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Abstract

The genome sequence of apple (Malus6domestica Borkh.) was published more than a year ago, which helped develop an
8K SNP chip to assist in implementing genomic selection (GS). In apple breeding programmes, GS can be used to obtain
genomic breeding values (GEBV) for choosing next-generation parents or selections for further testing as potential
commercial cultivars at a very early stage. Thus GS has the potential to accelerate breeding efficiency significantly because
of decreased generation interval or increased selection intensity. We evaluated the accuracy of GS in a population of 1120
seedlings generated from a factorial mating design of four females and two male parents. All seedlings were genotyped
using an Illumina Infinium chip comprising 8,000 single nucleotide polymorphisms (SNPs), and were phenotyped for various
fruit quality traits. Random-regression best liner unbiased prediction (RR-BLUP) and the Bayesian LASSO method were used
to obtain GEBV, and compared using a cross-validation approach for their accuracy to predict unobserved BLUP-BV.
Accuracies were very similar for both methods, varying from 0.70 to 0.90 for various fruit quality traits. The selection
response per unit time using GS compared with the traditional BLUP-based selection were very high (.100%) especially for
low-heritability traits. Genome-wide average estimated linkage disequilibrium (LD) between adjacent SNPs was 0.32, with a
relatively slow decay of LD in the long range (r2 = 0.33 and 0.19 at 100 kb and 1,000 kb respectively), contributing to the
higher accuracy of GS. Distribution of estimated SNP effects revealed involvement of large effect genes with likely
pleiotropic effects. These results demonstrated that genomic selection is a credible alternative to conventional selection for
fruit quality traits.
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Introduction

During the last 10 years, genome sequences of about 20 plant

species including some from the Rosaceae family were made

publicly available [1]. In 2010, an international consortium

published the first draft of the apple (Malus6domestica Borkh.)

genome sequence using DNA from a popular apple variety

‘Golden Delicious’ [2]. The apple genome sequence provided

insight into the evolution of this globally important fruit crop, and

is now being used to speed up the development of new varieties.

Availability of genome sequence information along with high

throughput genotyping platforms is changing the nature of

research experiments to understand evolution of organisms, as

well as transforming the strategies for genetic improvement. One

such artificial selection strategy, called genomic selection (GS), is

revolutionizing the genetic improvement of animals and plants

species [3–5].

Standard apple cultivar breeding follows three stages. The first

stage (stage-1) is to identify parents from the pool of available

candidates, cross them and select the best offspring from large

families. In stage-2, multiple copies of the selections are

propagated onto clonal rootstock for trial across different

environments, while in stage-3, larger-scale testing of the best

selections is conducted, often on commercial orchards. Phenotypic

data from stage-1 can be analysed using individual-tree mixed

models to obtain best liner unbiased prediction (BLUP) of

breeding values (BVs) of seedlings. Various apple breeding

programmes now routinely use BLUP-BVs for making selections

(e.g. [6]). It generally takes about 7 years from seed before

outstanding individuals can be identified for further use as a parent

or potential stage-2 cultivar. This leads to a long generation

interval, substantial costs and complex logistics for phenotypic

recording. Comparatively, BV estimated with genome-wide

distributed markers (GEBV) is likely to increase annual genetic
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gain because of a reduced generation interval, and thus genomic

selection (GS) is now being implemented in various animals and

plants species [3,7–9]. Calculation of GEBV requires a population

with information on genetic markers and phenotypes, called the

‘training’ population. BLUP-BV of training individuals are first

used to estimate effects for the genetic markers, which can then be

used to calculate GEBV of individuals with only marker

information, called the ‘selection’ population. The accuracy of

GEBV will depend on the number of observations, heritability of

the trait, the number of markers and the linkage disequilibrium

(LD) among these markers [10–12].

Methods for deriving GEBV differ in terms of the prior

assumptions about the distribution of the effects of the single

nucleotide polymorphisms (SNPs). Ridge-regression BLUP (RR-

BLUP), where the effect of each marker is assumed to come from a

normal distribution with equal variance across all markers, is

simple to understand and implement [3]. In RR-BLUP, estimates

of marker effects are penalized to the same extent, and this may

not be appropriate if some markers are located in regions not

associated with genetic variance, whereas others are linked to

quantitative trait loci (QTL) [13]. To overcome this limitation,

Bayesian methods using marker-specific shrinkage of effects, such

as BayesA and BayesB, have been proposed [3]. A popular

alternative is the Bayesian Least Absolute Shrinkage and Selection

Operator (LASSO) [14], which allows for departures of SNP

effects from normality (i.e., some SNPs of big effect but a large

proportion of SNPs have close-to-zero effect) while still allowing

for shrinkage (e.g. [15]).

