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Abstract

Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) c to increase insulin sensitivity in
type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical
profiles are needed. We obtained a crystal structure of PPARc ligand binding domain (LBD) and found that the ligand
binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8–C10) bind the
PPARc LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to
TZDs; they act as very weak partial agonists in transfections with PPARc LBD, stronger partial agonists with full length PPARc
and exhibit full blockade of PPARc phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue
insulin resistance. MCFAs that bind PPARc also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor
analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12
relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/b-
sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to
their unique binding mode and suggest that it may be possible to identify selective PPARc modulators with useful clinical
profiles among natural products.

Citation: Liberato MV, Nascimento AS, Ayers SD, Lin JZ, Cvoro A, et al. (2012) Medium Chain Fatty Acids Are Selective Peroxisome Proliferator Activated Receptor
(PPAR) c Activators and Pan-PPAR Partial Agonists. PLoS ONE 7(5): e36297. doi:10.1371/journal.pone.0036297

Editor: Antonio Moschetta, University of Bari & Consorzio Mario Negri Sud, Italy

Received December 5, 2011; Accepted March 30, 2012; Published May 23, 2012

Copyright: � 2012 Liberato et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by National Institutes of Health grant 41482 (PW), São Paulo Research Foundation grants 04/08070-9 (ASN), 2006/06831-8
(LM) and 06/00182-8 (IP & MS) and National Council for Scientific and Technological Development (IP & MS). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ipolikarpov@if.sc.usp.br (IP); pwebb@tmhs.org (PW)

Introduction

Peroxisome proliferator activated receptors (PPARs a, b/d and

c) are ligand-dependent transcription factors that are prominent

targets for pharmaceutical development. Thiazolidinediones

(TZDs) act through PPARc to elicit increased sensitivity to insulin

in type 2 diabetes mellitus (T2DM) and reduce inflammation in

arteries [1]. Unfortunately, TZDs also exhibit deleterious effects

on fat accumulation, fluid retention and bone density and increase

risk of heart failure, indicating a need for new selective PPARc
ligands with improved clinical profiles [1–3].

In addition to TZDs, PPARc binds natural lipophilic molecules,

including long chain fatty acids (FAs), oxidized or nitrated FAs,

prostaglandins and arachidonic acid derivatives [4,5] but possible

selective activities of these compounds have not been assessed.

Some reports suggest that PPARc ligands with weak partial

agonist activity relative to TZDs exhibit beneficial effects

equivalent to strong agonists, with fewer harmful side effects [6–

9]. At least some insulin sensitizing effects of TZDs mediated by

PPARc do not require full agonist actions; TZDs block cyclin-

dependent kinase 5 (Cdk 5) mediated phosphorylation of PPARc
ser273, which reduces expression of key adipokines in fat cells

[10]. Improved knowledge of relationships of PPARc ligand

binding modes and relationships to partial agonism and secondary

modifications could help us develop selective ligands that act as

safer PPARc modulators.

PPARs are nuclear hormone receptors (NRs) [11]. Like other

NRs, PPARs bind specific DNA response elements (PPREs),

usually as a heterodimer with retinoid X receptor, and modulate

transcription of nearby genes by recruiting coregulator complexes

[3,12]. Agonists alter target gene expression by binding the ligand

binding pocket (LBP) in the core of the ligand binding domain

(LBD). This, in turn, induces conformational changes which result

in increased stability of the entire LBD and altered position and

dynamics of LBD C-terminal helix (H) 12, with the latter effect

remodeling of a cofactor binding site on the LBD surface to favor

binding of coactivators over corepressors [12].
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Despite similarities between actions of PPARs and other NRs,

PPAR LBPs exhibit distinctive characteristics [13,14]. PPAR LBPs

are large (<1300 Å3) Y- or T-shaped cavities which are partly

open to the LBD surface and only partially filled by TZDs or other

known ligands, different from LBPs of thyroid hormone receptors

(TRs), steroid receptors and other NRs which tend to be small

(<500–600 Å3) with ligand tightly enclosed [11]. Further, PPARs

exhibit multiple ligand binding modes; different PPARc ligands

bind at different locations in the LBP and the PPARc LBP can

accommodate two ligands at the same time [4]. Strong PPARc
agonists such as the TZDs rosiglitazone (rosi) and pioglitazone

(pio) directly contact H12 whereas partial agonists bind towards

the base of the Y-shaped LBP, do not contact H12 and stabilize

the b-sheet/H2-H3 region thereby inhibiting cdk5 phosphoryla-

tion [10,15–17].

Here, we crystallized PPARc LBD in a form that diffracts to

relatively high resolution in the absence of exogenous ligands. The

structure resembles previous liganded and unliganded PPARs

[4,18] but close investigation reveals three saturated medium

chain fatty acids (MCFAs) occupy the LBP at the same time and

mass spectroscopic analysis suggests that these are predominantly

nonanoic acid (NA, C9) with a smaller amount of octanoic acid

(OA, C8). C8–C10 MCFAs are PPARc essentially partial agonists,

but exhibit assay-specific variations in activity relative to TZDs

and MCFAs that bind PPARc block TZD-dependent adipogen-

esis. A recent paper also revealed that a C10 MCFA acts as a

modulating ligand of PPARc, but this group found a single

molecule of C10 binds the pocket and rationalized partial agonist

activity in terms of weak H12 stabilization [19]. Our X-ray crystal

structure B-factor analysis coupled to molecular dynamics (MD)

simulations [20] suggests that diverse agonist/partial agonist

behaviors may be linked to the tripartite MCFA binding mode

and raise the intriguing possibility that selective PPAR modulators

with useful context-selective properties may be identified among

natural products. We discuss the possibility that MCFAs are

natural PPAR ligands.

