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Abstract

No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing
fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of
some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the
effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish
population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat
proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community
composition, while proximity to nursery habitat only had a significant effect on community structure of species that use
mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed
(biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass
21% lower than non-reserve areas) for small nursery fish (#25 cm total length). For large-bodied individuals of nursery
species (.25 cm total length), an additive effect was present for these two factors, although fish benefited more from
fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated
biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the
usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and
more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect
neighboring ecosystems.
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Introduction

Coral reefs have important economic, biological and aesthetic

values; they generate about $30 billion per year in fishing, tourism

and coastal protection from storms [1]. However, they have

seriously degraded in the last few decades through human and

natural impacts, such as pollution, overexploitation, coral bleach-

ing, coral diseases and hurricanes [2]. Of the island coral reef

fisheries, 55% are currently unsustainable [3]. Overfishing is one

of the principal threats to coral reef health and functioning, and

has led to detrimental trophic cascades and phase shifts from coral

reefs to macroalgal reefs at many Caribbean localities [4–6].

Marine Protected Areas (MPAs) are becoming an increasingly

popular tool to protect reef biodiversity, support fisheries, and

maintain ecological processes, albeit locally [7]. There are a wide

variety of MPAs with different levels of protection, management

approaches, and levels of allowable exploitation [8]. One of the

key problems is that less than 1.4% of the world’s reefs lie inside

no-take MPAs, while many MPAs are ‘paper parks’ which

officially exist but lack sufficient compliance or effective enforce-

ment against damage or exploitation by humans [9].

In theory, reserves may benefit fisheries through two, comple-

mentary mechanisms. First, by building up a stock of large-bodied,

highly fecund fish, they protect a spawning stock that might help

replenish stocks in exploited areas outside reserves [10]. Second,

migration of adult fish outside reserve boundaries can support

local fisheries, the so-called fishing the line [11]. The latter

mechanism has been documented empirically for coral reefs [12]

but empirical evidence for larval subsidy remains lacking, though

would be expected in principle [13]. Nonetheless, for reserves to

have any significant effect in a fisheries context, their first

requirement is to establish an increase in fish biomass and/or

change in fish community structure of focal species. However,

protection from fishing is only one factor that affects the

abundance of fish. The interactions between fisheries protection

and other drivers of fish community structure are less well

understood [14,15].

A relatively poorly studied but very relevant concept for

conservation biology, reserve design, and management of fisheries

stocks is that of ecosystem connectivity. Inshore habitats such as

mangroves and seagrass beds have long been considered to act as

nurseries (i.e., juvenile habitats that contribute a higher than
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average biomass of individuals to the adult population compared

to other juvenile habitats) for a suite of coral reef fish species

(‘nursery species’), an assumption based on observations of high

abundances of juvenile fish that these habitats typically harbor

[16–19]. The nursery concept has been a paradigm for a long time

due to lack of studies that showed actual emigration of fish from

nurseries to adjacent reefs. Studies have recently provided

compelling evidence showing that nursery habitats indeed re-

plenish fish populations on directly adjacent reefs through

ontogenetic, cross-ecosystem migrations [20–22].

While the nursery concept itself is not new, the quantification of

its effects is still in a preliminary stage. There is lack of

understanding of the exact degree to which nursery habitats

subsidize reef populations and how far fish disperse from nurseries

to replenish more distant reefs. Both marine reserves and nursery

habitats may regulate fish abundance and community structure on

coral reefs, however, we know little of their interactive effects.