DNA markers located close to major causal loci controlling

disease resistance have been used for selection by apple breeders in

the last 10 years [16]. However, for more complex traits that are

controlled by several loci such as many aspects of apple fruit

quality (firmness, astringency, soluble solids, acidity, etc.), breeders

have used estimated breeding values (EBV) of individuals, based

on their phenotype. Since any one locus captures only a small

portion of the total genetic variance for complex traits, a large

number of genome-wide markers are required for making accurate

selection decisions. Publication of the first draft of the apple

genome was followed by re-sequencing of 27 apple cultivars that

are founders in global apple breeding programmes. These efforts

produced a huge reservoir of DNA markers, which led to the

development of the first apple Infinium SNP chip comprising

nearly 8,000 markers [17]. This SNP assay is a crucial tool for the

application of GS for complex traits. In this study, we used this

SNP assay for the first time, and compared RR-BLUP and

Bayesian LASSO for their accuracy of predicting GEBV for fruit

quality traits in a training population of 1,200 individuals. We then

used the observed distributions of SNP effects as a mechanism for

understanding differences in the genetic architecture of traits, and

to identify genomic regions with probable pleiotropic effects. We

also investigated the size and the decay of LD in our breeding

population. To our knowledge, this is the first study of evaluating

GS for any cross-pollinating fruit crop species.

Results

SNP genotyping, SNP density, and linkage disequilibrium
Problematic seedlings that had many missing data were

discarded, resulting in a training set of 1,120 individuals. Out of

7692 SNPs on the IRSC apple Infinium array v1, 20% had

GenCall score lower than 0.15, 10% were monomorphic, and a

further 30% were discarded due to thresholds used for ClusterSep

and 50%GC score. After further screening for frequency of missing

calls, allele frequencies, and segregation discrepancies, a high

quality set of 2,500 SNPs with an average call rate of 98% was

retained for developing GS prediction models. The number of

SNPs dropped varied from 58% to 70% for various linkage groups

(LG) (Table 1). The retained 2,500 SNPs were evenly spread

across the apple genome, i.e. the proportion (out of 2500) of SNPs

on any given LG was generally similar to the relative size of that

LG assuming the total genome size as 1300 cM (Table 1). The

average distance between all adjacent marker pairs was 0.240

megabase (Mb), while the maximum distance between adjacent

SNPs varied from 1.523 Mb on LG4 to 6.206 Mb on LG15

(Table 1).

The average LD (r2) between adjacent SNPs pairs in the training

population was 0.32. Three percent of the adjacent marker pairs

had r2 = 0 and 17% had r2 values ranging between 0.90 and 1.00

(Figure 1). To understand the pattern of LD decay, estimates of

pair-wise LD were averaged in the increments of 10 kilobase (kb)

distance between SNPs. A high degree of LD was observed even at

longer distances between markers; for example, the average r2 for

SNPs separated by 100 kb, 500 kb (which approximately equates

to 1 cM in apple), and 1000 kb was 0.33, 0.25, and 0.19,

respectively (Figure 2).

Accuracy of genomic selection models
Accuracy of predicting unobserved BLUP-BVs was almost

identical for the RR-BLUP and Bayesian LASSO methods, and

varied from about 0.68 (for astringency (AST)) to 0.89 (for soluble

solids (SSC)), whereas for all other traits, the prediction accuracies

were similar and ranged between 0.81 and 0.83 (Table 2). The

standard errors of prediction accuracies, calculated from the

validation replications, were 0.01 or 0.02 for various traits. The

difference between the minimum and the maximum (across 10

replicated sets) accuracy varied from 0.07 (for SSC) to about 0.12

(for fruit firmness (FF)), consistent for both methods, suggesting

some variation between replicated sets (results not tabulated). The

average regression coefficient for both methods was close to one,

with RR-BLUP showing slightly larger bias than Bayesian LASSO

(Table 2). The degree of bias for titratable acid (TA) was high, and

similar for both methods. Estimated standard errors of regression

coefficients were slightly larger than those for correlation

coefficients (Table 2).

Accuracy of one of the GS models (RR-BLUP) was also

compared with the conventional BLUP-based selection (Table 3).

Estimates of h2 varied from 0.16 (for TA) to 0.60 (for russet), and

contributed to the observed accuracies of conventional- and

genomic selection methods for various traits. The accuracy of

BLUP-based selection varied from 0.73 to 0.84 for various traits,

while accuracies of GEBV-based selection were .0.90. Some of

the estimated correlations between GEBV and TBV were outside

the parameter space (.1.0), so these were constrained to a

maximum theoretical value of 1.0. The selection response per year

was higher for GS for all traits considered, with the efficiency of

GS being 100% to 141% higher than that of BLUP-based

conventional selection for various traits (Table 3).

Distribution of SNP effects
Ranking of SNPs in terms of the size of their individual effect on

a trait was very similar for RR-BLUP and Bayesian LASSO,

except that the latter induced stronger shrinkage of estimates for

SNPs with relatively small effect and less shrinkage of estimates for

SNPs with sizable effect (Figure 3A, B). Estimated correlation

between SNP effects from the two methods was .0.92 for all traits

except for WCI (0.81), and the three SNPs with the largest effects

for any given trait were common to both methods. Thus, we have

Genomic Selection in Apple
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only presented here the genome-wide distribution of SNP effects

estimated using the Bayesian LASSO (Figure 4).

