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Abstract

Cells of the musculoskeletal system are known to respond to mechanical loading and chondrocytes within the cartilage are not
an exception. However, understanding how joint level loads relate to cell level deformations, e.g. in the cartilage, is not a
straightforward task. In this study, a multi-scale analysis pipeline was implemented to post-process the results of a macro-scale
finite element (FE) tibiofemoral joint model to provide joint mechanics based displacement boundary conditions to micro-
scale cellular FE models of the cartilage, for the purpose of characterizing chondrocyte deformations in relation to tibiofemoral
joint loading. It was possible to identify the load distribution within the knee among its tissue structures and ultimately within
the cartilage among its extracellular matrix, pericellular environment and resident chondrocytes. Various cellular deformation
metrics (aspect ratio change, volumetric strain, cellular effective strain and maximum shear strain) were calculated. To illustrate
further utility of this multi-scale modeling pipeline, two micro-scale cartilage constructs were considered: an idealized single
cell at the centroid of a 10061006100 mm block commonly used in past research studies, and an anatomically based (11 cell
model of the same volume) representation of the middle zone of tibiofemoral cartilage. In both cases, chondrocytes
experienced amplified deformations compared to those at the macro-scale, predicted by simulating one body weight
compressive loading on the tibiofemoral joint. In the 11 cell case, all cells experienced less deformation than the single cell
case, and also exhibited a larger variance in deformation compared to other cells residing in the same block. The coupling
method proved to be highly scalable due to micro-scale model independence that allowed for exploitation of distributed
memory computing architecture. The method’s generalized nature also allows for substitution of any macro-scale and/or
micro-scale model providing application for other multi-scale continuum mechanics problems.
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Introduction

The phenomenon of cell behavior being directed by mechanical

stimuli, referred to as mechanotransduction or mechanoregulation,

as well as cell damage resulting from mechanical disruption, have

been a topic of research in medicine and biology for several decades

[1–3]. Often, research has been conducted at the spatial scale of the

cell and its immediate extracellular environment. While cellular

activity at the micro-scale alters the mechanical environment,

loading transferred from higher spatial scales also plays a role [4].

For this reason, the search for a better understanding of multi-scale

spatial interactions has become an increasingly desirable objective,

in order to establish the causal mechanical relationships between the

loading of joints, tissues, and cells.

In the field of biomechanics, a strong motivation to better

understand the mechanics of articular cartilage exists [5]. This is due

to the high prevalence of pathologies such as osteoarthritis (OA),

which affects approximately 27 million adults in the United States [6]

and can drastically reduce quality of life. The progression of OA

exhibits changes in tissue structure [7–9], as well as changes in

cellular (chondrocyte) distribution and behavior [10–14]. While these

changes occur at the tissue or cellular scales, a general consensus

exists that the loading of the joints likely plays a role in their onset.

Even in the absence of pathology, cartilage may experience changes

simply as a result of aging. As with OA, these changes occur at the

tissue [15,16] and cellular scale [17,18]. In addition, modifications of

joint-scale mechanics also occur with aging [19–21]. Clearly,

cartilage mechanics is a multi-scale paradigm and a means to

investigate the interplay between scales is crucial to extending the

understanding of the in vivo function of this biological material.

While pathology and aging impact cartilage mechanics at

multiple scales, before addressing such complexities, understand-

ing the normal joint, tissue, and cellular mechanical behavior is

necessary. Experimental acquisition of mechanical data, while

attainable in animal studies [22], becomes more difficult as the

spatial scale decreases. If one attempts to gather data at different

spatial scales simultaneously under lifelike loading scenarios, e.g.

synchronous measurement of joint level kinematics and/or kinetics

and cell deformation, the present technology is inadequate.

Computational modeling techniques provide an avenue to obtain
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additional insights about mechanics at various spatial scales.

Further, passing information between models at different spatial

scales allows for investigation of load transfer mechanisms.

Extensive research utilizing computational modeling, particu-

larly finite element analysis (FEA), has been conducted at each of

these individual spatial scales. At the tissue and cellular scale,

complex constitutive models have been applied to simplified

geometric and loading cases [23]. In contrast, at the joint scale,

simpler material models were typically employed, allowing

representation of complex geometry and physiological loading

conditions to be considered [24]. Ultimately, relating models at

both scales will provide insights about the mechanics a chondro-

cyte experiences in vivo.

An array of approaches can be taken to understand the

mechanical coupling between joint function and chondrocyte

response. Explicitly modeling the micro-scale components in the

macro-scale model constitutes the method with the least abstrac-

tion. This approach is often used in the modeling of cancellous

bone [25], but requires a tremendous finite element count for even

small volumes. For the dimensions and added complexities of a

joint, the computational cost is too excessive given current

technology.

Computational homogenization, in which the material behavior

at the macro-scale at each non-linear solution step is a result of the

solution of a micro-scale model at every integration point in the

macro-scale mesh, provides another avenue for relating spatial

scales [26]. While still very computationally expensive, solutions

can be obtained with this method [27], but for advanced

problems, require access to large shared-memory architectures

which are less common than distributed-memory platforms. It

should also be noted that robust simulations using this method

may not be possible since the failure of a single micro-scale model

to converge, if not contained, results in the failure of the entire

macro-scale solution.

