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Abstract

Protein structure alignment is the problem of determining an assignment between the amino-acid residues of two given
proteins in a way that maximizes a measure of similarity between the two superimposed protein structures. By identifying
geometric similarities, structure alignment algorithms provide critical insights into protein functional similarities. Existing
structure alignment tools adopt a two-stage approach to structure alignment by decoupling and iterating between the
assignment evaluation and structure superposition problems. We introduce a novel approach, SAS-Pro, which addresses the
assignment evaluation and structure superposition simultaneously by formulating the alignment problem as a single bilevel
optimization problem. The new formulation does not require the sequentiality constraints, thus generalizing the scope of
the alignment methodology to include non-sequential protein alignments. We employ derivative-free optimization
methodologies for searching for the global optimum of the highly nonlinear and non-differentiable RMSD function
encountered in the proposed model. Alignments obtained with SAS-Pro have better RMSD values and larger lengths than
those obtained from other alignment tools. For non-sequential alignment problems, SAS-Pro leads to alignments with high
degree of similarity with known reference alignments. The source code of SAS-Pro is available for download at http://
eudoxus.cheme.cmu.edu/saspro/SAS-Pro.html.
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Introduction

Protein alignment is a problem that has gained tremendous

attention in bioinformatics and proteomics due to its applicability

in protein clustering, identifying homology relationships, and

inferring structure-activity relationships about new and existing

proteins. Proteins may be compared with each other through

sequence alignment, where the similarities between the proteins

are identified through similarities within their amino acid residue

sequences. Research on protein sequence alignment has led to the

development of numerous dynamic programming algorithms [1,2]

that are central to the BLAST code [3,4], an alignment tool that

radically transformed the bioinformatics field and found extensive

applications in the biotechnology industry. However, structural

information of proteins is difficult to infer from sequence

information alone. While sequence similarity generally implies

structural similarity between proteins, there exist a large number

of protein pairs, including haemoglobin and myoglobin found in

the human body, that are structurally similar but possess low

sequence similarities (also known as twilight zone proteins).

Physical comparisons of protein structures [5,6] further demon-

strate the need for direct comparison of 3D protein structures, also

known as the protein structure alignment problem, which is the

focus of this paper.

The aim of protein structure alignment is to determine

structural similarities between a given pair of proteins so that

further functional relationships between them may be identified.

Thus, protein structure alignment tools are useful in systematic

classification of proteins based on their functional and homology

relationships. They may be further employed in predicting

functional properties of newly discovered or newly synthesized

proteins based on structural similarity with existing proteins.

Protein structure alignment tools may also be used in the

pharmaceutical industry to determine alternative options for

existing drugs, or development of personalized medication.

Further applications are also possible in the bio-catalysis and

other protein-based product industries, where structure alignment

tools could help in development of new protein-based products.

Over the past three decades, a variety of algorithms have been

developed for finding protein structural alignments, which has

turned out to be a very difficult computational problem. Kolodny

et al. [7], Gibrat et al. [8], Lancia and Istrail [9], Singh and

Brutlag [10], and Novotny et al. [11] provide descriptions and

comparisons of the most frequently used structure alignment tools.

These tools include DALI [12], CE [13], Structal [14], and SSM

[15], all of which are known to provide good quality sequential

alignments in low computational times. These tools have been

instrumental in the development of various protein structure

databases like FSSP [16], SCOP [17], CATH [18] and

HOMSTRAD [19], which provide extensive information on

classification of protein folds and domains. However, these

alignment tools employ heuristic methods and provide only

approximate alignments with no guarantee of optimality. This

may lead to inaccurate conclusions about relationships between
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proteins. Thus, for accurate analysis of structural similarities, exact

structure alignment tools are required. Lancia et al. [20], Caprara

et al. [21], Xie and Sahinidis [22], and Wohlers et al. [23] have

developed exact structure alignment algorithms based on contact

maps representations of proteins. However, these exact algorithms

are often computationally expensive and may not be practical for

performing a large number of structure comparisons. The

development of protein structure alignment tools that strike a

balance between fully optimal alignments and low computational

requirements remains a challenge.

Early protein structure comparisons were based on computing

the root mean square deviation (RMSD) amongst two protein

structures of known residue correspondence. In order to make

such comparisons on a large-scale, McLachlan [24] and Sippl [25]

developed algorithms for fast RMSD computations. These

algorithms were then used to construct the first protein structure

alignment tools [26–28] that were based on determining the

optimal correspondence amongst individual residues of two

proteins. The structure alignment problem is traditionally

formulated as a continuous optimization problem, where similar

protein substructures are superimposed onto each other to

evaluate structural similarity through RMSD calculation. Here,

the proteins are represented using the 3D coordinates of all the Ca

atoms representing the protein backbone. To obtain an alignment,

one of the protein structures is rotated and translated to

superimpose it onto the other protein structure, while optimizing

a measure of similarity between them. Current structure alignment

tools address the alignment optimization problem through a two-

step process. In the first step, ‘assignment’ between amino-acid

residues of two proteins is established using dynamic programming

or heuristic methods. The objective here is to obtain the largest

possible sequential alignment between the two proteins. In the

second step, ‘superposition’ is achieved via computing optimal

values for rotation-translation variables by various convex

optimization techniques. In the superposition step, the RMSD

value or a variant of the RMSD value is minimized. An iterative

application of this process results in obtaining the final alignment.