The SNP with the largest (more than 10 times the average)

effect on FF was located on LG10, and this SNP is a T/G variant

located within the first exon of the polygalacturonase (PG) gene

(MDP0000232611), 20.833 kb from the top of LG10. In addition,

there were few SNPs with moderate effect on FF located on LGs 3,

11 and 16 (Figure 4). The five SNPs with highest effects on SSC

were located on LGs 3, 6, 12, 15 and 16, with the effect of the top

one on LG6 being about six time higher than the average effect

(Figure 4). The SNP marker with the largest effect on russet

coverage was located on LG1, while genomic regions of moderate

effect were also identified on LGs 9, 16 and 17 (Figure 4). A SNP

with a massive effect (more than 40 times the average effect) on

WCI was located on LG9 (Figure 4). This SNP marker on LG9 is a

T/C variant and is located within the second exon of the

MdMYB10 gene (MDP0000259616), 32.840 kb from the bottom

of LG9. A chromosome segment on LG16 also appeared to have

some influence on the expression of WCI (Figure 4). A cluster of

SNPs with a very large effect on AST was located on LG16, and

an additional SNP located on LG17 appeared to have a moderate

effect on AST variation (Figure 4). The SNP with the largest effect

(about 25 times the average) on TA was located on LG8, while a

cluster of SNPs with a moderate effect was located on LG16

(Figure 4). The same cluster of SNPs on LG16 had large effects on

WCI, AST and TA and spanned the Leucoanthocyanidin Reductase

(LAR1) gene (MDP0000376284) that is located between 1.496 kb

and 1.669 kb on the top of LG16. A summary of the largest SNP

effects for each trait is presented in Table 4.

Table 1. Relative size of linkage groups (LG) (assuming the genome size of 1300 cM), and the number of single nucleotide
polymorphisms (SNPs) retained on each LG after various quality checks.

LG Relative size (%) Initial No. of SNPs No. of SNPs retained Average distance (megabase) Maximum distance (megabase)

1 6.62 434 143 0.252 2.599

2 6.31 684 243 0.161 3.534

3 6.58 487 148 0.267 3.055

4 4.84 386 139 0.177 1.523

5 6.79 486 162 0.232 4.352

6 5.61 340 107 0.282 5.362

7 4.37 340 120 0.255 1.873

8 5.43 399 129 0.272 3.446

9 5.41 477 202 0.177 2.607

10 6.99 531 136 0.272 3.073

11 5.74 456 155 0.257 3.306

12 5.48 459 147 0.245 1.925

13 5.72 423 127 0.315 2.543

14 5.69 374 113 0.296 3.945

15 8.60 621 200 0.273 6.206

16 4.31 347 119 0.188 3.090

17 5.56 448 110 0.245 1.492

The average distance and the maximum distance between adjacent SNP pairs are also shown for each LG.
doi:10.1371/journal.pone.0036674.t001

Figure 1. Distribution of linkage disequilibrium (LD), measured with r2, among adjacent single nucleotide polymorphisms (SNPs)
pairs in the training population.
doi:10.1371/journal.pone.0036674.g001
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Discussion

Efficiency of genomic selection
The BLUP-BVs obtained from equation 1 were used as such for

developing GS models, but some previous studies (reviewed by

[18]) have used de-regressed BLUP-BVs instead. Recent studies

(e.g. [19–20]) have shown that using BLUP-BVs, as opposed to de-

regressed BVs, as phenotypes for genomic predictions, resulted in

higher accuracies of GS – supporting the approach used in our

study. Results showed that unobserved BLUP-BVs for a range of

commonly assessed fruit quality traits can be predicted with

average accuracy of about 0.80.

It was demonstrated by [21] that to predict GEBV with an

accuracy of about 0.90, 10NeL markers are required, where Ne is

the effective population size and L is the length of the genome in

Morgans. Most apple breeding programmes worldwide are based

on narrow genetic pools. Using historical pedigree records of

commercial apple cultivars, [22] estimated the ‘status number’

(which is a measure of Ne that is based on current relatedness only;

see [23]) of the top-50 mainstream cultivars to be 8. Since apple

breeding populations are developed using commercial cultivars as

well as advanced selections, it is likely that the effective population

size of such populations would be higher, which would require

higher marker density . The observed average accuracy of 0.80

suggests that a significant amount of genetic variation, likely due to

low-frequency alleles, could not be captured with the SNP density

and the training population size used in this study. Efforts are

underway to increase both the density of SNP arrays and the

number of training individuals, in order to achieve higher

accuracy ( 0.90) of GS for the key selection traits.