Finally, a simple post-processing method can be employed. This

involves first obtaining a solution of the macro-scale model,

possibly using FEA. The deformation experienced by each finite

element in this model can then be used to generate boundary

conditions for an array of micro-scale models, which are then

solved to determine the micro-scale response. While this provides a

weaker coupling between scales than the previously described

methods, and therefore must satisfy multiple assumptions about

consistency between scales, it provides a unique advantage in that

all models are independent or autonomous. This allows for

exploitation of distributed-memory architectures which can

provide tremendous computing power, since there is no need to

communicate information between micro-scale models. Further,

this approach is more robust in that, failure of a micro-scale model

does not result in failure of the entire process. While the macro-

scale mechanics are not a direct function of micro-scale response

(as in computational homogenization), a post-processing pipeline

would provide a cost-effective platform for descriptive analysis of

cell deformations under different joint loading.

The post-processing approach, to relate joint mechanics to cell

mechanics, was used to achieve the three-fold objective in this

study: i) to establish a pipeline to post-process macro-scale finite

element analysis results to estimate micro-scale cell deformations

for desired macro-scale regions at a desired time point of macro-

scale loading, ii) to illustrate the pipeline’s utility through

estimation of cell deformations in middle-zone cartilage for

compressive loading of the tibiofemoral joint, and iii) to explore

the differences in the results of multi-scale modeling of state-of-

the-art and anatomically-based assumptions of cell distribution in

a micro-scale volume.

Methods

The autonomous approach implemented in this study, involved

a series of stages beginning with the FEA of a single macro-scale

model at the joint scale, calculation of deformation gradients at

element centroids, using these deformation gradients to prescribe

boundary conditions for micro-scale models for each macro-scale

element of interest, and finally, solving and post-processing many

micro-scale models in parallel (Figure 1).

Macro-scale Model
A free and open access finite element representation of the

tibiofemoral joint with modified material properties and boundary

conditions (Open Knee version 1.0.0) was used to obtain a macro-

scale solution [28]. The tibia, femur, medial collateral ligament

(MCL), lateral collateral ligament (LCL), anterior cruciate

ligament (ACL), posterior cruciate ligament (PCL), medial and

lateral menisci, and femoral and tibial cartilage were represented

(Figure 2A). All soft tissue structures were discretized with 56433

linear hexahedral (8 node) finite elements (Figure 3) and assigned

hyperelastic material properties valid for finite strain, based on

literature values (Table 1), while the bones were discretized with

25220 quadrilateral shell elements with a thickness of 1 mm and

assumed to be rigid.

An uncoupled isotropic Mooney-Rivlin constitutive model was

used to define articular cartilage [29]. Model parameters were

assigned to agree with literature values for instantaneous (fast-

loading) elastic modulus (10 MPa) [30] and to simulate nearly

incompressible (Poisson’s ratio of 0.48) behavior (Table 1).

Ligaments [31–33] and menisci [34–36] were modeled as

transversely isotropic with a Mooney-Rivlin ground substance

and a piecewise non-linear fiber term [37] (Table 1).

Frictionless contact was defined between all soft tissue structures

which may interface. The tibia was fixed in space for the entire

solution time, while the femur was prescribed a distal (compressive)

displacement of 2 mm linearly ramped from time~0{1s with

flexion fixed. Displacement, rather than force, was prescribed as

this was a better numerically conditioned problem. All other

femoral degrees of freedom were free, allowing the femoral

trajectory to be decided by the combined effects of soft tissue

structures. Implicit dynamic analysis was conducted using FEBio

version 1.4 [38]. A dynamic model was used to exploit the lumped

mass matrix to condition the stiffness matrix at each non-linear

time step and aid in model convergence. The deformed nodal

positions were the outputs of the macro-scale model to be

processed for multi-scale coupling.

Joint-scale to Cell-scale Mechanical Coupling
Mechanical coupling between spatial scales was achieved by

passing deformation gradients occurring at the macro-scale to the

micro-scale. The deformation gradient is a second-order tensor

that maps a position vector from the undeformed state, X , to a

deformed state, x. The undeformed and deformed nodal positions

from the macro-scale model were used to calculate the deforma-

tion gradients occurring at element centroids for user-specified

element sets at user-specified simulation times. For the current

study, the results reported were for the tibial and femoral cartilage

at a simulation time of 0:395s. At this converged time point in the

simulation, a compressive force of approximately 1| specimen

body weight (780N) occurred. The last converged time step in the

macro-scale model was 0:4685s, at which a compressive force of

1310N occurred. This solution set therefore allows for the

potential consideration of up to nearly 1:7| specimen body

weight.
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Calculating the deformation gradient from the deformed nodal

positions made use of the isoparametric formulation technique

often employed in FEA. Briefly, this formulation maps an element

in the global space to an element of idealized geometry where

calculations can be performed in a simplified manner. To calculate

the deformation gradient at the element centroids the following

equations were evaluated.