Structal [14], MAMMOTH [29], and alignment tools developed

by Wu et al. [30], Andreani and Martinez [31], and Andreani et

al. [32] are all based on this two-step approach. These approaches

differ in the algorithms they use for assignment evaluation and

structure superposition, as well as the choice of the objective

functions in the two stages of alignment. Nearly all these methods

determine the assignment by basic dynamic programming, and

utilize different ways of building the similarity matrices based on

different structural characteristics of the proteins. The exception is

Andreani et al. [32], who determine the assignment of amino-acid

residues by a heuristic method.

The two-step approach to structural alignment has clear

computational advantages and results in very fast implementa-

tions. However, by decoupling the inter-dependence between the

assignment and superposition problems, alignment tools based on

this approach may produce suboptimal alignments. In this work,

we present a novel approach, Simultaneous Alignment and

Superposition of PROteins (SAS-Pro), that combines the evalua-

tion of the assignment and the rotation-translation problems into a

single bilevel optimization formulation. We further propose a

combination of optimization algorithms, which we demonstrate

leads to a practical computational approach for the solution of the

proposed formulation.

By eliminating the residue-sequentiality constraints, the SAS-

Pro approach is additionally capable of providing both sequential

and non-sequential structure alignments. Most structure alignment

tools developed in the past are designed to provide only sequential

alignments between protein structures. However, there exist a

multitude of similar protein pairs that exhibit non-sequential

structure similarities. Thus, development of alignment tools to

identify non-sequential similarities is important. This problem is

only recently being addressed through the development of

alignment tools such as STSA [33], and the introduction of non-

sequential alignment capabilities in DALI [12] and SSM [15].

The remainder of this paper is structured as follows. After

stating the protein structure alignment problem, the SAS-Pro

optimization model is presented and a numerical solution

algorithm is proposed. The implementation is subsequently

discussed along with computational results, followed by conclu-

sions.

Methods

The problem and a natural decomposition
Consider proteins A and B to be structurally aligned. Let ai

represent the ith residue of protein A, and bj represent the jth

residue of protein B. In addition, let r(ai) and r(bj) represent the

3D coordinates of the corresponding amino-acid residues. We seek

to align amino-acid residues of A to amino-acid residues of B so

that, when A is rotated-translated onto B, a similarity measure

between the two proteins is minimized. The RMSD function will

be used to determine the similarity between the protein structures

and is defined as

RMSD(S,h)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

P
j

Sij DDh(r(ai)){r(bj)DD2

P
i

P
j

Sij

vuuuut : ð1Þ

Here, Sij is a binary variable that equals 1 when ai is aligned to bj

and 0 otherwise, and h represents the rotation-translation

transformation applied to protein A. The rotation-translation

transformation is characterized by the three components of the

translation vector and the a,b, and c angles of rotations about the

X , Y and Z axes, respectively.

The problem of minimizing the RMSD may be represented as

the following mixed-integer nonlinear optimization program:

(MINLP) minS,h RMSD(S,h)

s:t:
X

i

Sijƒ1 Vj
ð2Þ

X
j

Sijƒ1 Vi ð3Þ

X
i

X
j

Sij§rm ð4Þ

Sij[f0,1g Vi,j ð5Þ

Here, the parameter rm in Constraint (4) is the minimum number

of residues that must be aligned to ensure that the global optimum

of the model attains a non-trivial value. Constraints (2) and (3)

ensure that no more than one amino-acid residue of protein A is

aligned with an amino-acid residue of protein B and vice versa.

SAS-Pro for Protein Structure Alignment
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Constraint (5) enforces the binary nature of the assignment

variables S.

Two-stage approach. A two-stage solution approach em-

ployed by existing alignment tools decouples the effects of S and h
variables and evaluates the effect of the assignment variables S and

rotation-translation variables h separately. The two-stage optimi-

zation problem may be viewed as follows:

Stage 1

minS f (S,h0)

s:t:
X

i

Sijƒ1 Vi

X
j

Sijƒ1 Vj

X
i

X
j

Sij§rm ð6Þ

Sij[f0,1g Vi,j

Stage 2

minh RMSD(S0,h)

where S0 and h0 are optimal values of S and h, respectively,

obtained in Stage 1 and Stage 2 of an iteration of the two-stage

optimization problem. Constraint (6) in Stage 1 is imposed

implicitly in the model by solution procedures utilized to solve for

S0.