Results

Three Ligands in the PPARc LBP
We obtained PPARc LBD crystals without exogenous ligand

and subsequent X-ray structural analysis revealed that they

diffracted to relatively high resolution (2.1 Å, Table S1). The

new PPARc structure closely resembles previous PPARc LBD

structures (Fig. 1A) [4,18]. The LBD crystallized as a homodimer

(A and B-chains) with the A-chain exactly corresponding to the

canonical active NR LBD fold with H12 in an active position

(Fig. 1A) and the B-chain in an inactive conformation with H12

protruding away from the molecule (Fig. S1). More surprisingly,

close investigation of the PPARc A-chain LBD revealed three

elongated and well-defined ligands in the LBP (Figs. 1A, B).

Electron density is strong, consistent with high occupancy. Two

similar ligands were present in the B-chain LBD but these are

poorly resolved, similar to previous descriptions of ligand binding

to PPARc B-chains [4]. To our knowledge, this is the first time

that exogenous ligands have been shown to occupy the LBP of a

putative apo-PPARc structure.

MCFAs associate with PPARc LBP
The ligands in the PPARc LBP are bacterial MCFAs. Mass

spectroscopic analysis revealed that MCFAs were associated with

our purified PPARc LBD preparations and that these are

predominantly nonanoic acid (C9:0, NA, 80%), with smaller

amounts of octanoic acid (C8:0, OA, 20%) (Fig. S2). There is no

obvious source of these ligands in purification reagents or buffers

and it is therefore likely that they are bacterial in origin and persist

throughout purification. Accordingly, we used the major ligand

associated with the PPARc preparations, NA (C9), for X-ray

structure model building and found that it fits well with observed

electron densities in the LBP (Fig. 1B). Added MCFAs (C8–C10,

but not C6) bind and stabilize purified PPARc LBD in a modified

differential fluorescence scanning (DSF) assay [21], which detects

ligand-dependent reductions in solvent-exposed protein hydro-

phobic surface and is indicative of protein folding (Fig. 2A).

Moreover, NA (C9) displaced radiolabeled Rosi from bacterially

expressed PPARc LBD, albeit with much lower potency than

unlabeled Rosi (Fig. 2B). Thus, MCFAs are bona fide PPARc
interacting compounds, albeit weak binders. Longer chain

saturated fatty acids (C14–C18) are known to bind PPARc [22],

but this report, coupled to a recently published report [19]

establishes MCFAs as PPARc interacting ligands.

MCFA Binding Modes
The trimeric MCFA ligand binding mode is unprecedented

(Fig. 1B). Each MCFA binds one arm of the PPARc A-chain LBP

and, together, the three molecules occupy about 52% (<630 Å3)

of LBP total volume (Fig. 1B, C). While it was previously shown

that PPARc LBP can accommodate two copies of the same ligand

[4] it has never been shown that three copies of the same ligand

can simultaneously occupy the PPARc LBP.

Each NA occupies one arm of the Y-shaped pocket (Fig. 1B).

NA1 is within the polar arm, close to H12, and makes extensive

contacts with LBP amino acids. The carboxylate interacts with

Y473 on the inner H12 surface (2.90 Å), H323 (2.92 Å), H449

(2.75 Å) and S289 (3.05 Å) and the hydrophobic tail interacts with

a surface formed by I281, F282, L353, F363, M364 and L453.

NA2 and NA3 make few direct contacts with protein. This

position is similar to that occupied by the single decanoic acid

molecule (C10) located in the recently published PPARc:C10

MCFA structure [19]. NA2 occupies a site between H1, H3 and

H4/5 with the carboxylate group in contact with R288 (3.2 Å) on

H3 and the tail stabilized by hydrophobic interactions with A292,

I296, M329 and L330. NA3 is close to the base of the Y, between

H3 and the b-strands. Like NA2, the NA3 carboxylate also

interacts with the R288 side chain (3.87 Å, Ne) and also binds the

main chain at L340 (3.2 Å) and the NA hydrophobic tail interacts

with I341 and C285.

LBP amino acids that contact each NA ligand have all

previously been shown to contact other PPARc interacting

compounds [4,5,18]. NA1 binds Y473 on the inner face of H12,

also important in TZD binding, whereas NA2 and NA3

carboxylates interact with R288, which does not bind TZDs but

does bind oxidized FAs 13-HODE and 9-HODE, nitrated FAs

and synthetic partial agonists. Comparisons of the PPARc+MCFA

structure with PPARc-TZD structures reveal differences between

TZD and MCFA contact modes (Fig. 1C). Most obviously, the

Phe363 (H7) side chain binds the NA1 aliphatic chain but adopts

an opposite orientation in PPARc+rosi structures and is not

involved in ligand contact. There are also shifts in positions of

Ser289 (H3), His449 (H11), Tyr473 (H12) and other residues.

However, the main difference the PPARc+MCFA structure and

PPARc+TZD structures is that all arms of the pocket are occupied

by MCFAs, whereas TZDs only contact residues in two arms of

the Y.