LXi

Ljj

~
X8

a~1

Xað Þi
LNa

Ljj

ð1Þ

LNa

LXi

~
X3

j~1

LX

Lj

� �{T

ij

LNa

Ljj

 !
ð2Þ

Fij~
X8

a~1

xað Þi
LNa

LXj

ð3Þ

where, j~ 0,0,0½ �was the centroid position vector in the idealized

geometry space, Xa were the undeformed nodal position vectors, Na

Figure 1. The autonomous approach to couple joint, tissue, and cell scales is shown above. Left: The method began with the FEA of a
macro-scale model for a kinetic/kinematic scenario. Deformation gradients at the centroids of finite elements in tissue regions of interest were
calculated from element nodal positions. Right: Displacement boundary conditions were prescribed to surface nodes of independent micro-scale
models corresponding to the deformation gradient of each finite element experiencing deformation in tissue regions considered. Results of micro-
scale FEA solutions were post-processed to calculate deformation metrics of interest.
doi:10.1371/journal.pone.0037538.g001

Figure 2. Macro and micro-scale models used in study. A. A model of the tibiofemoral joint was employed at the macro-scale. Boundary
conditions were prescribed for the bones, modeled as rigid bodies, to approximate compressive loading of the joint. The tibia was fixed in space.
Femoral compression was prescribed at fixed flexion with other degrees of freedom unconstrained. B. The single (top) and 11 cell (bottom) models.
The single cell model was the popular scenario considered in previous studies [39], while the 11 cell model better represented the cell densities
observed in situ for the middle layer of articular cartilage in the knee [40].
doi:10.1371/journal.pone.0037538.g002
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were the trilinear nodal shape functions, xa were the deformed nodal

position vectors, X was the position vector of the element in the

global space corresponding to the point in the idealized space, j, and

Fij was the deformation gradient. The deformation gradients

calculated from Equation 3 were used to prescribe boundary

conditions for each micro-scale model.

Micro-scale Models
Micro-scale model input decks for elements that experienced

deformation (characterized by having a deformation gradient that

varied from the identity tensor by greater than +0:01 in any

component) were generated. A total of 7882 elements in the tibial

and femoral cartilage were above this threshold and warranted

model generation. Two micro-scale cases were considered: a single

cell and an 11 cell configuration (Figure 2B). In the single cell case,

a spherical cell (of radius 5 mm) surrounded by a pericellular

matrix (PCM) (of thickness 2:5 mm) located at the centroid of a

100|100|100 mm block of extracellular matrix (ECM), similar

to previous studies [39], was considered. For the 11 cell case, cells

and PCMs of the same dimension as the single cell configuration

were randomly positioned in the ECM block, with the constraint

that all chondrons (chondrocyte + PCM) were separated by at least

2:5mm (equivalent to pericellular matrix thickness) and were at

least 1:25 mm from the outer boundary. Eleven cells corresponded

to the mean number of cells that occur in a block of middle layer

tibiofemoral articular cartilage of this size [40]. Materials were

defined with an uncoupled Mooney-Rivlin constitutive model with

values from [41] adjusted to approximately satisfy mechanical

consistency across spatial scales (Table 2). This was achieved by

assigning the ECM, which comprises 99.5% and 94.2% of the

construct volume for the single and 11 cell cases, respectively,

identical properties to that of the cartilage in the macro-scale

model. Previous studies have reported the PCM may have a strain

amplification/attenuation effect on the cell due to the stiffness

mismatch between ECM, PCM, and cell [42–44]. Therefore, the

cell and PCM properties were scaled to maintain the same ratios

as values reported in [41].

The nodes on the six faces of the ECM block were prescribed

displacement boundary conditions, ui, derived from the applica-

tion of the macro-scale element deformation gradients, F , to their

undeformed position vectors, X (Equation 4).

Figure 3. A finite element model of the tibiofemoral joint with representation of ACL, PCL, MCL, LCL, tibial and femoral cartilage,
lateral and medial menisci, femur, and tibia. Soft tissue structures were discretized with 56433 linear hexahedral finite elements with an
average edge length of approximately 1mm. The bones were discretized with 25220 quadrilateral shell elements with an assigned thickness of 1 mm.
An enlarged model region is shown on the right to illustrate the mesh resolution. The femoral and tibial cartilage each had 3 hexahedral elements
through their thickness.
doi:10.1371/journal.pone.0037538.g003

Table 1. Material parameters for articular cartilage [30], ligaments [31–33], and meniscus [34–46].

r c1 c2 c3 c4 c5 K l*

Cartilage 1.5e3 1.6892 0 - - - 83.3333 -

ACL 1.5e3 1.95 0 0.0139 116.22 535.039 73.2 1.046

PCL 1.5e3 3.25 0 0.1196 87.178 431.063 122 1.035

MCL 1.5e3 1.44 0 0.57 48 467.1 397 1.063

LCL 1.5e3 1.44 0 0.57 48 467.1 397 1.063

Meniscus 1.5e3 4.6115 0 0.12 150 400 227.5 1.02

Units: r~
kg

m3
; c1,c2,c3,c5,K ~MPa ; c4,l�~unitless .

doi:10.1371/journal.pone.0037538.t001
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ui~
X3

j~1

FijXj

� �
{Xi ð4Þ

Micro-scale models were solved using implicit static analysis in

FEBio version 1.4. For verification, a mesh convergence study was

conducted for the single cell geometry subjected to 230% nominal

strain in the z-dimension with free lateral (x- and y-dimensions)

expansion boundary conditions (in other words, unconfined

uniaxial loading). The maximum effective strain and maximum

shear strain that occurred in the model changed by 3.6% and

1.9%, respectively, when the mesh was increased from 15168 to

25889 linear hexahedral elements. Therefore, the 25889 element

model (Figure 4) was assumed to be mesh-converged. The 77880

hexahedral element model of the 11 cell geometry was assumed to

be mesh-converged because the cells and PCMs had the same

mesh densities as the converged single cell case, 9 elements across

the cell diameter and 2 elements through the PCM thickness, and

the ECM had higher density.