In addition to the number of markers used, the accuracy of GS

is also dependent on the LD between markers and QTLs. The

SNP markers are required to be in sufficient LD with the QTL so

that GS is effective especially across generations. However, the

QTL cannot be observed directly, and thus LD between SNPs can

be used as a surrogate to evaluate the extent of LD in the

population of interest (e.g. [24]). The combination of long-distance

LD due to pedigree relatedness (e.g. full sibs and half sibs) and

short-distance ancestral LD due to small effective population size

are among the key features of our training population, resulting in

the high observed LD (mean r2 = 0.32). However, the LD decay

Figure 2. Average linkage disequilibrium (LD) measured as r2, for pairs of single nucleotide polymorphisms (SNPs) in increments of
10,000 bp, according to the distance between SNPs.
doi:10.1371/journal.pone.0036674.g002

Table 2. Average predicted accuracy (correlation) and bias
(regression) of Bayesian LASSO (BL) and RR-BLUP methods for
various traits: fruit firmness (FF), soluble solids (SSC), russet,
weighted cortex intensity (WCI), astringency (AST), titratable
acidity (TA).

BL RR-BLUP

Trait Correlation Regression Correlation Regression

FF 0.83 (0.02) 1.01 (0.04) 0.83 (0.02) 1.04 (0.04)

SSC 0.89 (0.01) 1.01 (0.02) 0.89 (0.01) 1.02 (0.02)

Russet 0.81 (0.02) 1.00 (0.03) 0.82 (0.02) 1.02 (0.03)

WCI 0.83 (0.02) 1.01 (0.03) 0.82 (0.02) 1.04 (0.03)

AST 0.68 (0.01) 1.00 (0.05) 0.67 (0.01) 1.03 (0.06)

TA 0.81 (0.02) 1.09 (0.05) 0.81 (0.02) 1.09 (0.05)

Standard errors are shown in parentheses.
doi:10.1371/journal.pone.0036674.t002

Table 3. Relative efficiency of GEBV-based selection
compared with the conventional BLUP-based selection for
various traits: fruit firmness (FF), soluble solids (SSC), russet,
weighted cortex intensity (WCI), astringency (AST), titratable
acidity (TA).

Trait h2
r(BLUP-BV,
TBV)

r(GEBV,
TBV) Efficiency

Increase
(%)

FF 0.43 0.79 1.0* 2.21 121

SSC 0.19 0.73 1.0* 2.39 139

Russet 0.60 0.84 0.96 2.00 100

WCI 0.26 0.75 1.0* 2.34 134

AST 0.26 0.75 0.90 2.12 112

TA 0.16 0.73 1.0* 2.41 141

Estimates of narrow-sense heritability (h2) are also shown for each trait.
*Estimated correlation was outside parameter space (.1.0), so constrained to
1.0.
doi:10.1371/journal.pone.0036674.t003
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can vary significantly between different types of genetic materials,

so efforts are now being made to better understand LD patterns in

apple germplasm, breeding populations and commercial cultivars.

As long as the mean r2 between adjacent SNPs was .0.2, GEBV

could be predicted accurately at least in the one or two successive

generations before needing recalibrating of SNP effects [3,25].

Approximately 10% of the adjacent SNP pairs had a physical

distance .1,000 kb, and the average observed r2 of ,0.2 between

such markers (Figure 2) would suggest that higher SNP density

than currently used could further improve GS accuracy.

When the training data for GS consist of individuals from

reproductively isolated ancestral populations, estimates of marker

effects may be biased due to population stratification and

admixture [26]. However, this probably was not an important

issue in our work. The six parents used were advanced selections

(or cultivars) sampled from the same breeding population, and

therefore the issue of population structure should not be critical.

Also, the known genetic relationships of the training individuals

were taken into account via additive genetic relationship matrix to

derive BLUP-EBVs, which were used as ‘phenotype’ for develop-

ing GS models. Moreover, provided high-density SNPs are used

and analyzed simultaneously, as in this study, admixed populations

can be used to develop reliable GS prediction equations even if

pedigree and breed (or population) origin has not been explicitly

modeled to avoid spurious signals [26].

We aim to apply the model derived from the training

population to a selection population consisting of 2,000 young

seedlings generated from 10 full-sib families. The pollen parents of

these 10 families were selected from our training population and

the seed parents (some of which have genetic relatedness with

some of the six parents of our training population) were identified

from previous progeny trials, so providing a strong genetic link

between training and selection candidates, which will also provide

higher GEBV accuracy [10]. All 2000 seedlings in the selection

population will be genotyped for the same SNP markers used in

the training population, in order to obtain their GEBV for each

trait. Using an index of GEBV, the top-ranked (say, 20) seedlings

will be identified and then multiple copies of these selections will

be propagated onto clonal rootstock for stage-2 trials. The

remaining seedlings will be transferred to a nursery for later

planting in the orchard. Once phenotypic data from the selection

population becomes available in the year 2016, we will compare

their observed BLUP-BV with GEBV and also compare the

predicted and observed genetic gain.