Coral reef reserves affect reef populations of nursery species

differently than those of non-nursery species as they can protect

the adult stages of the former from fishing, but potentially all

demersal life stages of the latter. In contrast, protection of inshore

nursery habitats would only affect the non-adult life stages of

nursery fish, as fish migrate from nurseries to reefs as large

juveniles or maturing fish [23]. So for species with a stage-

structured life cycle whose adults and juveniles are spatially

separated and utilize different types of ecosystems, what are the

benefits of protecting juvenile nursery grounds in combination

with maintaining nursery-reef connectivity versus protecting the

adult reef habitat near nurseries? Are they both important, and if

so, are they equally important, or is there perhaps a synergistic

effect on reef fish populations when reef reserves occur near

nurseries? Considerations like this are important for managing reef

fish populations, yet empirical data are needed for an un-

derstanding of such processes.

Here, we study a series of marine reserves in the Cayman

Islands (Caribbean Sea) which vary in their proximity to mangrove

nurseries. We evaluate the relative effects of reserve implementa-

tion and mangrove/seagrass nursery function on the fish

community structure and biomass of fish species on coral reefs.

Materials and Methods

Study Area
The study was executed on the Caribbean island of Grand

Cayman (Cayman Islands). The island has a continuous fringing

reef that surrounds the island. The shelf is relatively narrow (300–

900 m) and turns into a steep submarine wall at a depth of.20 m.

Mean (6SD) live benthic cover (stony corals, soft corals, sponges,

etc.) on the reefs studied was 42615%, while reef elevation above

the substratum was 0.960.2 m. Several marine fishery reserves

(‘marine park zones’) exist on the island, which have been largely

protected against fishing since 1986 (Fig. 1). In the marine

reserves, anchoring and extraction of dead or living marine life is

not permitted, except anchoring in sandy areas and line fishing

from shore and beyond the reef wall at depths.25 m (minimum

size limit 20 cm fish length). Fishing pressure on the island is

relatively low compared to other Caribbean islands and reef

fishery resources are not overexploited [3,24].

The island harbors one very large (North Sound) and various

small lagoons (Fig. 1). The substratum of all lagoons is dominated

by seagrass cover (Thalassia testudinum), but only the North Sound

harbors inundated mangroves (Rhizophora mangle) along most of its

shoreline. Seagrass beds do not occur outside of the island’s

lagoons. A large portion of the lagoons consists of ‘replenishment

zones’ (Fig. 1) where line fishing is allowed anywhere within the

zone (minimum size limit 20 cm), but the use of spears, traps, nets,

and fish poison is prohibited; two similar replenishment zones are

found on the reef at the western side of the island. The North

Sound also has an ‘environmental zone’ where anchoring, in-

water activities, and any extraction of dead or living marine life are

prohibited. In all other undesignated areas of the island, fishing is

allowed but permits are required for spearfishing and use of fish

traps, while the minimum size limit of fish remains 20 cm.

Sampling Design
Marine fishery reserves were selected that were either close to

(,1 km; reef sites# 3 and 7) or isolated (3.5–10 km; reef sites# 4,

5 and 6) from mangrove/seagrass habitats (further referred to as

‘nurseries’) in lagoons (Fig. 1). The same selection was made for

fished areas (non-reserves): close to (reef sites# 1 and 2) or isolated

(reef sites # 8 and 9) from nurseries. All selected reserve and non-

reserve sites, except sites # 1, 2, and 8 were accessible from shore.

The two reef replenishment zones on the western side of the island

(see Fig. 1) were not considered to function as nurseries for reef fish

as line fishing is allowed anywhere on these reefs (also from boats),

while the 20 cm size limit in these zones is also applicable to other

reef areas. Therefore, all reserve sites are considered as in-

dependent reef sites that were selected from a continuous reef

along the coastline of the island. Nagelkerken et al. [25] identified

17 reef fish species that show variable degrees of dependence on

nurseries during the juvenile life stage (further referred to as

‘nursery species’). All nursery species and their congeners were

selected in the present study, viz. all species belonging to the

families of Acanthuridae, Chaetodontidae, Gerreidae, Haemuli-

dae, Lutjanidae, Scaridae, Sphyraenidae, and in addition species

of Mullidae as juvenileMulloidichthys martinicus are sometimes found

in mangroves [26]. In total, 30 highly common species were

included in the surveys.