Micro-scale Model Deformation Analysis
To quantify the deformation of cells in the micro-scale models,

the volume-averaged effective (von Mises) strain, effective stress,

and maximum shear strain, as well as, the initial and deformed

aspect ratios were calculated for the cell, by operations on the

stress and strain tensors generated by the model simulations for

each element. Cell level deformation metrics required volume-

averaging across the cell. Undeformed (V0
e ) and deformed (Ve)

element volumes within the cells were used for volume-averaging.

The undeformed element volumes were determined from nodal

positions read from the micro-scale mesh definition file. Likewise,

the deformed nodal positions, the result of the undeformed nodal

positions plus the nodal displacement vector, were used to

calculate the deformed element volumes. The mesh definition file

also contained element sets, which were used to define micro-scale

sub-regions e.g. the cell(s). The volume of each element, e, in the

mesh was calculated with Equation 5,

Ve~vedet Jeð Þ ð5Þ

where, Je were the Jacobian matrices evaluated at each element

centroid (the determinants of which were the volume ratios) and ve

were the isoparametric element volumes. For the hexahedral case,

the isoparametric element was defined as a 2|2|2 cube (with the

same units as the model units), thus ve was always 8 mm3. The

Jacobian matrix maps the isoparametric space j to the global or

model space, X . Element volume was calculated in this manner for

both the deformed cases as well as the undeformed case.

Change in cell volume. Volumetric strain for each cell was

calculated by Equation 6.

Ev~

P
e

VeP
e

V0
e

{1 ð6Þ

where, V0
e was the undeformed volume of element e in the cell.

Change in cellular aspect ratio. The shape(s) of the cell(s)

was calculated by assembling the moment of inertia tensor for the

finite elements contained in the cellular subsets. With the

assumption of unit density, the moment of inertia tensor, I, was

calculated with Equation 7,

I~
X

e

Ve

y2
ezz2

e

� �
{xeye {xeze

{yexe x2
ezz2

e

� �
{yeze

{zexe {zeye x2
ezy2

e

� �
�������

������� ð7Þ

where, e was each finite element belonging to a cell set, Ve was the

element volume, and xe, ye, and ze were the components of the

element centroid position vector.

The eigenvalues, li in descending order, of this tensor

correspond to the principal moments of inertia which can be

related to the length of the axes of the ellipsoid of best fit for the

object’s shape, Li, via Equation 8 [45].

Li~
1ffiffiffiffi
li

p ð8Þ

Three aspect ratios were measured: k31~
L3

L1
, k32~

L3

L2
, and

k21~
L2

L1
, the major-minor, major-middle, and middle-minor

axes ratios, respectively. The change in cellular aspect ratio was then

taken as the difference between the undeformed and deformed aspect

ratios.

Stress and strain metrics. The effective stress and strain

were positive definite scalar values calculated from the Cauchy

stress and Green-Lagrange strain tensors via Equation 9,

y~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
l1{l2ð Þ2z l2{l3ð Þ2z l3{l1ð Þ2

h ir
ð9Þ

where, li are the eigenvalues of the stress or strain tensor in

descending order. These eigenvalues correspond to the principal

stresses or strains.

Table 2. Material parameters for micro-scale model [41].

c1 c2 K

ECM 1.6892 0 83.3333

PCM 0.6838 0 1.0570

Cell 0.0405 0 1.9980

Units: c1,c2,K ~MPa .
doi:10.1371/journal.pone.0037538.t002

Figure 4. A cross-section of the 25889 finite element mesh of
the single cell micro-scale case, which was determined to be
mesh-converged. The extracellular matrix (ECM), pericellular matrix
(PCM), and chondrocyte (Cell) were discretized with linear hexahedral
elements. The chondrocyte had 9 elements across its diameter and the
pericellular matrix had 2 elements through its thickness. For the eleven
cell case, the chondrocyte and pericellular matrix had the same mesh
densities.
doi:10.1371/journal.pone.0037538.g004
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Likewise, maximum shear strain, calculated by Equation 10,

was also positive definite, and scalar.

y~max l2{l3j j l3{l1j j l1{l2j jf g ð10Þ

Since these metrics were positive definite scalars, volume-

averaging was valid for a set of finite elements. This was performed

for the cell(s), PCM, and ECM as follows:

�yy~

P
e

VeyeP
e

Ve

ð11Þ

where, Ve and ye were the deformed volume and stress or strain

metrics for each finite element contained in the respective set.

