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Abstract

We have recently shown that the immunophilin FKBP5 (also known as FKBP51) is a scaffolding protein that can enhance
PHLPP-AKT interaction and facilitate PHLPP-mediated dephosphorylation of Akt Ser473, negatively regulating Akt activation
in vitro. Therefore, FKBP5 might function as a tumor suppressor, and levels of FKBP5 would affect cell response to
chemotherapy. In the current study, we have taken a step forward by using a pancreatic cancer xenograft mice model to
show that down regulation of FKBP5 in shFKBP5 xenograft mice promotes tumor growth and resistance to gemcitabine,
a phenomenon consistent with our previous findings in pancreatic cell lines. In addition, we also found that inhibitors
targeting the Akt pathway, including PI3K inhibitor, Akt inhibitor and mTOR inhibitor had a different effect on sensitization
to gemcitabine and other chemotherapeutic agents in cell lines, with a specific Akt inhibitor, triciribine, having the greatest
sensitization effect. We then tested the hypothesis that addition of triciribine can sensitize gemcitabine treatment,
especially in shFKBP5 pancreatic cancer xenograft mice. We found that combination treatment with gemcitabine and
triciribine has a better effect on tumor inhibition than either drug alone (p,0.005) and that the inhibition effect is more
significant in shFKBP5 xenograft mice than wt mice (p,0.05). These effects were correlated with level of Akt 473
phosphorylation as well as proliferation rate, as indicated by Ki67 staining in xenograft tumor tissues. These results provide
evidence in support of future clinical trials designed to tailor therapy based on our observations.
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Introduction

Cytidine analogues such as gemcitabine are widely used to treat

a variety of cancers. Gemcitabine remains standard therapy for

pancreatic cancer in the adjuvant and palliative settings [1,2,3].

However, the gemcitabine response rate is very low in pancreatic

cancer, with only an 18% 1 year survival rate [4]. This poor

survival rate is primarily because of the lack of early detection and

frequent metastasis of primary tumors into lymph nodes and

surrounding organs, such as the liver and stomach [5,6,7]. As a step

toward individualized gemcitabine therapy in order to achieve

better outcomes, we previously performed a genome wide

association study using 197 individual lymphoblastoid cell lines

[8,9] and identified a protein, FKBP5, that showed a significant

effect on gemcitabine response in tumor cells by negatively

regulating Akt phosphorylation at serine 473 [10,11]. Phosphor-

ylation of Akt activates the Akt pathway, which plays a critical role

in tumorigenesis and chemoresistance [12,13,14,15]. Therefore,

low FKBP5 expression renders tumor cells resistant to many

chemotherapeutic agents, including gemcitabine [8]. In addition,

FKBP5 expression is low or lost in many pancreatic cancer cell

lines and pancreatic cancer patient samples, correlating with

increased Akt Ser473 phosphorylation [10].

These results suggested that FKBP5 might be a tumor

suppressor and that levels of FKBP5 might determine patients’

response to chemotherapy. If that is correct, patients with low

levels of FKBP5 and Akt hyperactivation might benefit from the

addition of inhibitors targeting the Akt pathway. In the current

study, we tested that hypothesis by using an FKBP5 knockdown

pancreatic cancer xenograft mouse model (shFKBP5) and the

results of these experiments may form a foundation for future

clinical translational studies. We found that shFKBP5 xenograft

mice showed a significant increase in tumor burden compared

with wtFKBP5, and that these tumors were more resistant to

gemcitabine treatment. While both wt and shFKBP5 xenograft

mice were able to benefit from combination therapy with

gemcitabine and the Akt inhibitor, triciribine (TCN), shFKBP5

mice showed a greater effect after combination treatment.

Materials and Methods

Cell Lines
The human pancreatic cancer cell lines SU86, ASPC1, and

BXPC3 were gifts from Dr. Daniel D. Billadeau, Mayo Clinic.

Human breast cancer cell lines HS578T (HTB-126TM) and MCF7

(HTB-22TM) were obtained from the American Type Culture

Collection (ATCC). The pancreatic cancer cell lines were cultured

in RPMI 1640 supplemented with 10% fetal bovine serum, and

maintained in an incubator with a humidified atmosphere of 5%

CO2 at 37uC. The human breast cancer cells were cultured with

DMEM supplemented with 10% fetal bovine serum under the

conditions described above.
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Plasmids and Short Interfering RNA
The FKBP5 shRNA and siRNA used in the knock down studies

were purchased from QIAGEN Inc. (Valencia, CA). Transfection

was performed twice, 24 hours apart, with 200 nM siRNA using

the LipofectamineTM RNAiMAX reagent (Invitrogen, Carlsbad,

CA) according to the manufacturer’s instructions.

Sequences for shRNA against FKBP5 were:

First FKBP5 shRNA.

Sense strand: GGG UAA ACA GAU UGA GCA UdTdT.

Antisense strand: AUG CUC AAU CUG UUU ACC CdGdT.

Second FKBP5 shRNA.

Sense strand: AAU AUC CCU CUC CUU UCC GdTdT.

Antisense strand: CGG AAA GGA GAG GGA UAU UdGdT.

Both FKBP5 shRNA duplexes were cloned into pSuper vectors,

and pooled for transfection. The packaging cell line 293T was

infected with retrovirus pSuper–shRNA [16]. The medium was

changed 24 hours later and collected 48 or 72 hours after

transfection. The medium was then filtered through sterile filters

(0.45–mm filter) and was used to infect SU86 cells. Infected cells

were selected with 2 mg/ml puromycin (Sigma-Aldrich). Sixteen

puromycin -resistant colonies that were verified by RT-PCR were

then pooled and stable transfectants were maintained in RPMI

1640 supplemented with 10% FBS and 2 mg/ml puromycin.