In typical approaches, values for the assignment variables S are

determined by heuristic methods and dynamic programming

techniques. The function f is thus selected as the dynamic

programming objective function based on different similarity

matrices designed for the alignment tool. The similarity matrices

currently in use are based on structural features of the proteins,

including inter-residue distances [14,31], bond angles [29], and

radii of fragment curvature [30]. These heuristic methods and

dynamic programming techniques do not guarantee optimality of

the alignment obtained with respect to the objective of Stage 2, the

RMSD value. Thus, the final alignment obtained from the

iterative procedure is not guaranteed to be globally optimal, and is

known to be dependent on the initialization of the process

[14,31,32]. Hence, the two-stage formulation may provide only a

feasible solution of the MINLP and not necessarily a global

optimum. Global optimality cannot be guaranteed unless the

MINLP is somehow solved directly.

SAS-Pro model
The SAS-Pro model reformulates the MINLP model into a

single bilevel optimization problem. For any given h, the function

SRMSD(h) may be defined as

SRMSD(h)~ min
S

RMSD

The master problem of the SAS-Pro model optimizes over the

solution of the subproblem SRMSD(h). The bilevel SAS-Pro

model is as follows:

SAS{Pro master problemð Þ

t~ min
h
fmin

S
RMSD(S,h)g

~ min
h

SRMSD(h)

(SAS{Pro subproblem)

SRMSD(h)~ min
S

RMSD(S,h)

s:t:
X

i

Sijƒ1 Vj

X
j

Sijƒ1 Vi

X
i

X
j

Sij§rm

Sij[f0,1g Vi,j

The master problem objective function SRMSD(h) is in the space

of the h variables alone. Yet, it is trivial to see that any assignment/

superposition feasible to the MINLP is also feasible to the SAS-Pro

master problem. Hence, our reformulation maintains optimality.

Evaluation of the function SRMSD(h) involves solving the

subproblem and determining the optimal assignment variables S,

for given values of h and parameter rm. Our key observation is

that, for a given value of h, the subproblem can be reformulated as

the following k-cardinality linear assignment problem (k-LAP):

(k{LAP) kh~minS

X
i

X
j

aijSij ð7Þ

s:t:
X

i

Sijƒ1 Vj

X
j

Sijƒ1 Vi
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X
i

X
j

Sij§rm ð8Þ

Sij[f0,1g Vi,j

where aij~DDh(r(ai)){r(bj)DD2, Vi, j. A highly efficient polynomial-

time algorithm, SKAP [34], has been developed to solve the k-

LAP problem and can be readily utilized in this context. The

solution to the k-LAP problem will provide an assignment of

exactly rm amino-acid residues, as constrained in equation (8). The

numerical value of SRMSD(h) can be obtained from the objective

value in equation (7) of the k-LAP problem as

SRMSD(h)~
ffiffiffiffiffiffiffiffiffiffiffiffi
kh=rm

p
. The k-LAP model does not include any

sequence preserving constraints. Thus, the SAS-Pro model is

designed to provide an optimal assignment and structure

superposition of protein structures for specified values of the

parameter rm, with no sequence-preserving constraints. We later

show how to recover a sequential alignment, if desired, from the

SAS-Pro alignment.

Kolodny and Linial [35] also present a bilevel approach to

structure alignment by utilizing the SAS [36] similarity measure as

the objective function in the master problem, as opposed to the

RMSD value. They obtain values for the assignment variables S

through a dynamic programming methodology and determine the

rotation-translation variables by enumeration over a grid in the h
space. Our approach differs from their approach in three major

aspects. First, the objective function used by Kolodny and Linial in

the subproblem to determine the assignment variables S (dynamic

programming based objective) differs from their master problem

objective (SAS score). We use the same objective in both the

subproblem as well as the master problem of the SAS-Pro model,

which guarantees that a SAS-Pro optimal solution is optimal also

for the original MINLP problem. Second, we utilize efficient

search techniques to solve the master problem and obtain near-

optimal rotation-translation variables, as opposed to the expensive

enumeration approach used by Kolodny and Linial. Finally, our

approach has the added capability of providing both sequential

and non-sequential structure alignments for protein pairs.

As mentioned above, an optimal solution of the MINLP is

feasible to our reformulation. In order for an optimal solution to

be identified, suitable algorithms must be used to solve the master

problem to global optimality. Indeed, there exist derivative-free

optimization (DFO) algorithms that can achieve this goal based on

dense sampling of the domain [37]. However, in the search of the

most computationally efficient approach, in the next section we

will also evaluate local search techniques for solving the master

problem. With the same goal in mind, we will introduce a heuristic

approach for determining the optimal parameter rm as well as for

curtailing the number of degrees of freedom for the alignment

problem.