MCFA interactions with the PPARc chain B LBP partly

resemble those of chain A (Fig. S1). The two MCFAs occupy

positions that approximately correspond to NA2 and NA3 in

Chain A. However, the NA2 aliphatic chain adopts a slightly

Medium Chain Fatty Acids Are PPARc Activators
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different position in Chain B, and the NA3 aliphatic chain appears

highly disordered. More importantly, no ligand occupies the NA1

position at the inner surface of H12. This implies that MCFA

binding at the NA1 position is coupled to H12 packing

(Discussion).

MCFAs are pan-PPAR Partial Agonists and Display Assay-
Specific Partial PPARc Agonist Effects

MCFAs (1 mM) behave as partial pan-PPAR agonists in

transfections. MCFAs were very weak partial agonists at a GAL-

PPARc LBD fusion, which is highly AF-2 dependent (Fig. 3A).

Here, C6 (which does not bind PPARc) failed to activate

transcription but longer MCFAs that do bind PPARc (C8, C9,

Decanoic acid, DA C10 and Lauric acid, LA C12) elicited low

partial agonist activity, with C10 most effective (about 3–5% of

rosi in this assay). Similar activation patterns were also seen with

GAL-PPARa and –PPARd fusions (Fig. 3B). Interestingly,

MCFAs were more efficient partial agonists with full length

PPARs (Fig. 3C, D). Here, OA (C8), NA (C9) exhibited up to 70%

of TZD activity at a PPRE-regulated reporter in HeLa cells and

DA (C10) slightly stronger than TZDs (Fig. 3C) and LCFAs (C14,

C16) in this cell type (Fig. 3D). In other cell types, including

HepG2, effects were somewhat weaker and C8–C10 MCFAs

activated transcription with about 50% of the activity of rosi

(Fig. 3E). MCFAs are not potent agonists; whereas 1–10 mM

TZDs were sufficient for maximal PPARc activation, C8–C10 FAs

only exhibited activity in the 100 mM-1 mM range (Fig. 3C).

Effects of PPARc LBP mutations are consistent with predictions

about binding mode derived from X-ray structures (Fig. 3F).

Mutation of R288, which interacts with MCFAs at sites II and III

but not with rosi or other TZDs (PPARcR288A) or with MCFAs

at site I, compromised PPARc response to DA, but not rosi.

Conversely, an amino acid implicated in TZD interaction but not

MCFA interaction (PPARcQ286A) was needed for rosi response

but was dispensable for DA response. Mutation of nearby residues

that do not interact with MCFAs or rosi (PPARcE295A and

C285S) did not affect responses to either ligand. Finally, MCFAs

strongly inhibited cdk5-dependent phosphorylation of PPARc
LBD preparations in vitro. NA (C9) inhibited cdk5 dependent

phosphorylation of bacterially expressed PPARc LBD prepara-

tions as efficiently and potently as rosi (Fig. 3G).

MCFAs that Bind PPAR Antagonize Adipogenesis.
As previously documented, we found that MCFAs were

influenced adipoegenesis [19,23] but also showed that MCFAs

that bind PPARc can antagonize rosi effects. HA C6 (1 mM),

which does not bind PPARc, triggered similar levels of fat droplet

accumulation to rosi (compare Fig. 4A, 4B and 4C) and failed to

Figure 1. PPARc binds three MCFAs. (A) Structure of the PPARc LBD chain A subunit showing positions of MCFA electron densities in the LBP;
NA1 (site I), NA2 (site II) and NA3 (site III). (B) LBP (in red) with its three arms filled with MCFA (C) Overlaid views of the PPARc LBP in the presence of
NA (PPARc green, ligand yellow) and Rosiglitazone (PPARc blue, ligand transparent pink) revealing ligand binding modes. C) Radiolabeled ligand
displacement assay. Bacterially expressed PPARc LBD was incubated with radiolabeled rosiglitazone +/_ cold competitors as indicated.
doi:10.1371/journal.pone.0036297.g001
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antagonize rosi response (Fig. 4D). By contrast, DA (C10, 1 mM)

was weakly adipogenic (compare Fig. 4E to Fig. 4A) but strongly

antagonized rosi response. Similar results were also obtained with

OA (C8, not shown). Thus, an MCFA that does not bind PPARc
cannot block rosi-dependent adipogenesis, whereas MCFAs that

do bind PPARc are anti-adipogenic, raising the possibility that

some anti-adipogenic actions of MCFAs may be PPARc-

dependent (see Discussion).

MCFAs and Rosi Induce Differences in PPARc External
Stability

Given assay-specific variations in efficacy of MCFAs (weak AF-2

partial agonist, stronger partial agonist with full length PPARc and

full agonist in blockade of ser273 phsophorylation), we set out to

compare MCFA effects on PPARc conformation with TZDs. This

required us to obtain a PPARc+rosi structure in the same space

group as our PPARc+NA structure (2.5 Å resolution, Table S1) to

compare NA and rosi influences on PPARc organization without

confounding effects of differences in crystal packing [18].

PPARc+NA and PPARc+rosi structures exhibit identical

overall fold and dimer organization. However, there are differ-

ences in crystal structure B-factors in the presence of rosi and

MCFAs; these provide an index of relative mobility of different

parts of the protein in the crystal lattice (Fig. 5). H12 appears

better packed against the LBD surface with rosi (arrow) than NA.