When a training population is established in one environment

but the aim is to select individuals for multiple environments, the

realized accuracy of GS could be lower at the sites that are not

represented in the training set [27]. The reduction in accuracy

would depend on the magnitude of genotype-by-environment

interaction (G6E) for selection traits. There is not enough

information available on the effect of G6E on fruit quality traits

Figure 3. Relationship between single nucleotide polymorphisms (SNPs) effects obtained from RR-BLUP and Bayesian LASSO for
various traits. A: Fruit firmness (FF), soluble solids (SSC), and Russet; B: Weighted cortex intensity (WCI), astringency (AST), and titratable acidity (TA).
doi:10.1371/journal.pone.0036674.g003

Genomic Selection in Apple

PLoS ONE | www.plosone.org 5 May 2012 | Volume 7 | Issue 5 | e36674



at the clonal level, but such effects were found to be minimal at the

family level, across the key apple growing areas in New Zealand

[6].

Estimated correlation between GEBV and TBV were higher

than those between BLUP-BV and TBV (Table 3). RR-BLUP

method used in this study is essentially similar to a BLUP model

that uses marker-based (say, realized) genetic relationship matrix,

and the use the realized relationship matrix instead of the average

relationship matrix has been shown to substantially increase the

accuracy of breeding values [28]. Thus results from our empirical

study are in agreement with those based on simulation studies (e.g.

[28]). Relative efficiency of GS compared to the conventional

BLUP selection was higher for traits with low heritability; for

example, efficiency of GS was 100% and 141% higher than

BLUP-based selection for russet (h2 = 0.60) and TA (h2 = 0.16)

respectively; supporting results from earlier studies (e.g. [29]).

Distribution of QTL effects
Estimated SNP effects capture at least partly the underlying

QTL effects, especially when LD estimates between adjacent

markers are reasonable. Consequently, the distribution of

estimated SNP effects should resemble the distribution of the

underlying QTL effects. The SNP array used in this study was

designed to encompass SNPs in the coding region of predicted

Figure 4. Estimates of SNP effects (in additive genetic standard deviation) obtained using Bayesian LASSO for various traits: Fruit
firmness (FF); Soluble solids (SSC); Russet; Weighted cortex intensity (WCI); Astringency (AST); Titratable acidity (TA). Effects are
shown for each linkage group (LG: 1 to 17) across the genome.
doi:10.1371/journal.pone.0036674.g004
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gene models and some candidate genes such as, MdMYB10,

MdPG, and MdLAR [17]. The SNP showing the largest effect on

FF on LG10 (Figure 4) reside in the polygalacturonase (PG)

ethylene-related gene, which depolymerizes cell wall pectin and

the involvement of this gene in fruit softening process was recently

confirmed in a cross between ‘Fuji’ and ‘Mondial Gala’ [30]. The

second and the third largest SNP effects were located on LGs 11

and 16 respectively, but there are no known candidate genes at

these genomic positions. However, an earlier study using a bi-

parental population reported a moderate size QTL on LG11 [31].

No genomic region of very large effect on SSC was observed in

our study (Figure 4), which is consistent with previous reports [31–

32]. For russet, one QTL of large effect was identified on LG1,

and a couple with moderate effects located on LGs 9 and 16,

suggesting a polygenic control of russet and SSC. Our unpublished

results showed moderate genetic correlation between SSC and

russet, which would suggest some common genes with effects on

both traits. In fact, out of the 12 largest effect SNPs for both SSC

and russet, four were common to both traits, suggesting some

pleiotropic effects.

Red colour in apple flesh results from high concentration of

anthocyanins. Seedlings of two red flesh phenotypes, putatively

named Type 1 and Type 2 [33], were present in our training

population. Type 1 red flesh is characterized by red pigmentation

throughout the fruit core, cortex, and foliage; and Type 2 is

characterized by red pigmentation in the fruit cortex only, with

white fruit core and green foliage. The role of MdMYB10 gene on

anthocyanin biosynthesis in Type 1 red flesh apple was

demonstrated using transient approach in tobacco, stable trans-

formation in apple, and by mRNA transcript profiling in red flesh

apple fruit [34], and this gene has been mapped to LG9 [35].

However, MdMYB10 marker is unlinked to Type 2 red flesh

phenotype [33], and perhaps there are numerous low-frequency

and small-effect loci contributing to the expression of Type 2

phenotype. The SNP marker associated with weighted cortex

index (WCI) in our experiment is located in the second exon of

MdMYB10, which is physically close to the R6 motif [34]. WCI

trait was derived (see Methods section) from two separate

phenotypes (i.e. the intensity of red colour, and the proportion

of cortex with red colour), both of which vary between seedlings of

each red flesh types; suggesting involvement of various small effect

genes and a large influence of environment. All these factors would

have contributed to the low observed h2 (0.26) of WCI in this

study.