Algorithm
Derivative-free optimization. The landscape of the RMSD

function with varying values of the rotation angles b and c is

presented in the contour plot of Figure 1 for proteins 1B00 and

1DBW. As seen in this figure, the objective function in the SAS-

Pro model is highly multi-modal and nonlinear. This multi-

modality can be addressed by optimization techniques that span

the entire search space of the problem in the search for global

optima. Furthermore, an explicit algebraic form for the SRMSD

objective function for the master problem is not available, thus

making it difficult to utilize derivative-based optimization meth-

ods. Thus, we opted to employ DFO techniques in order to solve

the SAS-Pro model.

We performed extensive computational analysis with 28

different DFO solvers, based on a variety of techniques that

included direct search, pattern search, surrogate management

frameworks, domain partitioning methods, local search, global

search, deterministic and stochastic algorithms [37]. Our exper-

iments indicated that the derivative-free solver SNOBFIT [38]

provides the best performance for a small number of function

evaluations. This observation is consistent with the results reported

in [37]. Keeping the number of function evaluations low was

dictated by our desire to design an algorithm that would take no

more than a few CPU minutes on a standard computer

workstation for the alignment of protein pairs that are routinely

analyzed nowadays.

Our interface to SNOBFIT is based on the ‘mydfo’ interface

developed by Rios [39]. We have limited SNOBFIT to 500
function evaluations for each value of the parameter rm. Every

RMSD function evaluation for a given value of h involves solving

the k-LAP problem using the SKAP code developed by

Dell’Amico and Martello [34].

Choice of parameter rm. The solution to the SAS-Pro model

is dependent on the parameter rm. Different values of rm may lead

to very different optimal alignments. The best alignment is found

when the value of rm is close to the number of biologically relevant

residue matches. It is therefore important to determine the right

value of the parameter rm. Furthermore, it is important for an

implementation to select a value for this parameter automatically,

i.e., without requiring the user to specify it. This is achieved here

as follows.

Proteins with high level of similarity have a large length of

alignment, usually corresponding to 85% or more of size of the

smaller protein. Hence, the number of biologically relevant

residues matches is expected to be between to 85% to 100% of

Figure 1. Contour plot of the landscape of the RMSD function
for 1B00 and 1DBW proteins in the b{ª rotation angles plane.
doi:10.1371/journal.pone.0037493.g001
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the size of the smaller protein. To identify the best value for rm, we

systematically vary the value of rm from 100% to 85% of the size of

the smaller protein, until an alignment with a good similarity

measure cutoff is obtained. The similarity measure used here is

SASnseq, a modified version of the SAS score, that is further

discussed later in this paper. In our implementation, for a given

structure alignment problem, we evaluate structure alignments for

different values of rm and select the one for which an SASnseq score

of less than 4 Å is obtained.

Lower levels of similarities between proteins may arise while

attempting to obtain a match of a smaller substructure from one

protein with other proteins. In order to use SAS-Pro in such a

context, it is advisable to isolate the relevant substructure in

question before comparing with larger proteins. This will increase

the chances of obtaining a suitable alignment within the limits of

choice of the parameter rm.

Reducing the number of degrees of freedom. The

solution to the SAS-Pro model involves determining the optimal

values of both the assignment variables S as well as the rotation-

translation variables h. The assignment variables S are obtained as

an exact solution to the SAS-Pro subproblem. Thus, the only

degrees of freedom available in the SAS-Pro master problem are

the three translation vector components tx, ty, and tz along the X,

Y and Z axes, respectively, and the three rotation angles a,b, and c
about the X, Y and Z axes, respectively.

In the course of our computational experimentations, we

observed that, for proteins with similar sizes, a good approxima-

tion of the translation vectors is very often obtained if the centroids

of the two protein structures are required to coincide. Thus, while

comparing proteins of similar sizes, the number of degrees of

freedom for optimization may be reduced to only the three

rotation angles. As demonstrated in [37], for a collection of over

500 test problems, problems with up to three or four variables

were almost always solved to global optimality by a variety of DFO

algorithms. Thus, while solving the SAS-Pro optimization

problem, the small number of degrees of freedom provides a

computational advantage in terms of obtaining globally optimal

structure alignments.

For structural comparison of proteins with different sizes, the

SAS-Pro algorithm offers an option to utilize all six degrees of

freedom. In this case, in order to maintain solution quality of the

DFO solvers, we found it necessary to increase the number of

function evaluations to 1000 for each value of rm considered.