By contrast, the loop between H11 and H12 and the H2-H3/b-

strand regions appear more ordered with NA than rosi (circles).

Both regions are important in PPARc function, changes in H11-

H12 loop structure have been implicated in H12 dynamics [24]

and, as mentioned above, partial PPARc agonists preferentially

stabilize the b-strand region [15]. Further, the H2-H3 loop region

overlaps ser273, the target of cdk5 phosphorylation, which is

efficiently blocked by MCFAs. Thus, the two ligand types exhibit

differential effects on PPARc LBD external stability.

MCFA Chain Length Influences H12 Dynamics
To better understand between MCFA binding mode and

activity we performed MD simulations based on the PPARc+NA

X-ray structure in a shell of water and ions to simulate aqueous

conditions [20]. The technique allows us to predict and observe

ligand and protein dynamics over short times, to estimate

interaction energies of ligands with components of the PPARc
system and to substitute different ligands and examine receptor

behaviors.

We first performed MD simulations with the PPARc+NA

structure and modeled PPARc structures in which DA (C10) or

LA (C12) was substituted for NA in the tripartite binding mode to

define relationships between MCFA chain length and PPARc
activity. We chose these MCFAs because, in our hands, DA

exhibited high activity in transfections, whereas LA is weaker.

Results suggest that NA (C9), DA (C10) and LA (C12) bind in the

3:1 mode, but the former two MCFAs exhibit better fit in the

PPARc LBP than LA; LBP residues that comprise site I become

more disordered in the presence of LA (Fig. S3). There is also a

notable effect of MCFA chain length on H12 contacts (Figs. 6, S4);

an important hydrogen bond contact between the MCFA polar

carboxylate and the Tyr473 side chain is broken in LA

simulations, but not DA simulations. This suggests that H12 is

more stable in the presence of DA than NA. We propose this

finding explains why LA exhibits reduced activity relative to DA

and that this supports proposals that direct MCFA contacts with

the inner surface of H12 are important in partial agonist activity

[19].

NA2 and NA3 Water Shells Play an Important Role in
Binding

Since the b-sheet/H2-H3 region of the receptor appears

preferentially stabilized in the presence of MCFAs, and NA2

and NA3 lie close to the inner surface of this region yet make few

direct contacts with PPARc protein (Fig. 1A), we analyzed

interaction energetics of these MCFAs with LBP residues and

ligand dynamics to understand how they may interact with the

PPARc LBD.

The simulations revealed unexpected aspects of MCFA binding.

First, average binding energies of NA2 and NA3 with the PPARc
system are higher than NA1, despite fewer direct contacts of these

ligands with protein, and this is related to hydration of the MCFA

carboxylate group (Table 1, Fig. 7). Visualization of ligands reveals

that NA1 (purple shell) interacts with small amounts of water (blue)

throughout the simulation (Fig. 7A); on average less than one

Figure 2. C8–C10 MCFAs bind and Stabilize PPARc LBD in vitro.
Analysis of MCFA binding to PPARs by dye binding assays, performed
with purified PPARc LBD and 0.1 mM TZDs or 1 mM FAs at room
temperature. The figure shows the percentage reduction in fluores-
cence versus unliganded PPARc treated with vehicle for different
MCFAs. Briefly, this technique measures interactions of fluorescent dye
(ANS) with exposed hydrophobic protein surface and, since hydropho-
bic amino acids are buried in the core of folded domains by
hydrophobic effect, provides an index of structural stability. Apo-PPARc
LBD exhibits high fluorescence, suggestive of partial unfolding. TZDs
(rosiglitazone, rosi, pioglitazone, pio, 0.1 mM) reduce fluorescence
index, indicative of ligand-induced folding. In parallel, decreases in
fluorescence index were obtained with OA (C8), NA (C9), DA (C10) and
LA (C12) but not HA (C6) (all at 1 mM final concentration). Fluorescence
was monitored in a standard Q-PCR machine (Phillips Lightcycler).
doi:10.1371/journal.pone.0036297.g002
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water lies near the NA1 carboxylate group (purple trace, Fig. 5B)

although more waters (up to 5) can lie nearby at some instances

(grey traces, Fig. 7B). By contrast, NA2 and NA3 carboxylates are

continuously surrounded by large water pools (Fig. 7A) comprised

of at least 7–8 waters (Fig. 7B, green and orange traces) with as

many as 13–15 nearby in some frames (Fig. 7B). Second, NA2 and

NA3 appear more flexible than NA1, judged by comparisons of

initial NA position (Fig. 7A, red sticks) versus superposed

conformations adopted in the simulation (white sticks) and

differences in root mean squared displacements (RMSD) of ligand

over the simulation (Fig. 7C and Fig. S4). In particular, the NA2

aliphatic chain (green; A2) fluctuates between two distinct average

conformations; evidenced by the biphasic RMSD curve in Fig. 7C,

and the NA3 carboxylate (C3) appears highly mobile (Fig. 7A).

Inspection of the PPARc+NA structure suggests that predicted

differences in ligand mobilities are realistic; NA1 is well defined

with low B-factors whereas NA2 and NA3 are poorly defined.