Parallelization
Since all micro-scale models were independent; generation,

solution, and analysis of them could be performed easily on a

distributed memory computational platform. All micro-scale

computational work for this study was performed on Ohio

Supercomputer Center’s Glenn Cluster (http://www.osc.edu),

which provides up to 9572 compute cores, ranging in frequencies

of 2.4–2.6 GHz, offering a peak performance of more than 75

teraflops. A collection of Python and shell scripts were used to

generate, solve with FEBio, and analyze a unique micro-scale

model for each finite element experiencing deformation in the

middle layer of tibial and femoral cartilage. 7882 model

generation, solution, and analysis processes were divided between

101 compute threads, with 78 process sets carried out in serial on

100 threads and 82 on the 101st thread. The pipeline completed in

a wall-clock time of approximately 2 hours for the single cell case

and 19 hours for the 11 cell case. These corresponded to CPU

times of approximately 8.4 and 72.3 days, respectively; demon-

strating the importance of parallelization.

Results

The FEA solution of the tibiofemoral joint model under 16
body weight compression (780N ), resulted in strain distributions

with concentrations under the menisci-cartilage interfaces for both

tibial and femoral cartilage (Figure 5A). The cell(s) in both the

single cell and 11 cell models experienced amplified deformation

when compared to the macro-scale finite element deformation

which drove the mechanics at the micro-scale model exterior. This

was expected due to the large mismatch in micro-scale component

material properties, i.e. cells being softer than their surrounding

medium, resulting in inhomogeneous deformation occurring in the

interior. Although the magnitudes were different, the regional

distribution of deformation was similar to that which occurred at

the macro-scale (Figure 5B and 5C).

The change in cellular aspect ratio, Dk31, was linearly

proportional to the macro-scale effective strain for both the single

cell and 11 cell cases, with the 11 cell case consistently lower for all

cells than the single cell case (Figure 6). In both configurations, the

data spread increased as the corresponding macro-scale deforma-

tion increased, with the effect magnified in the 11 cell case. This

behavior can be quantified by considering the sum of squares of

residuals (SSR) attained for the linear fits. A greater SSR value

indicates a larger spread (Table 3).

Regardless of the presentation of the results in the form of linear

relationships between macro-scale and micro-scale, the micro-

scale solutions had an inhomogeneous strain distribution internal-

ly. This was of particular interest when comparing single and 11

cell configurations, where cellular proximity altered distribution in

the 11 cell models (Figure 7). A more detailed look to cell

deformation metrics for this specific case of macroscopic

deformation also illustrated that magnitudes of individual cell

deformations may differ, potentially based on their location

(Table 4). As described in the methods, deformation metrics were

also obtained for the ECM and PCM. These results, although not

presented, may have utility when investigating matrix damage

mechanisms.

Discussion

The method employed in this study was a preliminary step

toward the realization of relating joint level mechanics to the

mechanics of the cellular environment. While a similar method has

been employed for simplified tissue geometries at a small subset of

spatial coordinates [46], to the best of the authors’ knowledge, this

was the first study which investigated large tissue regions, and

considered anatomically-based geometry (both at macro- and

micro-scales). This provided coarse insight into how cells may be

deforming in situ.

Some notable observations were made in comparison of single

and 11 cell micro-scale models. In both cases, the deformations

determined at the macro-scale, when applied to the micro-scale,

resulted in amplified deformations of the cell(s). This behavior was

expected, because the chondrocytes were much softer than the

surrounding ECM. However, every cell in the 11 cell model

experienced smaller deformations for a given macro-scale defor-

mation than the single cell model did. If one considers a simple 1D

analogy of springs in series to model the ECM-chondron

composites, the addition of more soft springs, as is the case in

the 11 cell model, would result in less displacement occurring in

each of the soft springs when displacement is prescribed at the

series ends. Extending this to 3D supports the model results. This

strain-shielding trend in the 11 cell models may suggest that the

single cell case provides an upper bound for the observed macro-

micro deformation amplification. Cells within the 11 cell models

also experienced different deformation from one another.

Although the cell positions were assigned randomly for this model

without input from histological observation other than cell count,

it is conceivable that, in reality, cells within the middle layer of

cartilage do not experience the same mechanics, and the

resolution of this variance may be at the order of several microns.

The proximity of chondrocytes to each other may have dictated

their mechanics. While an analysis was not specifically conducted

to explore the relationship between cell-to-cell distance and

intercellular mechanical interaction; this study, through macro-

to-micro response metrics (Figure 6), supported by a comparison of

single and 11 cell model results for a specific macroscopic

deformation (Figure 7 and Table 4), indicates that such an

influence may exist. This is certainly an important issue to address

in the future where evaluation of single cell mechanics within a

large group may be a necessity.

In spite of using simplified geometries (at the micro-scale) and

constitutive models (i.e. non-linear, isotropic elastic rather than

anisotropic, poroelastic), this study presented opportunities to

make several observations from a mechano-biological perspective.