Using a stationary point count visual census technique [27] the

number of individuals for each species and their total body length

(TL to the nearest cm) were quantified at each of the nine sites in

reef quadrats of 10610 m at depths of 6–15 m. Depths.15 m

were not sampled as preliminary surveys showed low abundances

of nursery species on the steep reef walls of the island. Per site, 12

replicate quadrats were surveyed for 10 min each. The first 7 min

of a survey was used to quantify mobile fish, while the last 3 min

were used to count site-attached fishes. Studies have shown that

once-only visual surveys of protected versus fished areas provide

comparable results as long-term monitoring with respect to fish

biomass distribution [28].

Statistical Analysis
For each fish counted, total body length (TL) was transformed

to weight (W) using the equation W=a6TLb, with species-specific

values for a and b obtained from Bohnsack and Harper [29].

Biomass was used instead of densities as it is a better measure of

productivity. Per species, fish biomass was averaged across

quadrats at each site. Bray-Curtis similarity coefficients were

calculated among sites using untransformed mean biomass per

species. The similarity matrix was used to generate a non-metric

multi-dimensional scaling plot. The importance of fishery reserve

(present vs. absent) and nursery proximity (close vs. isolated) was

tested using a 2-way ANOSIM with replication [30]. SIMPER

analysis was then used to identify the species responsible for any

significant patterns [30].

More detailed analysis of reserve and nursery effects was done

by size spectrum analysis. For each species, biomass per 5-cm

length classes was first summed per reef site. Size spectra were then

Reserve and Mangrove Effects on Fish Communities
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plotted for all common large-bodied species (i.e., species that can

attain sizes .25 cm TL) using only isolated reserve and fished

sites (to avoid confounding effects of nursery proximity); at 25 cm

TL, clear differences in biomass were present between reserves

and fished areas for most of the species. This 25-cm cut-off level

based on underwater visual estimations is nearly equal to the 20-

cm minimum size limit for landed fishes (due to enlargement of an

object seen through a dive mask). For the analysis, biomass of

species was pooled for all fishes#25 cm and.25 cm TL, re-

spectively, based on data from all surveyed reef sites. The effect of

reserve presence and nursery proximity was then tested using

linear mixed-effects models on log-transformed data, with reserve

presence and nursery proximity as crossed fixed effects and site as

a random factor.

Results

For the structure of the entire fish assemblage, nursery habitat

proximity was not significant (p = 0.07), but had a moderately

strong effect (Rho) of 0.5, whereas reserve presence had no

significant effect and a low R value (2-way ANOSIM, R=0.19,

p = 0.33). For reef fish that use mangrove/seagrass nurseries as

juveniles (nursery species), the effects were much stronger such that

nursery proximity had a very strong effect on their structure (Fig. 2;

R= 0.94, p = 0.03) and total biomass (see Fig. 3b), whereas reserve

presence had no overall effect on community structure (R= 0.46,

p = 0.13). Even though the reef sites were located at different parts

of the island, sites close to nurseries were more similar to one

another in their community structure than to the isolated sites

(Fig. 2). In decreasing order of importance, Haemulon flavolineatum,

Lutjanus apodus, L. analis, H. sciurus, L. mahogoni, Ocyurus chrysurus, H.

plumierii, Scarus iseri, and S. guacamaia contributed most (SIMPER

analysis, cumulative contribution: 91%) to the differences in

assemblage structure (n = 17 spp.), with their biomass being higher

at sites close to vs. isolated from nurseries, except L. analis which

showed the opposite pattern (Table 1). Considering species

presence/absence alone, nursery species were observed at reserve

as well as fished reef sites, and at sites close to nurseries as well as

on isolated reefs.