Together, results suggest that pocket waters are important for

MCFA binding; they bridge charged groups of the ligand to LBP

polar residues (Discussion). Further, high NA2 and NA3 mobility

means that both ligands can continuously form and break new

contacts with LBP amino acids that are not always evident in the

initial structure. Of interest (Fig. 8), the NA3 carboxylate engages

in repeated contacts with Lys265 (H3) and Ser342 (b-sheets). It is

interesting to suggest that these interactions could also help to

stabilize the PPARc b-sheets and H2-H3 region (Discussion).

Discussion

In this study, we crystallized the PPARc LBD without

exogenously added ligand, but analysis of the resulting X-ray

Figure 3. MCFAs exhibit assay-specific differences in agonist efficacy. (A) Transfections with GAL-RE luciferase reporter + Gal-PPARc LBD
expression vector and treated with 10 mM Rosi or 1 mM MCFAs), standard errors derived from quadruplet points and experiments repeated .3 times.
(B) MCFAs are pan-PPAR activators. Comparison of abilities of MCFAs (1 mM) to activate Gal-PPAR LBDs in HeLa cell transfection assays. (C) Results of
transfections (HeLa cells; DR1 luciferase) +/2 PPARc expression vector showing dose responses, standard errors derived from quadruplet points and
experiments repeated .3 times. Data expressed as % induction relative to saturating TZDs. (D) Transfections to compare MCFA and LCFA activities at
a DR-1 element, data expressed as fold FA induction relative to control. E) MCFAs are PPAR partial agonists in HepG2 cells. Results of transfection
analysis with full length PPARc and a PPRE driven luciferase reporter gene +/2 1 mM MCFA, as in Fig. 4D. (F) Transfections +/2 PPARc or PPARc
mutant expression vector and treated with Rosi or DA. Data expressed as fold induction by MCFAs relative to untreated. (G) An MCFA blocks PPARc
LBD phosphorylation by cdk5 in vitro; SDS-PAGE gel to reveal 32P-labeled PPARc LBD, samples include LBD with no ligand or with increasing Rosi or
NA (C9) (0.01, 0.1, 1 mM).
doi:10.1371/journal.pone.0036297.g003
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structure revealed MCFAs in the LBP, mostly NA (C9) with small

amounts of OA (C8) as judged by mass spectroscopic analysis. The

only plausible source of these MCFAs is the bacterial host used to

express the protein. Thus, it is likely that our purification

procedures did not strip MCFAs from the PPARc preparations

and the presence of these contaminating ligands increased PPAR

stability and facilitated crystallization.

Our studies indicate that C8–C10 MCFAs are PPARc partial

agonists; this is in line with another study which shows that DA

(C10) is a PPARc modulator [19]. However, we also find that

MCFAs exhibit differences in activity that are a function of both

chain length and assay type and we propose that combined results

of X-ray crystallography and MD simulations provide possible

explanations for observed MCFA properties.

Our results suggest that chain length dependency of MCFA

action relates to their ability to contact and stabilize the inner

surface of H12 [19]. C8–C10 MCFAs are better PPARc activators

than C12–C14 MCFAs, see Fig. 3D and [22], with C10 displaying

highest activity. Our MD simulations reveal more optimal contacts

of C9–C10 MCFAs with Tyr473 on the inner surface of H12 than

C12, which appears too long (Fig. 6 and S3). Also supporting the

idea that MCFA contacts with H12 are important for activity is

the organization in the crystallographic dimer; the PPARc chain A

(H12 active) contains three MCFAs in the LBP with one (NA1) in

close juxtaposition to H12 whereas chain B (H12 inactive) contains

two poorly defined MCFAs at the NA2 and NA3 positions which

are not near the inner surface of H12. Our modeling also agrees

with the proposal that LCFAs (C16 and upwards) are too large to

bind the niche that is occupied by NA1 [19] and suggests that

LCFAs will not be able to occupy the PPARc LBP in a 3:1 binding

mode reported here (not shown) and must therefore bind the

PPARc LBP in a manner that differs from MCFAs.

In addition to a role for MCFA contacts with H12 in PPARc
activation, we noted surprising assay-specific differences in efficacy

versus TZDs and we think that these features may be explained by

the unique tripartite binding mode and differences in LBD surface

stability versus TZDs. B-factor analysis reveals that MCFAs

weakly stabilize H12 relative to TZDs (Fig. 5) and this correlates

well with the observation that MCFAs are weak activators in the

highly AF-2 dependent GAL-LBD assay (3–10% of TZD activity,

Fig. 3). By contrast, MCFAs are stronger agonists in transfections

with full length PPARc; we do not completely understand this

phenomenon but suggest that MCFAs affect PPARc LBD

activities that are important in the context of full length receptor.

In this regard, MCFAs preferentially stabilize the loop between

H11 and H12 and the b-sheet/H2-H3 region and the latter has

been implicated in unexpected heterodimer contacts with the

RXR DBD, revealed in the recent full length structure of a

PPARc/RXRa complex [25]. However, we recognize that other

possible explanations for the relatively strong partial agonist

activity of MCFAs at full length PPARc; perhaps MCFAs alter cell

behavior to enhance other aspects of PPARc activity through

secondary effects. Finally, MCFAs are effective inhibitors of cdk5

dependent phosphorylation at ser273 in vitro [10] and this

correlates well with their ability to stabilize the b-sheet region, in

common with other partial agonists [15] and selective PPAR

modulators [10,17].