A cluster of SNPs at the top of LG16 is associated with AST and

WCI. This cluster of SNPs resides in the MdLAR1 candidate gene.

LAR1 is a key enzyme in the flavonoid biosynthetic pathway,

reducing leucoanthocyanidin into the flavanol compound cate-

chin, a monomer of condensed tannins (also known as proantho-

cyanidins). This reaction branches off from the cyanidin biosyn-

thetic pathway. It is likely that condensed tannins (CTs) act as a

co-pigment of cyanidin to create more intense red coloration in the

fruit and hence the effect on WCI. Furthermore, CTs are known

for their role in imparting astringency to fresh fruits, juices and

wine. MdLAR1 was linked to QTLs controlling fruit skin and

cortex concentrations of CTs in a ‘Royal Gala’6‘Braeburn’

population [36].

Distribution of SNP effects for TA (Figure 4) suggested that one

major QTL on LG8 and a moderate effect QTL on LG16 exist in

our population, supporting earlier results from bi-parental QTL

mapping studies [31–32]. The distribution of TA phenotype in our

training population was normal, suggesting that numerous small

effect genes contributed to its expression despite one or two large

QTLs identified. The six parents of the training population do not

represent the TA variation available in wider breeding material,

hence contributing to the low observed h2 (0.16) compared to some

other studies (e.g. [37]). To our knowledge there are no published

reports of known candidate genes for TA on LG8. A SNP with a

moderate effect on TA (Figure 4) is located close to the malic acid

gene (Ma), which was mapped to LG16 [38]. A gene (Mal-DDNA),

isolated by [39], was shown to be expressed differentially in low-

and high acid genotypes, but it appears that this gene has not yet

been genetically mapped. Interestingly, it is the same cluster of six

SNPs on LG16 that is associated with WCI, AST and TA,

suggesting a possible pleiotropic effect of this genomic region.

Comparison of prediction models
The RR-BLUP and Bayesian method provided similar accuracy

of GEBV (Table 2), and there are some empirical studies in animal

breeding supporting these results (e.g. [11–12,19]). Distribution of

QTL effects, as inferred from estimated SNP effects, varied

considerably between traits (Figure 4). Despite these contrasting

distributions, RR-BLUP and Bayesian LASSO performed very

similarly on these traits. Using data from a German Holstein cattle

population, [40] also reported similar accuracies of RR-BLUP and

BayesB models for milk-fat yield, which is controlled by a major

gene DGAT1. Interestingly the highest accuracy of GS was

achieved for SSC which is characterized largely by QTLs of small

effects. Perhaps in the presence of few QTLs of large effects, it

becomes essential to have SNPs in high LD with these large effects

in order to obtain higher accuracy of GS. Even in the presence of

large effect QTLs, there might be a large number of small loci for

which no clear evidence is found for a direct association, but

together these loci still may explain a substantial part of the BV

Table 4. SNPs with the largest effects (in additive genetic standard deviation) on fruit firmness (FF), soluble solids (SSC), russet,
weighted cortex intensity (WCI), astringency (AST) and titratable acid (TA).

Trait SNP (NCBI db)
Linkage group &
position (bp) Effect Heterozygosity Gene name & ID

FF ss475883584 LG10 (20,833,228) 0.06 0.50 Polygalacturonase (PG); MDP0000232611

SSC ss475878574 LG6 (12,001,079) 0.02 0.42 Unknown

Russet ss475876799 LG1 (18,714,053) 0.03 0.42 40S ribosomal protein; MDP0000284030

WCI ss475879555 LG9 (32,840,325) 0.16 0.18 MdMYB10; MDP0000259616

AST ss475881697 LG16 (1,540,624) 0.15 0.40 Leucoanthocyanidin Reductase (LAR1); MDP0000376284

TA ss475882883 LG8 (19,658,610) 0.09 0.43 RING finger and CHY zinc finger domain-containing protein;
MDP0000294924

doi:10.1371/journal.pone.0036674.t004
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and thus make different GS models less separable. Bayesian

shrinkage regression methods primarily capture LD, while the

RR-BLUP method captures genetic relationships and polygenic

resemblance [10,41]. Somewhat higher LD, and high genetic

relationships between training and validation sets in our study

could have played in favour of both methods and thus similarly

high prediction accuracy was observed for RR-BLUP and

Bayesian LASSO.

Introgression of new traits
Introgression of monogenic disease resistances from an inferior

donor into high-quality recipient apple cultivars is generally

performed by backcrossing. Although GS can be used to achieve

this goal, the introgression of favourable alleles from the donor

parent cannot be guaranteed unless the SNP density is such that at

least one SNP allele is in high LD with the functional mutation.

Introgression of monogenic traits could be fast-forwarded using a

two-step approach, i.e. gene-assisted selection (GAS) for mono-

genic traits followed by GS for oligogenic or polygenic traits. This

strategy is currently being implemented in our apple breeding

programme.