Elongation of cells of 10% has been shown to induce catabolic

processes in SW1353 chondrocyte-like cells, while 5% was not

shown to have an effect [47]. These elongations correspond to

aspect ratio changes (major-minor) of approximately 0.154 and

0.024 respectively. Given the low femoral compressive force of 1|

Chondrocyte Deformations during Knee Loading
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Figure 5. Fringe plots showing macro-scale and micro-scale deformation metric regional distributions in the middle layer of
cartilage of the femur (left) and tibia (right). A. The effective strain which occurred at the macro-scale. B. The change in cellular aspect ratio
(major-minor) calculated for the single cell model. C. The maximum change in cellular aspect ratio (major-minor) experienced by a cell in the 11 cell
model.
doi:10.1371/journal.pone.0037538.g005

Figure 6. The change in cellular aspect ratio measured in each micro-scale model for the single cell (left) and 11 cell (right) cases
was plotted as a function of macro-scale effective strain occurring at the corresponding finite element. The solid lines were linear least-
squares regressions performed with the requirement that the lines passed through the origin. The slopes of each of these lines were provided in the
legend. In the 11 cell case, the line labeled ‘‘Max’’ considered only data from the cell which experienced the greatest change in aspect ratio. Likewise,
the line labeled ‘‘Min’’ was the cell which experienced the least change in aspect ratio, and the ‘‘Avg’’ was the average of the linear regressions for all
11 cells. These slopes indicated the distribution of the 11 cell change in aspect ratios was skewed left.
doi:10.1371/journal.pone.0037538.g006
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body weight prescribed in this study, in comparison to, the 3|

body weight or greater joint distal forces typically observed during

walking [48], one would not expect cellular deformations to occur

which may induce catabolic processes, yet changes in aspect ratios

greater than 0.154 were observed. This indicated a limitation in

the modeling at the macro-scale, micro-scale, or likely both,

potentially related to the suitability of macro- and/or micro-scale

material representations.

Modeling the material behavior of the macro-scale cartilage as

too soft would be an obvious source of over-prediction of

deformation. If this is the case in this study, the predicted

macro-scale cartilage deformations, which would be necessary to

equilibrate the desired level of joint loading, would be larger than

expected. This will in turn result in higher chondrocyte

deformations. Likewise, adjusting the PCM and cell stiffnesses

will also have strong influence on the cellular deformation. The

material properties assigned to the ECM, PCM, and cell were

taken from a numerical study that optimized the PCM modulus to

agree with experimental observation. The optimized PCM

modulus found in this study resulted in a 2.11 ratio (cell/ECM)

of effective strain, which varied from the experimentally observed

ratio by 0.5% [41]. For the current study, the optimized material

properties reported by [41] were scaled while maintaining the

same ratios, and the case of multiple cells was considered. To

assess potential sources of error due to this scaling, a simple

sensitivity study was conducted in which the eleven cell model was

subjected to a nominal compressive strain of 10% with volume-

preserving lateral expansion for substantially different ECM

properties: 1) c1~0:0268MPa, K~0:25 MPa [41], 2)

c1~1:6892 MPa, K~83:3333 MPa [reported study], 3)

c1~16:8919 MPa, K~833:3333 MPa [reported study 6 10])

while maintaining equivalent stiffness ratios between components.

Additionally, a case in which the PCM stiffness reported in Table 2

was reduced by a factor of 10, 4) c1~0:0684 MPa,

K~0:1057 MPa, while the other components were unchanged,

was considered. The quartile analysis of the ratios of the average

effective strain occurring in the ECM vs that occurring in each cell

for these four cases are presented in Figure 8. The scaling of the

material properties from those reported in [41] to those used in

this study resulted in small changes in cellular deformation,

indicating the scaling approach did not necessarily influence the

amplification of macro-scale strains on the cells. Likewise, scaling

the material properties by an additional factor of 10, resulted in

little change. In contrast, reducing the PCM stiffness by tenfold

resulted in a decrease in cellular effective strain, in agreement with

the trends observed in [41].

For informative results, computational models should ideally

employ anatomical geometry, realistic constitutive representations,

and physiological joint loading. In addition, simulation results

should be confirmed by comparisons against experimental studies.

This study provided an adequate representation of anatomy at

both joint and cell levels. The use of constitutive models that

capture the anisotropic, lamellar, and poroelastic behavior of

cartilage at the macro-scale would likely alter the strain

distribution and magnitude within the tissue. While these

complicated material models have commonly been employed at

the micro-scale [23], their advent was quite recent at the joint

scale. These state-of-the-art joint models incur high computational

cost, and are currently only capable of simulating loads smaller

than those observed in vivo [49], and also lower than forces

Table 3. Linear regression slopes and sum of squared
residuals of single and 11 cell cases for change in cellular
aspect ratio vs macro-scale effective strain.

Single Cell
11 Cell
Average

11 Cell
Minimum

11 Cell
Maximum

Slope 1.2429 1.1119 0.9765 1.1652

SSR 0.0513 0.1718 0.0949 0.1986

doi:10.1371/journal.pone.0037538.t003

Figure 7. An example of the internal effective strain distributions observed in a single (top right) and 11 cell (bottom right) micro-
scale solution for the same deformation gradient passed from the macro-scale (left). A macro-scale finite element experienced a
combined loading deformation gradient which resulted in a shape change from the gray cube to the blue hexahedron shown on the left. The single
and 11 cell models were deformed in the same way with the resulting effective strain distributions in a cross-section of the model shown on the right.
While the cells experienced qualitatively similar strains in both cases, the strain in the ECM around the cells in the 11 cell model differed from the
single cell in regions of close cellular proximity. See Table 4 for cell-specific quantitative results.
doi:10.1371/journal.pone.0037538.g007
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employed in this study. In addition to material assumptions, the

loading conditions utilized in this study, while large in magnitudes,

were not necessarily physiological, i.e. representative of gait. Joint

scale models driven by physiological dynamics exist, but these

must employ simplified material models, like those used in this

study, and revert to explicit time integration for speed and

robustness [50]. The highly non-linear behavior of cartilage, when

modeled accurately, may be better suited for implicit time

integration and the non-linear solution convergence checks it

bestows. Currently, even at the single spatial scale of joints,

Table 4. Chondrocyte deformation metric set for a single and eleven cell model with boundary conditions prescribed via a specific
deformation gradient passed from the macro-scale.