Extracting sequential alignments. The solution to the

SAS-Pro model is usually a non-sequential structure alignment

between the two proteins. However, a sequential alignment is easy

to extract from the non-sequential alignment obtained from the

SAS-Pro algorithm in a post-processing step. A dynamic

programming algorithm was designed to identify the largest

sequential alignment amongst the aligned residues provided by

SAS-Pro. This algorithm sequentially evaluates the largest length

of sequential alignment terminating at residue a(i) of protein A

and stores it in the vector LenSeq(i). The algorithm maintains a

pointer to the residue before a(i) in the sequential alignment in the

vector Prev(i). M(a(i)) denotes the residue b(j) of protein B which

is aligned to a(i). The largest value of LenSeq(i) provides the

length of the largest sequential alignment terminating at residue i.

Backtracking the residues from this value of i using the vector

Prev(i) provides the corresponding alignment. A pseudo-code of

the algorithm is presented below:

INITIALIZE

for(i~1?M) do

LenSeq(i)/1

Prev(i)/i

end for

MAIN ALGORITHM

for(i~1?M) do

for(j~1?i{1) do

if(M(a(i))vM(a(j))andLenSeq(j)§LenSeq(i))

then

LenSeq(i)/LenSeq(j)z1

Prev(i)/j

end if

end for

SOLUTION

MaxLength/maxi LenSeq(i)

MaxI/arg( maxi LenSeq(i))

j/MaxI

for(i~1?MaxLength) do

Alignment/(j,M(a(j)))

j/Prev(j)

end for

Similarity measure. For sequential protein alignments,

where the sequence of the amino acid residues is preserved in

the alignment, many suitable similarity measures, such as the

Structure Alignment Score SAS [36] and the Similarity Index SI

[40], have been defined. These measures are based on weighted

ratios of the RMSD value and the length of alignment produced

by the algorithm:

SI~RMSD
min(LA,LB)

Nalign

ð9Þ

SAS~RMSD
100

Nalign

ð10Þ

Here, LA and LB represent the lengths of the proteins A and B,

and Nalign represents the number of sequentially aligned residues

between the two proteins. For non-sequential structure alignments,

the length of alignment is not properly defined and hence cannot

be used to calculate the SAS and SI measures. We introduce a new

measure of length of alignment, the total fragment length (Nfrag),

to extend the definition of the SAS similarity measure to non-

sequential structure alignments. Following earlier works [41–43],

SAS-Pro for Protein Structure Alignment
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the total fragment length is defined as the sum of lengths of aligned

continuous fragments of five or more residues. Sequentiality of the

amino-acid residues in the fragment is not required, thus providing

for a measure of the length of alignment that is applicable to both

sequential and non-sequential structure alignment.

The similarity between proteins is then determined using the

proposed SASnseq measure, which is defined as

SASnseq~RMSD
100

Nfrag
ð11Þ

This measure reduces to the SAS measure for the case of

sequential structure alignments.

The best non-sequential structure alignment obtained from the

SAS-Pro algorithm may include multiple local small-length

matches as opposed to a single large global alignment. This

disorder of the alignment can be measured by the value of the

fragment length. A disordered alignment is expected to have a

small fragment length, while a biologically relevant ordered

alignment is expected to have a large fragment length, thus

providing lower SASnseq values for biologically relevant align-

ments. Hence, the best alignment for a given pair of proteins is

expected to be one with the lowest SASnseq score.

Results

We performed computational experiments based on three data

sets:

N the Sokol data set [44], which is a set of 9 small size proteins

with proteins from three different fold families,

N the Skolnick data set [20], which is a set of 40 large globular

proteins from four different fold families from the SCOP data

base, and

N the RIPC data set [45], which is a set of 23 complex structure

alignment problems.

An all-to-all pairwise alignment for all the proteins in the Sokol

and Skolnick data sets was obtained, resulting in 850 pairwise

alignment problems with 222 similar protein pairs and 628

dissimilar protein pairs. The Sokol data set includes 20 similar

protein pairs that align sequentially. The Skolnick data set consists

of proteins from four fold families: a) Flavodoxin-like fold CheY-

related, b) Plastocyanin, c) TIM beta/alpha-barrel, and d)

Ferratin. Protein pairs within the same fold family are termed as

similar pairs and exhibit sequential similarity. The RIPC data set

consists of 23 protein alignment problems for which a biologically

relevant reference alignment is available. These 23 alignment

problems are complex and exhibit non-sequential structure

similarities. The complexity of these alignments arises from

repetitions, insertions/deletions, permutations, and conformation-

al changes between the protein pairs that are not easily handled by

alignment algorithms. All data sets are provided at http://

eudoxus.cheme.cmu.edu/saspro/SAS-Pro.html.

In all tests, the typical computing time requirements for SAS-

Pro were around 1 CPU minute per protein pair on an Intel Quad

Core 2.83 GHz processor with 6 GB RAM, while providing

sequential and non-sequential alignments with exceptional classi-

fication ability.