When fish biomass was analyzed irrespective of body size,

biomass of species that use a mangrove/seagrass nurseries as well

as all species was significantly higher at sites close to nurseries than

at isolated reef sites, independent of reserve effect (Fig. 3a; linear

mixed effect models tnursery = 2.6 for nursery species and

tnursery = 2.9 for all species; treserve,0.3 in both cases). No reserve

effect was noticeable, however, for either reef sites close to or sites

isolated from nurseries (treserve,0.3 in both cases in linear mixed

effects models). Size spectrum analysis showed that the response of

large-bodied individuals (.25 cm TL) to protection from fishing

in reserves and nursery access depended on whether they used

nurseries as juveniles. For those species that used nurseries, total

biomass was significantly greater in reserves (compared to fished

areas) and when nursery access was high (vs. nursery-isolated

areas) (Table 2; Fig. 3b). However, when the analysis was

performed for all species, the total biomass was only affected by

reserve status (Fig. 3c). A different pattern emerged for smaller-

bodied fishes (#25 cm TL). The abundance of species that utilized

nurseries was positively associated with the presence of nurseries

(Fig. 3b). However, their collective biomass was significantly lower

in reserve areas than in fished areas (Table 2 ); a similar pattern

was observed for the relatively small-bodied species Haemulon

flavolineatum, H. plumierii, Chaetodon capistratus, and Acanthurus chirurgus

which were only observed as individuals of#25 cm TL. When the

analysis was extended to include nursery as well as non-nursery

species, the nursery impact remained but no effect of reserve

presence was detected (Fig. 3c, Table 2).

Discussion

Proximity to mangrove/seagrass nursery habitats by far out-

weighed the effects of protection from fishing (i.e., reserve effect)

for reef fish that use mangrove/seagrass nurseries and whose body

length was less than 25 cm. Whereas reserves had on average 21%

lower biomass of small fish compared to fished areas (when

combining both nursery treatments), presence of nursery habitat

biomass led to a 249% higher biomass compared to reefs without

nearby nursery habitat access (combining both protection treat-

ments). The lower biomass of small fishes in reserves is not

Figure 1. Map of the study area. Numbers 1–9 show the sampled reef sites (O) in fishery reserves (marine park zone) and in fished areas (non-
reserves). Reef sites close (,1 km distance) to nursery habitats are site# 1, 2, 3, and 7, while those isolated (.3.5 km distance) from nurseries are site
# 4, 5, 6, 8, and 9; site # 3 falls completely within the small northern marine park zone. The position of the replenishment zones (line fishing allowed
on fish.20 cm in body length) and the environmental zone (no fishing of any kind allowed) is also indicated. Location of the various zones was
obtained from the Cayman Islands marine park brochure. Grey represents land mass.
doi:10.1371/journal.pone.0036906.g001
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surprising, as the protection of large fish can result in higher

predation rates on prey fish compared to fished areas [31,32].

Indeed, biomass of several nursery species that are predators in

their adult stage was higher for individuals .25 cm TL in reserves

(e.g., Lutjanus apodus, L. mahogoni, Ocyurus chrysurus) which may partly

account for the lower abundance of potential prey fish in fished

areas. Irrespective of fishing, nursery species were more abundant

on reefs with nursery access than on nursery-isolated reefs due to

the relatively short distances that these fish disperse [33–36]. The

present study indicates that the magnitude of this effect is such that

fished areas with nursery access can have much higher standing

stocks (in this case 2.5 fold) of small-bodied fishes than marine

reserves that do not have nursery access.

For large-bodied nursery fish (.25 cm TL), the magnitude of

nursery effect was more subtle, with reserve effect being greater

than nursery effect. Combining the two treatments, biomass in

reserves was on average 203% of that in fished areas, while mean

biomass in areas close to nurseries was only 139% of that in

nursery-isolated areas. In fact, nursery-isolated reserves showed

higher biomass of large nursery species than fished areas close to

nurseries. This difference compared to smaller fish can be

explained by large individuals dispersing farther away, e.g. [33]

from nursery areas and being more heavily targeted. Compared to

fished nursery-isolated areas (mean biomass = 0.7 kg per 100 m2),

biomass was 1.4 times higher in fished areas near nurseries, 2.1

times higher in reserves isolated from nurseries, and 2.8 times

higher in reserves near nurseries. This indicates that nursery

presence and protection from fishing in reserves had an additive

effect on the reef biomass of large nursery fish, with reserve

presence contributing to a higher degree than nursery presence.

