance closures were significantly more

frequent in the hours between 4 am and 4 pm than for the rest of

the day, occurring mostly between 8 am and 4 pm (M. Ralph,

personal observation). It is thus possible that clock-controlled

general night activity is normally expressing in the field (mostly

underground) while particular behaviors (foraging and digging) are

more heavily influenced by masking than others, being enhanced

Figure 3. Total time spent in each above-ground activity component (soil removal or foraging) during the entire time of
observations.
doi:10.1371/journal.pone.0037918.g003
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also during the day-time. Conversely, we cannot discard masking

in the laboratory context, where, trapped in a cage, the natural

foraging and burrowing behaviors become impossible.

A third possible mechanism controlling daytime activity in the

field and alternative to masking is suggested by recent laboratory

studies employing a ‘‘work for food’’ model of foraging behavior

[17]. This model has been supported by experiments with mice

carrying general-motion sensors in semi-natural enclosures [18]

and seems to fit our wild species data nicely. This new model is

based on an experimental laboratory protocol that explores the

effect of food restriction and the subsequent increase of energy

expenditure for obtaining food. This was accomplished by

increasing the workload required to find food, which surprisingly

caused nocturnal mice under LD cycles to intensify their activity

during increasing portions of daylight hours. This perplexing

behavioral change was reversed almost instantly when animals

were transferred to DD with food offered ad libitum. In this new

condition, activity became restricted to the time corresponding to

the previous dark phase. Interestingly, the gross component of

activity remained nocturnal throughout most of the experiment.

Diurnal bouts arise as distinct components that seemingly

dissociate from the main nocturnal activity bout, shifting into

the middle of the light phase as the workload for food increases.

In our study, food was offered ad libitum in laboratory conditions,

whereas it was mostly collected naturally by the animal in the field-

enclosure. In this sense, the ‘‘working for food’’ model is consistent

with the main features of our data for several reasons. First, it is

consistent with activity restricted to the dark phase in the lab LD

12:12 and ad libitum food conditions [7] while expressing during

the day in our field enclosure observations. Second, it is consistent

with the immediate disappearance of day-time activity when field-

entrained animals are transferred to the lab under DD and ad

libitum food conditions. Finally, and, most importantly, the day-

time above-ground activity that consisted of foraging and soil

removal could be strongly linked to food collection. Although tuco-

tucos from the study area have been reported to also feed on

underground roots [22], aerial plant parts such as leaves have been

shown to be important food sources for other Ctenomys species [25].

Tuco-tucos adopt a foraging strategy of collecting only plants

that are close to their burrow openings, and the animals are

seemingly able to detect above-ground plants through olfaction

[38]; thus, underground tunnel extensions are required when food

is scarce [23]. Tunnel extensions imply more digging followed by

more soil removal, thus increasing the energy expenditure

[23,39,40]. Although our observations were limited to the daylight

hours and we did not have access to the underground activity, an

increase in above-ground soil removal activity, proportional to

food scarcity was indicated in Fig. 3. When food is abundant, the

observed tuco-tuco even reuse the same burrow openings in

subsequent days, which requires less work. Thus, subterranean

and herbivorous tuco-tucos are not only interesting models for

light-entrainment studies, but they may also offer concrete

ecological counterparts to the ‘‘working for food’’ paradigm [17].

In contrast to field masking, the model presented by Hut et al.

[17] assumes that the diurnal component of activity is under the

temporal control of another oscillator that is a ‘‘slave’’ with respect

to the main pacemaker in the suprachiasmatic nuclei [41]. The

‘‘master-slave’’ relationship in circadian organization was pro-

posed by Pittendrigh [42] to make sense of independent, adaptive

phase adjustments of single physiological components within the

circadian program. The results of Hut et al. [17] indicate that day-

and night-active individuals within a species could arise due to a

change in the phase relationship between the master circadian

pacemaker and the slave oscillator elicited by different food

availability levels in the environment. In this sense, the timing of

rhythmic activity expression is not exclusively dictated by the

circadian pacemaker, and this proposal has been indicated by

several other works in distinct contexts [15,43–46].

Induced sustained day-activity in nocturnal animals is not

uncommon. It has been shown that rats trained daily during the

light phase in a demanding cognitive task become clearly diurnal

[47]. The main difference between this work and our data is the

fact that daily task training can act as an entraining cycle. This was

proved by activity starting at the previous light phase after training

cessation and DD release, and subsequent resynchronization to the

reinstated LD cycle, with clear transients from the diurnal

component to nocturnal activity phasing. In our case, activity is

concentrated in the previous dark phase soon upon release into

DD, with notably no transients. Additionally, it is interesting to

mention that in the data of Gritton et al. [47] the controls

submitted to non-cognitive components of the same task did not

show real entrainment but did show associated day-activity. In

other words, our data could be more related to the control groups

in which certain relevant external stimuli (water restriction,

handling, etc) stimulate activity [47] in a phase that the circadian

clock is dictating inactivity [28].Other explanations could also fit

to our data and further studies are necessary in order to arrive at a

firm model.

Supporting Information

Figure S1 Daily variation of environmental tempera-
tures. Mean values (denoted by squares) of registrations during

the days indicated in Table 1: March 2010 (top), July 2010

(middle) and March 2011 (bottom). The underground temperature

(60 cm deep) is included in March 2011 data (bottom) (small

triangles). The timing and frequency of surface emergences of the

tuco-tucos is indicated by vertical bars.

(TIF)

Figure S2 Surface emergence timing (black bars) and
wind speed (black line) data for the March 2010
observation. The arrows indicate the moments where wind

potentially acted as a masking agent for surface activity. Note:

Data on days 4 and 5 was lost, due to equipment failure.

(TIF)

Figure S3 Sum of the total time spent in distinct above-
ground activities (soil removal and foraging) during the
March 2011 observation. The amount of rain is shown on top

of the corresponding bars; no value indicates that no rain was

registered.

(TIF)

Table S1 Excavation time of a tuco-tuco observed outside the

enclosure.

(DOC)
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7. Valentinuzzi VS, Oda GA, Araújo JF, Ralph MR (2009) Circadian pattern of
wheel running activity of a south american subterranean rodent (Ctenomys knighti).

Chronobiol Int 26: 14–27.
8. Pittendrigh CS, Daan S (1976) A functional analysis of circadian pacemakers in

nocturnal rodents. I. The stability and lability of spontaneous frequency. J Comp

Physiol A 106: 223–252.
9. Page TL, Wassmer GT, Fletcher J, Block G (1997) Aftereffects of entrainment

on the period of the pacemaker in the eye of the mollusk Bulla gouldiana. J Biol
Rhythms 12(3): 218–225.

10. Aton S, Block G, Tei H, Yamazaki S, Herzog ED (2004) Plasticity of circadian
behavior and the suprachiasmatic nucleus following exposure to non-24 h-light

cycles. J Biol Rhythms 19(3): 198–207.
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