Sequential structure alignments
The Sokol and Skolnick data sets were analyzed to evaluate the

performance of SAS-Pro in obtaining sequential alignment

problems. To obtain sequential alignments from the non-

sequential alignments provided by SAS-Pro, the procedure

described in the subsection entitled ‘‘Extracting sequential

alignments’’ was used. Alignments were compared using the

RMSD values as well as the geometric similarity measures SI and

SAS.

A comparison of the RMSD, SI, and SAS values obtained by

SAS-Pro for similar and dissimilar proteins is presented in Table 1.

For protein pairs within the same fold family, alignments with low

RMSD, SI, and SAS values were obtained. For pairs from

different fold families, the values of RMSD, SI, and SAS were

comparatively higher than the corresponding values for similar

proteins. In addition, the alignments obtained from the SAS-Pro

alignment tool were near-sequential for similar protein pairs and

were 96% in agreement with known optimal alignments between

the proteins that were obtained from the exact structure alignment

tool CMOS [22]. These optimal alignments contain both large

fragments of aligned residues as well as a few isolated aligned

residues. SAS-Pro matches the large fragments of aligned residues

with these optimal alignments exactly. However, the alignments

may differ in isolated residue matches, that are not of biological

consequence, resulting in an average of 96% agreement between

the alignments between SAS-Pro and CMOS.

The alignments obtained from SAS-Pro were also compared

with those obtained from the CE [13], SSM [15], and STSA [33]

alignment tools. Raw comparison results for SAS-Pro and other

methods are provided in File S1.zip of the Supporting Informa-

tion. The results are summarized in Table 2. The SAS-Pro

approach provided alignments with better or equal RMSD for

over 59 to 69% of the similar structures. For some problems, SAS-

Pro was able to provide RMSD, SI, and SAS scores which were

smaller by more than 4 Å than those obtained from CE.

Moreover, the RMSD values of more than three quarters of the

remaining problems were observed to exceed those in CE and

SSM by only a single standard deviation (0.5 Å), while preserving

a 96% similarity with the corresponding sequential structure

alignments. Consequently, the corresponding SI and SAS scores

for these problems were also within a single standard deviation of

those from CE and SSM. t-test results for SAS-Pro, CE, SSM, and

STSA show that these algorithms distinguish between similar and

dissimilar protein pairs with the same high significance (t-test value

w5). However, SAS-Pro has lower mean and standard deviation

values for the similarity measures, resulting in better quality

solutions with an average t-test significance value of 0.5.

The Sokol and Skolnick data sets together include 222 similar

protein pairs and 628 dissimilar protein pairs. A classification of

these 850 problems into similar and dissimilar pairs was sought

based on the SAS scores of the alignments obtained. The CE,

SSM, and SAS-Pro alignment tools provided exact classification of

these protein pairs. The STSA algorithm, however, produced very

short alignments for 5 of the similar pairs, leading to an imperfect

classification.

Figure 2 shows the distributions of the SAS values obtained for

similar and dissimilar protein pairs for the Skolnick data set by

SAS-Pro. The distributions for the similar and dissimilar proteins

were observed to be completely disjoint, with lower SAS scores for

similar proteins and higher SAS scores for dissimilar proteins. A

SAS score cutoff of 4 Å produced a perfect classification of the

alignment problems into similar and dissimilar protein pairs.

Based on this observation, a termination criterion for the SAS-Pro

code was implemented. For computations reported in the sequel,

SAS-Pro was designed to terminate if (a) an alignment with a SAS

score of 4 Å or less is obtained, or (b) all values of rm between 85%

and 100% of the size of the smaller protein are explored. In either

case, the best alignment and the corresponding RMSD, SAS
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score, and fragment length of the alignment are returned by the

software.

Non-sequential structure alignments
We performed a computational study to determine the quality

of SAS-Pro’s non-sequential structure alignments utilizing the

RIPC data set and the non-sequential alignment problems

presented by Salem and Zaki [33]. Salem and Zaki [33] provided

two examples of non-sequential structure alignments for which

their alignment tool, STSA, performs better than other structure

alignment tools. We performed an alignment of the corresponding

two protein pairs, 2LH3:A with 2HPD:A, and 1FSF:A with

1IG0:A, and obtained better alignments with SAS-Pro than STSA

for both cases. For the 2LH3:A and 2HPD:A proteins, SAS-Pro

provided an alignment with length 126 and RMSD 3.17 Å, as

compared to STSA’s alignment of length 117 and RMSD 3.27 Å.

For the 1FSF:A and 1IG0:A proteins, SAS-Pro obtained an

alignment with length 117 and RMSD 2.68 Å, as compared to

STSA’s alignment of length 104 and RMSD 5.4 Å. We present a

quantitative comparison of the SAS-Pro alignment between the

2LH3:A and 2HPD:A proteins and other solvers in Table 3. As

the results in this table demonstrate, SAS-Pro provides an RMSD

in the same ball-park range as most other tools but with larger

alignment length, thus providing a superior structure alignment as

the SASnseq values indicate.