Protection of the larger individuals of nursery species should thus

not be restricted to areas close to nurseries, although they

benefited most from fishery protection near nurseries. Neverthe-

less, nursery-access enhanced biomass of large nursery species in

fished as well as reserve areas.

Figure 2. Non-metric multi-dimensional scaling plot for biomass of nursery species. The plot shows the ordination of the fish community
at reef sites (numbered 1–9, see Fig. 1) that differ in fishery protection (reserve vs. fished) and nursery proximity (close vs. isolated).
doi:10.1371/journal.pone.0036906.g002

Table 1. Results of SIMPER analysis for nursery species, showing which species best explained differences in fish community
between sites close to vs. isolated from nurseries (average dissimilarity = 53.2).

Species Biomass (g)
Average
dissimilarity Contribution (%)

Cumulative
contribution (%)

Nursery: close Nursery: isolated

Haemulon flavolineatum (French grunt) 886 214 9.2 17.3 17.3

Lutjanus apodus (schoolmaster snapper) 989 426 7.4 13.9 31.1

Lutjanus analis (mutton snapper) 320 618 6.6 12.4 43.5

Haemulon sciurus (bluestriped grunt) 618 204 5.6 10.5 54.0

Lutjanus mahogoni (mahogony snapper) 354 191 5.2 9.7 63.7

Ocyurus chrysurus (yellowtail snapper) 345 17 4.8 9.0 72.7

Haemulon plumierii (white grunt) 435 91 4.6 8.6 81.3

Scarus iseri (striped parrotfish) 492 315 3.0 5.6 86.9

Scarus guacamaia (rainbow parrotfish) 169 9 2.3 4.3 91.2

doi:10.1371/journal.pone.0036906.t001
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The species that showed the largest contribution to differences

in nursery fish community structure between areas close to and

isolated from nurseries all belonged to the families of grunts,

snappers, and parrotfishes. These families all form an important

component of Caribbean line and trap reef fisheries [37]. In

addition, some provide important ecological roles in terms of reef

functioning. Large-bodied snappers such as Lutjanus apodus and

Ocyurus chrysurus form part of the suite of reef fish predators that

can exert a top-down effect on the structure of marine

communities, e.g. [38,39]. Small fishes like some species of grunts

act as prey species supporting piscivore populations, e.g. [40,41],

especially the common and small-bodied French grunt Haemulon

flavolineatum. Parrotfish take up an important ecological role as

grazers protecting coral reefs from algal overgrowth [5,42] and

one of the most abundant Caribbean parrotfish is the nursery

species Scarus iseri [25,43–45]. Biomass (entire size range) of all of

the above species was higher on reefs close to than far away from

nurseries, which underlines the importance of ecosystem connec-

tivity for reef resilience and ecosystem functioning [46].

Healthy nursery habitats may show an overarching effect on

populations of some reef fish species compared to marine reserves.