Cell ID D Aspect Ratio Volumetric Strain Effective Strain Maximum Shear Strain Effective Stress

Single 0.226 20.130 0.341 0.197 1.028

Cell 1 0.215 20.108 0.334 0.193 0.301

Cell 2 0.200 20.100 0.314 0.181 0.270

Cell 3 0.202 20.100 0.317 0.183 0.272

Cell 4 0.196 20.096 0.309 0.178 0.276

Cell 5 0.224 20.113 0.345 0.199 0.311

Cell 6 0.220 20.111 0.339 0.196 0.306

Cell 7 0.218 20.110 0.336 0.193 0.302

Cell 8 0.216 20.109 0.334 0.193 0.300

Cell 9 0.220 20.111 0.338 0.195 0.304

Cell 10 0.212 20.107 0.329 0.190 0.293

Cell 11 0.216 20.109 0.334 0.193 0.301

Mean + SD 0.213+0.009 20.107+0.006 0.330+0.011 0.190+0.007 0.294+0.015

See Figure 7 for visualization and Figure 2B for the location of individual cells within the eleven cell model.
doi:10.1371/journal.pone.0037538.t004

Figure 8. The quartile analyses of the ratios of average cellular effective strain to extracellular matrix (ECM) effective strain for the
four cases considered in the material sensitivity study of the 11 cell model are shown above. In agreement with [41], scaling of material
properties while maintaining ratio (Study and Study 610) does not strongly impact chondrocyte deformation, but modifying the stiffness ratio
between micro-scale components, i.e. by decreasing pericellular matrix stiffness by tenfold (Study PCM/10), does.
doi:10.1371/journal.pone.0037538.g008
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modeling and simulation studies employing both physiologically

accurate constitutive behavior and lifelike loading do not seem to

be available.

As in any modeling study, verification and validation are

necessary. The micro-scale models were verified through a mesh

convergence study, but were not validated against an experimental

study. In contrast, a mesh convergence study was not performed

on the macro-scale model. However, a previous study found tibial

and femoral cartilage modeled with elastic material properties

converged with an approximate linear hexahedral element edge

length of 2 mm [51]. Therefore, the cartilage mesh used in this

study, with an approximate element edge length of 1 mm, was

assumed sufficient for elastic analysis. Adequate validation of

biological structures at any scale; joint, tissue, or cellular, presents

substantial challenges. In addition, the further complication of

multi-scale coupling exacerbates the difficulty. The macro-scale

model was weakly validated through assessing its ability to

reproduce experimentally-observed joint kinematics [52], but this

level of validation was not ultimately sufficient to the aspects of this

study which were dependent on the strain distribution within the

tissue rather than joint kinematics. Contact pressure, which can

better reflect the internal strain state, is an obtainable measure

[53], but in addition to added experimental difficulty, the

introduction of measurement devices may modify the mechanics

of the joint. Predictions of large chondrocyte deformations under

one body weight suggests that further validation of the multi-scale

modeling strategy may be necessary. While a direct validation to

confirm chondrocyte deformations in the human knee, under

physiological loading, may not be possible; recent animal studies

may provide possible avenues to establish confidence in the multi-

scale modeling approach presented in this study. For example, a

recent application of multi-photon confocal microscopy quantified

chondrocyte deformation in situ while an intact joint of a mouse

was subjected to physiological muscle loading [22].

Change in aspect ratio has often been employed as the metric to

evaluate deformation in experimentation [45]. Nonetheless, other

variables of interest, such as those related to shear and volumetric

strains, may have significant value to understand cellular damage

mechanisms as well as thresholds of mechano-biological function.

This modeling pipeline has the capacity to summarize such

variables, as illustrated by Figure 9, showing cellular volumetric

strain and maximum shear strain exhibited by cells of the eleven

cell model.

This study also provided a large database of input-output

relationships between macro-scale and micro-scale mechanics. The

slopes obtained from linear regression analysis of this data provide a

direct proportionality constant to relate mechanics obtained at the

macro-scale to the deformation the chondrocytes may experience,

with the uncertainty in that relationship quantifiable by the residuals

of the fit. In addition, this database contained loading states which

were a direct result of joint mechanics. While a similar database may

be obtained with either idealized interval stepping through a series

of deformation gradients or through the solution of a stochastic set

of deformation gradient applied boundary conditions, the former

may not capture all loading states which may possibly occur, while

the latter may introduce states which may not occur in situ. This

database was specific to the joint-level case of vertical compression

of 16body weight. It could be repeated for another joint scenario

i.e. stair-climbing, to obtain another activity-specific database. The

collection of these databases can provide a widely applicable

surrogate model, i.e. analogous to approaches used in coupling of

movement and tissue deformation simulations [54], to efficiently

relate macro-micro scale mechanics without the need to perform

micro-scale analyses.