We next present results from a computational study with the 23

protein pairs in the RIPC data set. The 3D coordinates of the C-

alpha atoms for the SAS-Pro alignments for the 23 pairs are

provided in File S2.zip of the Supporting Information. For this test

set, SAS-Pro provided alignments which are 30% to 100% in

agreement with the reference alignments. The mean agreement of

SAS-Pro is 62% and the median is 70%. SAS-Pro provides

alignments with greater mean and median agreements than CE,

DALI, FATCAT, MATRAS, CA, SHEBA, SARF, and LGA.

The corresponding box and whisker plot of percentage agreement

with reference alignments is shown in Figure 3. STSA provides

alignments with better mean and median agreements with

Table 1. Average (standard deviation) RMSD value, SI score, SAS score, and match with reference alignments for the Sokol and
Skolnick data sets for similar and dissimilar protein pairs.

Sokol set Skolnick set

Similar Dissimilar Similar Dissimilar

RMSD 0.60 (0.4) 2.9 (1.45) 1.72 (0.78) 3.94 (0.6)

SI 1.17 (0.4) 7.04 (1.45) 3.15 (1.23) 9.77 (3.9)

SAS 1.61 (0.7) 7.37 (1.78) 2.19 (0.89) 8.51 (2.9)

% agreement with optimal alignment 96 N.A. 96 N.A.

doi:10.1371/journal.pone.0037493.t001

Table 2. Comparison of SAS-Pro with CE, SSM, and STSA for
the similar protein pairs of the Sokol and Skolnick data sets
using RMSD, SI, and SAS measures.

% Problems where

SAS-Pro is better SAS-Pro is at par

Solver RMSD SI SAS RMSD SI SAS

CE 57 51 51 12 12 12

SSM 47 36 36 12 12 12

STSA 44 40 40 21 21 21

Average (standard deviation) improvement obtained by SAS-Pro (Å)

Solver RMSD SI SAS RMSD SI SAS

CE 0.45 (0.46) 0.3 (0.41) 0.3 (0.42) N.A. N.A. N.A.

SSM 0.26 (0.2) 0.2 (0.12) 0.16 (0.1) N.A. N.A. N.A.

STSA 0.4 (0.15) 0.4 (0.15) 0.21 (0.1) N.A. N.A. N.A.

The table presents the percentage of problems where SAS-Pro performed
better than, or at par with CE, SSM, and STSA. In addition, the table presents the
average improvement in the RMSD, SI, SAS scores for these problems when
SAS-Pro is used instead of other solvers.
doi:10.1371/journal.pone.0037493.t002

Figure 2. Distribution of SAS values obtained by SAS-Pro for
similar and dissimilar proteins in the Skolnick data set. The
means (standard deviations) for the similar and dissimilar protein pairs
are 2.19 (0.89) and 8.51 (2.9) Å, respectively.
doi:10.1371/journal.pone.0037493.g002
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reference alignments than SAS-Pro. However, SAS-Pro provides

excellent quality alignments with 100% agreement with the

reference alignments for eight problems, while STSA provides

alignments in 100% agreement with reference alignments for only

four problems. Amongst the remaining alignment methods, only

DALI, FATCAT, and MATRAS provide some (fewer than four)

alignments that are in 100% agreement with the reference

alignments. Even though STSA provides non-sequential align-

ments, it is bound by the sequentiality and choice of the five-

residue fragments it utilizes. SAS-Pro is more flexible in allowing

non-sequentiality, thus resulting in better alignments than STSA

and other solvers for several problems. As suggested by Mayr et al.

[45], while the provided reference alignments are biologically

relevant, multiple alternative alignments that result in equivalent

structurally optimal solutions may exist, especially for proteins with

conformational variability and multiple insertions/deletions. In

these cases, results obtained from different alignment tools may

differ considerably, where one of the alignments matches with the

provided reference alignment while others provide alternative

optimal alignments.