Why do MCFAs preferentially stabilize the b-sheet/H2–H3

region relative to TZDs? At one level, the answer appears

relatively simple; NA2 and NA3 occupy positions near the inner

surface of this region whereas TZDs do not. We were puzzled by

the fact that NA2 and NA3 do not appear to engage in large

numbers of direct contacts with LBP residues in this region

suggesting that these may be relatively weak interactions.

However, our MD simulations indicate that NA2 and NA3

actually bind more tightly to the LBP than NA1 and that water

molecules that bridge ligand carboxylate groups to polar LBP

residues play an important role in binding affinity, similar to our

proposed mechanism for TR subtype selective binding of the

natural agonist Triac [26]. Strategies to enhance ligand-water

contacts and ligand flexibility in this region of the PPARc LBP

could yield high affinity ligands that stabilize the b-sheet region.

Are MCFAs natural physiologically relevant PPARc agonists?

Studies of Malakapa et al. showed that diets containing decanoic

acid or decanoic acid triglyceride improve insulin sensitivity in

animal models [19]. It is also known that dietary MCFAs (usually

as medium chain triglycerides) are abundant in certain foodstuffs,

particularly milk, coconut and palm oil and dietary supplemen-

tation of these compounds improves aspects of metabolic

syndrome and insulin resistance in humans [27]. Finally, our

studies support those of previous papers which suggest that

MCFAs are anti-adipogenic in cultured 3T3 cells (ref) and this

property has also been observed in vivo. All of these findings are

Figure 4. MCFAs that bind PPARc block TZD-dependent 3T3-L1
cell differentiation. 3T3 fibroblasts were induced to differentiate with
Insulin, Dexamethasone and Isobutylmethylxanthine 2/+ 100 nM rosi
(A, C, E versus B, D, F), 1 mM HA C6 (C, D) or 1 mM DA C10 (E, F).
Adipogenesis was tested by Red Oil O staining and results showed that
DA C10, but not HA C6, is weakly adipogenic and blocks rosi effects.
doi:10.1371/journal.pone.0036297.g004

Figure 5. Rosiglitazone and MCFAs stabilize PPARc LBD in
distinct ways. Variations in crystallographic B-factors represented as
width of the backbone trace in PPARc-NA (left) and PPARc+rosi (right).
doi:10.1371/journal.pone.0036297.g005
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consistent with PPARc partial agonism/antagonism and selective

PPARc modulation and, indeed, our results suggest that only

MCFAs which bind PPARc exhibit ant-adipogenic actions in 3T3

cells. While suggestive, much more work must be done to explore

connections between physiologic actions and PPARc binding.

First, MCFAs used at high concentrations are likely to influence

multiple metabolic pathways and regulatory events within the cell

and it is difficult to parse actions that may be mediated through

direct PPARc binding from other effects on cell behavior; MCFAs

may also reduce PPARc protein and transcript levels by unknown

indirect mechanisms [28]. Second, it is not clear whether MCFAs

could reach sufficient concentrations to modulate PPARc in vivo.

Serum MCFA concentrations do reach the 100 mM-1 mM range

[27], comparable to effective concentrations in transfections, and

MCFAs are known to accumulate in adipocytes over time

(OBESITY RESEARCH 2003); it will be important to explore

connections between adipocyte FA content and PPARc occupan-

cy and binding.

Also of note is that the trimeric MCFA binding mode resembles

aliphatic chain organization of triglycerides and phospholipids.

Recent analysis of PPARa associated ligands in mouse liver

Figure 6. MD Simulations Predict Poor H12 packing in the presence of LA (C12). MD snapshot showing a hydrogen bond between Tyr473
and the ligand (cyan), which is persistent throughout the course of the simulations with NA (C9) and DA (C10), and an instantaneous conformation
obtained from LA (C12) runs showing rupture of this bond and the concomitant displacement of H12 away from the body of the LBD (magenta).
doi:10.1371/journal.pone.0036297.g006

Figure 7. MD Simulations reveal a role for water in PPARc-
MCFA Interactions. (A) LBP showing superposed configurations of
NA (white) observed in the simulations overlaid on native NA positions
observed in the X-ray structure (red) and the corresponding average
occupied volumes (color surfaces; NA1 is purple, NA2 is green and NA3
is orange. The average volume occupied by water molecules is shown
in blue. Positions of NA carboxylate groups are marked with a C. (B)
Waters surrounding NA at the three binding sites. The amount of water
during independent simulations is shown in grey and average
hydration numbers are shown in color; on average 1, 7, and 8 water
molecules coordinate NA in sites I, II, and III respectively. (C)
Distributions of RMSD of NA bound to PPARc in the three binding
sites computed from the simulations.
doi:10.1371/journal.pone.0036297.g007

Table 1. Interaction energies of NAs with PPARc system
components.

Interaction energies (kcal mol21)

MCFA
Complete
system PPARc protein Water

NA1 2140614 272611 267618

NA2 2186621 222612 2163618

NA3 2188624 246627 2141623

doi:10.1371/journal.pone.0036297.t001
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indicates that the phospholipid 1-Palmitoyl-2-Oleoyl-sn-glycero-3-

Phosphatidylcholine (16:0/18:1-GPC) is an endogenous PPARa
activator [29]. Perhaps PPARc may be able to accommodate

phospholipids or triglycerides with MCFA moieties. More

generally, our findings suggest that there may be natural ligands

that behave as selective PPAR modulators with useful properties.