The pipeline developed was proven to be highly scalable

allowing for reasonably fast solution of the multi-scale problem.

Since iterative multi-scale communications were not required

during the processing and analysis stages of the many micro-scale

simulations, the network overhead only involved movement of files

to and from each parallel node at the beginning and end of the

generation, solution, and analysis process. It was therefore, fair to

hypothesize that this method, although tested on 101 parallel

threads, should scale well to thousands of threads. This scalability

will prove invaluable when more complex micro-scale models or a

larger array of macro-scale elements are considered.

Only passing the deformation gradient at the macro-scale finite

element centroids potentially introduced error. A hexahedral finite

element can deform such that the deformation gradient is non-

uniform across its volume. Depending on the mode of loading, this

variation could be high, and sampling only at the macro-scale

Figure 9. The volume-averaged maximum shear strain (left) and volumetric strain (right) for the 11 cell model plotted against the
macro-scale effective strain. Deformation metrics such as those shown here, may have additional implications to understand cellular damage
mechanisms as well as the onset of mechano-biological function, which change in aspect ratio may not provide. For example, pure cell dilation will
result in a volumetric strain, but not a change in aspect ratio. The large bandwidth of the volumetric strain also suggests that a direct linear
relationship between the macro- and micro-scales may not be acceptable for all characterizations of deformation.
doi:10.1371/journal.pone.0037538.g009
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element centroids may alias the deformation occurring on the

continuum discretized by the finite elements. To assess this

sampling error, the deformation gradients were calculated at each

of the 8 Gaussian integration points in the macro-scale finite

elements. Deformation gradient variation on each element was

then characterized by taking the difference of every unique

combination of the 8 deformation gradient tensors, summing the

absolute value of the components of the tensor resulting from each

difference to get a scalar residual value, and then taking the highest

of these 8 scalar residuals and using that as a metric to describe the

deformation gradient variation on the particular element. The

deformation gradients calculated at the element with the highest

variation metric, element ID 20585 with a residual of 0.317,

(Figure 10A) were used to assign boundary conditions to eight

different eleven cell micro-scale models (Figure 10B). The

deformation modes ranged from compression dominated, e.g.

integration point 3, to shear dominated e.g. integration point 5.

The cellular deformation metrics were calculated from the results

of these 8 models for each chondrocyte and a quartile analysis for

each cell was performed (Figure 10C). The range in the resulting

cellular deformation metrics is high, e.g. 30% in effective strain.

While this is the worst case element, it certainly illustrates the

sensitivity to spatial sampling. To reduce this error, one can either

increase the spatial sampling resolution, e.g. sample at integration

points rather than centroids, or refine the macro-scale mesh. Both

cases can easily be implemented in this approach, with the

acceptance of added computational cost.

Prescribing boundary conditions based on the deformation

gradient modeled the finite strain as a first order Taylor series.

For problems that experience a highly non-uniform deformation

gradient, this may not be an adequate approximation. Including an

additional term in the series would capture the gradient of the

deformation gradient, and therefore, include information about

how the deformation gradient varies spatially [26]. From a temporal

perspective, the macro-scale deformation information was only

passed to the micro-scale at a single instant in time. The time history

of the macro-scale element deformation prior to this instant was not

communicated. While this is not relevant in an elastic analysis,

including this information will be necessary when considering rate-

dependent phenomena such as poro- or visco-elasticity.

The mechanical consistency across spatial scales was satisfied in

a weak sense through the use of the same constitutive models at the

macro and micro-scales. The PCM(s) and cell(s), although much

softer were negligible in volume compared to the ECM. The error

associated with this assumption would not be present when using a

computational homogenization approach in which the macro-

scale material behavior resulted from the micro-scale constitutive

models(s). However, the computational scalability advantage

provided by the employed method was considered to outweigh

the weaknesses in mechanical consistency satisfaction. With

advances in shared-memory platform technology, the computa-

tional homogenization approach can be revisited in the future.

Due to the infancy of the presented research, a vast array of

extensions can be made to the approach in the future. Considering

more complex material behaviors at the macro and micro-scales

should not only improve the predictivity of the modeling pipeline,

but will also permit more accurate investigation of mechano-

biological processes. Regarding predictivity, the crude linear

relationship, presented in this study for elastic deformations of

chondrocytes and joint loading, may take more complicated forms

with more accurate constitutive modeling. Extension to a poroelastic

model will supply a fluid flux vector field providing insights into bulk

fluid flow for transport of nutrients, wastes, and signaling agents. It

has been shown that chondrocytes respond to fluid shear stress at the

cellular membrane [55], but not to the hydrostatic pressure acting

normal to it [56,57]. The fluid flux vector field returned by a

poroelastic model will allow for quantitative measures of these

transverse and perpendicular quantities. Likewise, the incorporation

of fibrous structures into the material models of the micro-scale

constituents will also have mechano-biological implications. Such

additions will provide a coarse means to model, for example,

cytoskeleton fibril interaction with integrin binding sites [4] and

stretch-induced ion channel activation [56,57]. An additional

coupling to mechano-biological models may also be possible,

providing a link between daily activity and phenomena such as

matrix remodeling, cell migration, and apoptosis [58]. Ultimately,

this will aid in the understanding of the pathological and/or age-

related evolution of cartilage anatomy, physiology, and mechanics.
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