Conclusion
Distribution of estimated SNP effects suggested genes of major

effect especially for traits such as WCI, TA, and AST, while large

effect QTLs appeared to be involved in the expression of FF and

russet. Various factors including training population size, number

of SNPs, and magnitude of LD led to similar accuracies of the RR-

BLUP and Bayesian LASSO methods. Thus, either of these two

models could be used in practical applications of GS in apple

breeding programmes. Relative gain per unit time from GS

compared with the traditional BLUP-based selection were very

high (.100%) especially for low-heritability traits. Because of the

high degree of genetic relatedness among the commonly used

parents, the model developed in this study could be applicable to

other apple cultivar breeding populations. Based on the high

accuracy of GS in our study, we conclude that if the objective of

any apple breeding programme is to accelerate the breeding cycle

by making selections prior to extensive fruit-quality phenotyping,

GS shows strong potential as a means of achieving this goal.

Materials and Methods

Training population and fruit assessment
A set of four white-fleshed female parents (NZSelectionT153,

NZSelectionT179, ‘Sciros’ and ‘Fuji’) and two red-fleshed pollen

parents (NZSelectionT31 and NZSelectionT51) were crossed in a

factorial (462) mating design, except that the cross between

NZSelectionT179 and NZSelectionT31 was unsuccessful leaving

seven full-sib families. The pollen parents NZSelectionT31 and

NZSelectionT51 represent Type 1 and Type 2 red flesh

phenotype, respectively [33]. Seedlings numbers varied between

families, ranging from 40 to 350, with a total population size of

1200. Seedlings were planted in a nursery in November 2005.

Two-year-old seedlings were propagated onto ‘M. 9’ rootstock in

2007 and then in the following year planted into the orchard

(Havelock North, New Zealand) at 3.060.5 m spacing for fruit

evaluation. All trees received standard commercial management

for nutrition, pesticide, fruit hand-thinning, and irrigation. No

specific permission from the New Zealand regulatory authorities

was required for this study. The location of this study is not

protected in any way, and the study did not involve endangered or

protected species.

Harvesting and fruit assessment began in the second season

(February–May 2010) after orchard planting, and was repeated for

a second consecutive year. Fruiting trees were harvested twice at 7-

to 10-days intervals beginning when fruit were judged mature,

based on a change in skin background colour from green to yellow,

and when the starch pattern index was between 3 and 4. Samples

of six fruit per harvest were stored for 70 days at 0.5uC, then a

further 7 days at 20uC and evaluated. Six traits were evaluated on

the fruit samples using instrumental, sensory, or visual assessment

methods. Fruit flesh firmness (FF) was determined on opposite

sides of each fruit after peel removal using a Fruit Texture

Analyzer (GÜSS) fitted with an 11-mm diameter probe tip.

Soluble solids concentration (SSC) for each fruit was measured

with the juice from the probe using a digital refractometer (Atago

PR-32). Average russet coverage (russet) and flesh astringency

(AST) were scored for each sample on a scale from 0 ( = none) to 9

( = highest) by two trained assessors. Fruit from each seedling were

then cut in half across the equator and the proportion of the cortex

area that was red (PRA) and the intensity of the red (RI) ( = 0

(none) to 9 (highest)) were scored. A weighted cortical intensity

(WCI) was then calculated (PRA6RI) as an estimation of the

amount of red pigment in the fruit. A cortical wedge (10 g) was

then removed immediately from each half of each apple,

combined for each seedling, juiced in a blender (Magimex Le

Duo), and frozen. Titratable acidity (TA) was measured on the

thawed juice using an automatic acid titrator (Metrohm 716 DMS)

and the percentage of malic acid in fruit juice was recorded.

Phenotypic data analysis
Individual fruit measurements (FF, SS, and WCI) were first

averaged for each seedling, and then averaged over the two

harvests in a given year. As repeated records for each seedling

occurred over two years, there was an element of ‘permanent

environmental effect’ associated with a seedling’s performance. In

other words, when a seedling has multi-year records, its breeding

value and part of the environmental effects are repeated. We used

the following individual-tree mixed linear model accounting for

repeated records for each trait:

y~XbzZazZpze ð1Þ

where y is the vector of observations, b is the vector of fixed

effects (e.g. assessor, year), a is a vector of additive genetic

effects of seedlings, p is a vector of permanent environmental

effects and e is a vector of residual effects. The matrix X is the

incidence matrix for the fixed effects and Z is the incidence

matrix relating observations to seedlings. Each seedling has an

additive genetic as well as a permanent environmental effect, so

both effects have the same design matrix (Z). The associated

variances with the random effects, a, p and e were s2
a, s2

p and s2
e

respectively. We assumed that within a seedling there was no

correlation between its additive and its permanent environmen-

tal effect, and that permanent environmental effects for different

seedlings are uncorrelated. Estimates of narrow-sense heritabil-

ity (h2) of each trait were obtained as the ratio of additive

variance (s2
a) to the total phenotypic variance ( = s2

a+s2
p+s2

e ).