Finally, our results raise an obvious question; did PPARc harbor

bacterial ligands in previous ‘‘apo’’- structures and could these

have influenced PPARc conformation? This was the case for

PPARd, where a reported apo-LBD structure was later shown to

contain one long chain FA molecule in the LBP, predominantly

cis-vaccenic acid (11, Z-octadecenoic acid), which stabilized

PPARd H12 in an active position [30,31]. Additionally, bacterial

phospholipids have been detected in LBPs of human liver receptor

homolog 1 and steroidogenic factor 1 [32,33] and long chain FAs

co-purify with hepatocyte nuclear factor 4 [34]. For PPARc, the

LBD can be crystallized in true apo- form and we were mostly

unable to find ligands in the LBP of previous apo-structures and

have obtained our own structures of unliganded PPARc LBDs and

cannot detect MCFAs or other ligands in LBPs. We did find one

possible instance of an FA-like electron density that resembles a

long chain polyunsaturated FA in the original apo-PPARc
structure [18] (Fig. S5). Given that bacterial ligands have now

co-crystallized with multiple NRs, it will be very important to

consider the possible presence of bacterial ligands in ‘‘apo’’-

PPARc and-NR structures and the potential impact of such

ligands on LBD conformation.

Materials and Methods

PPARc-LBD Expression and Purification
PPARc (204–477) was expressed as an N-terminal His-tagged

protein using pET28a vector (Novagen), as previously described

[35]. Freshly transformed E. coli BL21 (DE3), obtained from

Novagen, USA, were grown in LB media at 20uC to an

OD600 = 1.2. The culture was induced (1 mM IPTG) and grown

at 20uC for 5 hr. Cells were resuspended in a 25 ml/L culture of

buffer A (5 mM imidazole, 25 mM Tris, 100 mM NaCl, 1 mM

TCEP, pH8.0) and disrupted by lysozyme treatment followed by

sonication and the soluble fraction isolated by centrifugation

(35,0006g, 45 min). Supernatant was loaded onto Co2+-charged

resin TALON (BD Biosciences), washed with 20 column volumes

buffer A and eluted with buffer B (500 mM imidazole, 25 mM

Tris, 100 mM NaCl, 1 mM TCEP, pH8.0). The fraction with

protein was dialyzed over buffer C (25 mM Tris, 50 mM NaCl,

1 mM TCEP, pH8.0) to remove imidazole, and protein cleaved

with thrombin (Sigma-Aldrich) (10 U/mg) at room temperature

for 12 h. PPARc-LBD was quantified using the Bradford protein

assay (Pierce) and Coomassie Blue staining.

Crystallization and Structure Determination
PPARc crystals grew in hanging drop crystallization trials. 2 ml

of well solution containing 0.1 M Tris-HCl, pH 7.5+0.9 M

sodium citrate were equilibrated vs. 2 ml concentrated protein

solution. Crystals were obtained after 3–5 days at 18uC. Prior to

data collection, a single crystal was immersed in cryoprotectant

containing 20% glycerol and flash frozen in a nitrogen stream at

2100uC. X-ray diffraction data were collected at the protein

crystallography W01B-MX2 beamline of the Brazilian Synchro-

tron Light Laboratory (LNLS), Campinas, Brazil [36]. Observed

reflections were integrated, merged, and scaled with DENZO and

SCALEPACK in HKL2000 [37]. The structure was solved by

molecular replacement using PHASER [38] and a previously

published PPARc LBD structure (PDB code: 1ZEO [39]) as the

search model. PHENIX [40] was used for structural refinement

with several cycles of model rebuilding in COOT [41]. The

coordinates and structure factors of PPARc-NA and PPARc-

Rosiglitazone have been deposited in the Protein Data Bank with

the PDB ID codes 4EM9 and 4EMA, respectively.

Cell Culture and Transfection
Transfections (HeLa or HepG2 cells, obtained from American

Type Culture Collection, Manassas, VA; 5XGAL4 RE or DR1

luciferase reporter) used +/2 GAL-PPAR LBD or full length

PPARc expression vector. Luciferase assays were performed by

standard methods, standard errors were derived from quadruplet

points and experiments repeated .3 times. PPARc mutants were

created using the Stratagene kit and verified by sequence analysis.

For NIH3t3 differentiation assays, cells were cultured in standard

FBS supplemented with Rosi or MCFA [23].

3T3-L1 Differentiation Assay and Oil Red O staining
Murine 3T3-L1 cells were maintained in Preadipocytes medium

(Zen-Bio). Cells were induced to differentiate two days post

confluent using DMEM/Ham’s F-12 medium supplemented with

Insulin, Dexamethasone and Isobutylmethylxanthine in the

absence or presence of 100 nM Rosiglitasone, 1 mM HA C6, or

1 mM DA C10 as indicated in Figure legend. Cells were then fed

with Zen Bio’s AM-1-L1 media. On day 7 cells were fixed, stained

with Red Oil O and phase contrast images were taken using an

Olympus Ix81 microscope (106magnification).