The eight alignments for which SAS-Pro is in complete

agreement with reference structures are shown in Figure 4. These

eight protein pairs represent alignment problems spanning all four

types of alignment challenges encountered in the RIPC data set,

namely, repetitions, insertions/deletions, permutations, and con-

formational changes. The protein pairs 1gbg-1ovw (Figure 4(a))

and 1jj7-1vga (Figure 4(b)) present alignments with large

requirements of insertions/deletions, not handled by all alignment

tools. Specifically, 1gbg-1ovw are glucan hydrolase proteins with

b-sandwich structure, while proteins 1jj7-1vga are P-loop

containing NTP hydrolases that vary in the number of b-strands

in the central region. Thus, these protein alignment problems

require a large number of insertions/deletions for a good

alignment. Mayr et al. [45] indicate that different alignment tools

provide very different alignments for these proteins, usually

matching only the N-terminal ADP binding site of 1jj7-1vga

proteins correctly. SAS-Pro places no limit on the number of

insertions/deletions, resulting in a very good alignment for these

proteins. Protein pairs 1nkl-1qdm (Figure 4(c)), 1qas-1rsy

(Figure 4(d)), 1nls-2bqp (Figure 4(e)), and 1qq5-3chy (Figure 4(f))

are examples of proteins with permutations. The 1nkl-1qdm, 1qas-

1rsy, and 1qq5-3chy proteins consist of multiple a-helices, which

do not align sequentially. Most structure alignment tools

mentioned above align the a-helices sequentially, resulting in

incorrect structure alignments for these proteins. SAS-Pro

correctly aligns the right a-helices with each other, producing

biologically relevant alignments. The 1nls-2bqp proteins have a b-

sandwich structure, where 1nls is posttranslationally cleaved,

resulting in different N- and C-terminals. As a result, in the 1nls-

2bqp protein pair, the N-terminus of one protein aligns with the

C-terminus of the other protein and vice versa. Most alignment

codes match only the N-terminus half of 1nls with the C-terminus

half of 1bqp. Additionally, most alignment methods align only five

Table 3. Comparison of performance of alignment tools for
aligning 2LH3:A and 2HPD:A proteins.

Alignment tool RMSD (Å) Nalign SASnseq

SAS-Pro 3.17 126 2.5

SARF2 3.05 108 2.8

STSA 3.37 117 2.9

STRUCTAL 2.27 56 4

CE 4.05 91 4.4

DALI 4.8 87 5.5

(All results, except SAS-Pro, taken from [33].)
doi:10.1371/journal.pone.0037493.t003

   

Figure 3. Box and whisker plot for the performance of different alignment tools for the RIPC data set. The red line represents the mean
and the dot represents the median of the box. (All results, except for SAS-Pro and CE, were taken from [33]).
doi:10.1371/journal.pone.0037493.g003
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out of the six reference alignment points, while SAS-Pro aligns the

entire protein accurately. Finally, protein pairs 1gsa-2hgs

(Figure 4(g)) and 1l5b-1l5e (Figure 4(h)) present conformational

changes which cause slight bends in the structures. The 1gsa-2hgs

proteins both contain the three-layered a-b-a sandwich structure,

similar to the Rossmann fold, while 1l5b-1l5e are both HIV-

inactivating proteins with b-roll structures. SAS-Pro was able to

provide the correct structural alignment with 100% match with

the reference.

There are three problems in the RIPC data set for which the

agreement of the SAS-Pro alignment with the reference in less

than 50%. These three problems are from the permutation class of

alignments for which, as Mayr et al. [45] suggest, biologically

relevant alternative alignments may exist. Hence, it is likely that

SAS-Pro’s performance may be even better than what the results

of this section suggest.

Mayr et al. [45] and Salem and Zaki [33] have discussed eight

protein pairs from the RIPC data set that are difficult to align.

Amongst these, Salem and Zaki [33] reported the 1nkl-1qdm

protein pair and the 1qq5-3chy protein pair, for which most

alignment tools provided a 0% match with the reference

alignment. For both of these pairs, SAS-Pro and STSA provided

a 100% match with the reference alignment. Amongst the

remaining six protein pairs, SAS-Pro provided high quality

alignments with 100% agreement with the reference for three

pairs and over 50% agreement with the reference for the

remaining three pairs.

Discussion

In this paper, we presented a novel formulation of the protein

structure alignment problem as a single bilevel optimization

problem that addresses the assignment of amino acid residues and

the structural superposition of proteins simultaneously. We

employed derivative-free optimization techniques to deal with

the multi-modality and non-differentiability of the RMSD function

in the proposed formulation. The proposed structure alignment

methodology is capable of providing both sequential and non-

sequential alignments.

Our computational experiments demonstrate that the SAS-Pro

model captures similarities within proteins accurately and provides

alignments with lower RMSD values and larger lengths of

alignments as compared to CE, SSM, and STSA for a majority

of problems in the Sokol and Skolnick data sets. Moreover, SAS-

Pro exhibits very good performance for the RIPC data set, for

which it provided alignments with 100% agreement with the

reference for a large number of protein pairs.

While the present methodology addresses both sequential and

non-sequential alignments, future work should investigate the

introduction of additional degrees of freedom (bond rotation) for

the development of a more comprehensive structure alignment

tool.

Supporting Information

File S1. Results with the Skolnick-Sokol dataset.

(ZIP)

File S2. Results with the RIPC dataset.

(ZIP)
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