About half of the lagoon of North Sound consists of seagrass beds

where only line fishing is allowed and only on individuals

of.20 cm body length, thus sparing juvenile fish and the source

area of new recruits. In addition, a significant area of mangrove

and seagrass habitat in the lagoon has been appointed as a no-take

zone (‘environmental zone’). Although we do not have data from

different lagoons to compare productivity of nursery habitats, the

data at least show that nursery habitats which receive a certain

level of protection can be highly productive for sub-adult fishes, to

a degree that the reef-ward flow of this productivity (i.e., fish

movement) overrules the usually positive effects on fish biomass of

reef reserves, e.g. [10]. The magnitude of this effect was such that

maintenance of health and productivity of nursery habitats should

receive more weight than perhaps considered previously. In this

light, management efforts and scientific studies should also focus in

greater detail on nursery-reef boundary areas, as these form

Figure 3. Fish biomass in marine reserves vs. fished areas with
different proximity to nurseries (close vs. isolated). Mean total
biomass per 100 m2 (6standard error) across reef sites is shown for the
entire size range (A) of nursery species and all species, and split (B, C) for
small (#25 cm total length) and large (.25 cm total length) fish. The
black arrow indicates the reserve effect in absence of nurseries, whereas
the dashed arrow indicates the nursery habitat effect in fished areas on
small individuals of nursery species.
doi:10.1371/journal.pone.0036906.g003

Table 2. Results of linear mixed-effects models for fish
biomass of nursery as well as all species with reserve presence
and isolation from nurseries as crossed fixed effects and site
as a random factor.

Comparison Factor Estimate (SE) t value

Nursery spp. #25 cm intercept 7.94 (0.16) 50.86

reserve effect 20.40 (0.17) 22.35 *

nursery isolation 20.86 (0.16) 25.36 *

Nursery spp. .25 cm intercept 4.89 (0.61) 7.97

reserve effect 1.82 (0.64) 2.85 *

nursery isolation 21.25 (0.60) 22.10 *

All spp. #25 cm intercept 5426.3 (463.2) 11.72

reserve effect 2838.1 (517.9) 21.62 NS

nursery isolation 22254.8 (517.9) 24.35 *

All spp. .25 cm intercept 6.13 (0.48) 12.66

reserve effect 0.98 (0.49) 1.99 *

nursery isolation 0.15 (0.45) 0.34 NS

No. of observations = 108,
*P,0.05, NS =not significant.
Size indicates total fish length.
doi:10.1371/journal.pone.0036906.t002
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important ecological corridors that maintain connectivity. As

worldwide, MPAs most often include coral reefs (about 980 [9]) as

opposed to mangrove (roughly 237 [47]) or seagrass nurseries

(about 247 [48]) more efforts are needed to establish reserves that

specifically consider nursery species. This is especially true for the

Caribbean where strong nursery–reef connectivity exists [19]. In

the Indo-Pacific region, the seascape structure is often different as

extensive mangrove systems occur that are located at greater

distances from coral reefs compared to Caribbean islands.

Moreover, higher tidal ranges in much of the Pacific often make

mangrove nurseries an ephemeral habitat whereas most man-

groves are permanently inundated in the Caribbean. The

importance of ontogenetic connectivity may be lower in parts of

the Indo-Pacific leading to different interactive effects with reef

reserves. However, a number of Indo-Pacific studies have

indicated significant impacts of mangrove isolation or absence

on coral reef fish abundance [27,49,50], indicating that for

a number of Indo-Pacific locations the current findings may

applicable too. Some potential support for this is provided by

a very recent study showing increased fish densities in reserves

close to mangroves [51], but in that study both habitats were

located within the boundaries of a nursery bay, likely restricting

the conclusions to recurring tidal connectivity instead of perma-

nent life cycle connectivity. A systematic analysis of mangrove and

reserve effects along a gradient of tidal range and biodiversity

would be useful for the Indo-Pacific region.

Conclusions
The relative importance of nursery habitat and marine reserve

presence on coral reef fish community structure depends on fish

size and whether fish use mangrove/seagrass nurseries. Large

individuals of nursery species which are commercially exploited

seem similarly susceptible to fishing as other species and benefit

most from protection in areas close to nurseries. For small

individuals of nursery species, nursery habitat presence by far

outweighed the effects of protection from fishing in marine

reserves. The present study shows how ecosystem connectivity

adds an additional level of complexity to marine reserve design

and functioning.
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