Molecular dynamics
MD simulations used the PPARc chain A X-ray structural

model. The missing loop (262–273) was modeled from residues

257–277 of a previous structure (PPARc 1PRG model [18]),

which fit well into the structure after alignment with LovoAlign

[42]. A solvation shell of at least 15 Å was created using VMD

[43] and Sodium and Chloride ions added in a concentration close

to 0.15 mol L21 to render the system electrically neutral. The final

Figure 8. Predicted Interactions of NA3 and b-sheets. The figure
shows a snapshot of the MD simulation, revealing contacts between
NA3 and Ser342 that are not apparent in the crystal structure but are
seen regularly throughout the course of the simulation.
doi:10.1371/journal.pone.0036297.g008
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system contained 53,530 atoms. Simulations were performed with

NAMD [44] using periodic boundary conditions and CHARMM

parameters [41] for protein and NA (C9) and TIP3P [42]

parameters for water. Auxiliary simulations were also performed

for DA and LA and initial structures were modeled from the NA-

PPARc crystal structure by adding missing atoms to C9.

A 12 Å cutoff radius was used for van der Waals interactions,

whereas the electrostatic forces were handled by Particle Mesh

Ewald sums [43]. Temperature was set to 300 K and pressure to 1

atm in all simulations. A 2 fs time-step was used integrate the

equations of motions using the Verlet algorithm. 12 independent

sets of equilibration and production simulations were performed.

The protocol for each equilibration/simulation was: (1) Energy

minimization using 500 steps of conjugate gradients (CG), keeping

all atoms fixed, except modeled loop. (2) 2000 CG steps keeping

only protein atoms fixed except modeled loop. (3) With same

atoms fixed, 200 ps MD in the NPT ensemble, using temperature

scaling at every 1 ps and a Langevin piston to control pressure

with a period of 0.2 ps and damping time of 0.1 ps. (4) 500 CG

steps followed by 150 ps MD with the same protocol, removing

restraints on all but fixed Ca atoms. (5) 200 ps MD with the same

protocol, without restraint. (6) Production runs started from the

last frame of this equilibration simulation and were 2 ns long. The

same protocol was used for production runs, except that

temperature was controlled via a Langevin bath with a damping

coefficient of 1 ps21.

Supporting Information

Figure S1 Structures of PPARc A and B chains. The left

(copper) shows the organization of the PPARc dimer B-chain, with

positions of MCFAs marked in purple. The right figure shows

overlays of PPARc A (green) and B (copper) chains; note the

different position of C-terminal H12.

(TIF)

Figure S2 Mass spectroscopic analysis of MCFA inter-
actions with PPARc LBD. We performed MS analysis of

purified PPARc preparation used for crystallization. MS spectra of

the derivatized MCFAs OA (top) and NA (bottom) analyzed by

GC/MS are shown. Analysis of extracts and FA Methyl Ester

standards (FAMEs; C8:0-C12:0; C13:0-C17, Sigma Chem. Co,

and C18:0-C20:5 RESTEK; Bellefonte, PA, USA) were per-

formed on a GC-MS system Shimadzu, mod. QP5000, fitted with

an FID and a split/splitless injector. Separations were performed

on a RESTEK Rtx-wax capillary column [15 m, 0.25 mm i.d.,

0.25 mm film thickness] (Bellefonte, PA, USA) connected to the

MS ion source and helium was used as the carrier gas (1.5 ml/

min). Oven temperature was maintained at 80uC for 3 min, then

increased at 3uC/min to 250uC and stabilized until all components

eluted. The ion source (Electron Impact – EI) was kept at 200uC
and the transfer line at 310uC. EI spectral (70 eV) analyses were

acquired with a mass selective detector (MSD). Data acquisitions

were performed using Class-VP 4.3 software (Shimadzu, Japan).

Standards were analyzed by injecting 0.4 ml of a solution of

FAMEs (1:10 v/v in hexane) with a split ratio 1:50, while esterified

extracts were analyzed by injecting 2 mL (3.2 mg of lipid material).

FAs were identified by comparison between their retention times

with FAME standards during GC analysis and matching mass

spectra for samples and standards. A compound was identified if

its retention time and EI mass spectrum were identical with

reference compound. FAMEs of the web FAs were obtained by

transesterification with a solution of H2SO4 10% in methanol, at

120uC during 90 min.

(TIF)

Figure S3 Effects of different MCFAs on the PPAR LBP.

RMSD distribution of the BP residues comprising sites I, II, and

III, relative to the C9-PPARc holo crystal structure reported here,

from simulations with C9, C10, and C12. The distributions are

unimodal for C10-bound LBD (red), suggesting a snuggled fit of

this ligand in the BP. The simulations also suggest that the BP

presents largest conformational variations in the presence of C12

(cyan). This is particularly noticeable for residues comprising

binding site I near H12.

(TIF)

Figure S4 RMSD distribution for the Tyr473 residue in H12

computed for C9, C10, and C12 MCFAs bound to PPARc. Y473

is least mobile in the presence of C10 and most mobile with C12,

where it exhibits a biphasic distribution consistent with two

average positions.

(TIF)

Figure S5 Possible occupancy of LBP in a previous Apo-
PPARc Structure. A) The figure shows electron density

calculated from structural factors deposited for PDB structure

1PRG (left). B) Superposition with crystal structure of PPAR

bound to 5,8,11,14,17-eicosapentaenoic acid (EPA, PDB 3GWX)

shows a significant degree of correlation between the experimental

electron density and the bound fatty acid (right).

(TIF)

Table S1 Data collection and refinement statistics.

(DOCX)
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