Genetic relationships among seedlings and among parents (some

parents were related) were taken into account via the additive

genetic relationship matrix. ASReml software [42] was used to

obtain BLUP-BVs of all seedlings, which were later used for

developing GS models.
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Single nucleotide polymorphism genotyping
The training population was genotyped using the International

RosBREED SNP Consortium (IRSC) apple 8K SNP array v1

(www.illumina.com; [17]), based on the InfiniumH II technique

(Illumina Inc., Hayward, USA). Genomic DNA (gDNA) was

extracted from each seedling using the NucleoSpinH Plant II kit

(Macherey-Nagel GmbH and Co KG, Düren, Germany), and

quantified using the Quant-iTTM PicoGreenH Assay (Invitrogen).

Two-hundred nanograms of gDNA were used as template for the

reaction, following the manufacturer’s instructions. SNP genotypes

were scored using the Genotyping Module (version 1.8.4) of the

IlluminaH GenomeStudio software (Illumina Inc.). The reliability

of each genotype call was measured using the GenCall score set at a

minimum of 0.15, which is a lower bound for calling genotypes

relative to its associated cluster. SNPs were subsequently discarded

using a sequence of criteria in the following order: GenCall score at

the 50% rank (50% GC),0.40; cluster separation (Cluster-

Sep),0.25; more than 5% missing calls; segregation discrepancy.

The BEAGLE 3.1 software [43] was then used for imputing

missing SNP genotypes.

Estimation of linkage disequilibrium and genomic
selection models

The degree of LD between SNPs was quantified with the

parameter r2 [44], estimated using GOLD software [45].

As the aim of our project was to predict BV, we developed

models by fitting only the additive effects at each SNP. The two

methods used for prediction of BV in this study were RR-BLUP

and Bayesian LASSO ([3,12,46]. Both methods differ in terms of

the prior assumptions about the distribution of the SNP effects, but

the basic model is:

y~m1nzXgze ð2Þ

where y is a vector of n BLUP-BVs for a given trait obtained from

equation 1; m is an intercept, 1n is a vector of 1 s; X is a (n6m)

design matrix allocating records to the m SNP effects, with element

Xij = 0, 1, or 2 if the genotype of seedling i at SNPj is AA, AB, or

BB, respectively; g is a (m61) vector of SNP effects. For RR-

BLUP, g is assumed to be normally distributed, gi,N(0, s2
g ); e is a

vector of random deviates with a variance of s2
e . RR-BLUP was

implemented in R 2.10.1 [47]. For the Bayesian LASSO method,

g was assigned a prior distribution of double exponential (DE),

DE gj

��l
� �

~Pp
j~1 (l=2) exp({lDgj D). The DE distribution induces

a strong shrinkage (very close to zero) of estimates for SNPs with

relatively small effects and less shrinkage of estimates for SNPs

with moderate or large effect; the residual variance (s2
e ) was

assigned a scaled inverse chi-square prior distribution. The

Bayesian LASSO method was implemented using the R/BLR

package [46].

In both models, GEBV were estimated for the validation

population as:

GEBV~Xg ð3Þ

where GEBV is the vector of breeding values estimated from the

marker genotypes.

Predicting unobserved BLUP-BV
The training population data was divided into two subsets: 90%

of the training individuals were randomly selected for developing

the prediction equation and the remaining 10% were used for

cross validation. We repeated our analysis 10 times, and each time

the prediction and validation sets of seedlings were randomly

sampled and analyzed independently. The correlation coefficient

between the observed (i.e., BLUP-BV) and the predicted (i.e.,

GEBV) breeding values was used as a measure of the accuracy of

the GEBV prediction. The observed BLUP-BVs were linearly

regressed on the predicted GEBV, where the regression coefficient

reflected the degree of bias of the GEBV prediction and a

regression coefficient of one indicates no bias.

As described in the preceding paragraph, the accuracy of GS in

empirical studies is calculated as correlation between GEBV and

BLUP-BV (i.e., r(GEBV, BLUP-BV)). Ideally one would also be

interested in correlation between GEBV and true breeding values

(TBV), i.e. r(GEBV,TBV), which could directly be used to

compare the relative efficiency of GS with that of conventional

BLUP-based selection as:

Relative efficiency~½r(GEBV, TBV)=r(BLUP-BV, TBV)�

� (YCS=YGS)
ð4Þ

An estimate of r(GEBV,TBV) can be obtained as [r(GEBV,

BLUP-BV)/r(BLUP-BV, TBV)] as suggested by [12]. The

accuracy of conventional BLUP-based individuals selection (i.e.,

r(BLUP-BV, TBV)) in outbred full-sib families was calculated

following [9]. The length of the conventional breeding cycle (YCS)

in New Zealand conditions is seven years, including three years for

the assessment of phenotype. Since GS would obviate the need of

phenotyping, the breeding cycle length for GS (YGS) was assumed

four years.
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