Sequences for siRNA against FKBP5 were:

Sense strand: GGG UAA ACA GAU UGA GCA UdTdT.

Antisense strand: AUG CUC AAU CUG UUU ACC CdGdT.

Sequences for negative control siRNA were:

Sense strand: UUC UCC GAA CGU GUC ACG UdTdT.

Antisense strand: ACG UGA CAC GUU CGG AGA AdTdT

Drugs and Cell Proliferation Assays
Gemcitabine was provided by Eli Lilly (Indianapolis, IN).

Triciribine (TCN), rapamycin and LY 294002 were purchased

from EMD Biosciences (San Diego, CA). Etoposide and paclitaxel

were purchased from Sigma-Aldrich (St. Louis, MO). Cytotoxicity

assays with the tumor cell lines were performed with the CellTiter

96H AQueous Non-Radioactive Cell Proliferation Assay (Promega

Corporation, Madison, WI) as described previously [17]. Cyto-

toxicity was assessed by plotting cell survival versus drug

concentration (on a log scale). The IC50 phenotype (effective

dose that kills 50% of the cells) was calculated using a four

parameter logistic model and was used for statistical comparison

between different treatments.

The growth-inhibitory effects of gemcitabine, etoposide and

paclitaxel as well as the effects of combination treatment with

TCN, rapamycin and LY 294002 in BXPC3, ASPC1, SU86,

MCF7 and HS578T cells were also determined using the MTS

assay. Results reported represent the averages of three indepen-

dent replicates.

Transient Transfection and RNA Interference
Human BXPC3 and ASPC1 pancreatic cancer cell lines as well

as MCF7 and HS578T breast cancer cell lines were used to

perform the siRNA studies. The Hiperfect transfection reagent

(QIAGEN) was used for siRNA reverse transfection. Specifically,

cells were seeded into 96-well plates and were mixed with siRNA-

complex, consisting of 10 nM of specific or negative control

siRNA (QIAGEN) and 0.1 ml of lipofectamineTM RNAiMAX

reagent (Invitrogen, Carlsbad, CA).

Quantitative Real-time Reverse Transcription PCR
Total RNA was isolated from cultured cells with the Qiagen

RNeasy kit (QIAGEN Inc. Valencia, CA), followed by QRT-PCR

performed with the 1-step, Brilliant SYBR Green QRT-PCR

master mix kit (Stratagene, La Jolla, CA). Specifically, primers

purchased from Qiagen were used to perform QRT-PCR using

the Stratagene Mx3005PTM Real-Time PCR detection system

(Stratagene). All experiments were performed in triplicate with b-
actin as an internal control. Reverse transcribed Universal Human

reference RNA (Stratagene) was used to generate a standard

curve. Control reactions lacked RNA template.

Western Blot Analyses
SDS-PAGE and Western blot analysis were carried out as

previously described [10]. FKBP5 antibodies were raised against

GST fusion proteins containing amino-terminal residues 1–100 of

FKBP5. Antibodies against Akt (#9272), phospho-Akt (Ser473)

(#9271), phospho-Akt (Thr308), FOXO1 (#9454), phospho-

FOXO1 (Thr 24) (#9464), GSK3b (#9315) and phospho-GSK3b
(#9316) were purchased from Cell Signaling Inc (Boston, MA).

Tumor specimens were processed for Western blotting as de-

scribed previously using a Triton X-100-containing lysis buffer

[10]. Blots were developed with Super Signal Chemiluminescence

reagent (Pierce, Rockford, IL).

Athymic Nude Mouse Tumor Formation Assay
All mice used in this study were maintained in the Mayo Clinic

Animal Breeding Facility. All experimental protocols were

reviewed and approved by the Mayo Clinic Institutional Animal

Care and Use Committee (protocol no. A14008), and all studies

were performed according to the methods approved in the

protocol.

SU86 cells stably expressing FKBP5 shRNA and mock cells

were injected subcutaneously into the left inguinal area of 4-week-

old female athymic recessive nude/nude mice (athymic Ncr-nu/

nu: National Cancer Institute-Frederick) using 19-gauge needles

[18,19]. Each mouse received one injection of 56106 cells in

200 ml serum-free DMEM. Animals were monitored for activity

and physical condition every day, and the determinations of body

weight and measurement of tumor mass were performed every

3 days. Tumor growth was monitored for 6 weeks, and tumor

volume was calculated as 1/2a6b2, where ‘‘a’’ stands for the long

diameter and ‘‘b’’ is the short diameter [18,19]. The tumors were

then surgically removed and processed.

Therapy Evaluation
Mice bearing subcutaneous wtFKBP5 SU86 and shFKBP5

SU86 tumors entered the study when tumors reached ,100 mm3

(day 0) and were randomized to treatment groups, with 5 mice in

each group. Gemcitabine was administered i.p. every 3 days at

concentrations of 25, 50 or 100 mg/kg. For the gemcitabine/

TCN study, four treatment groups were included: (a) vehicle, (b)

TCN, at a dose of 0.5 mg/kg/d in 1.5% sodium bicarbonate

(Thermo Fisher) w/v in water, pH 8.0, administered in 100 mL

intraperitoneal injections once daily from Monday to Friday for 4

weeks, (c) gemcitabine, at a dose of 50 mg/kg in saline,

administered i.p. every 3 days for 4 weeks, or (d) a combination

of the two treatments. There was no evidence of gross toxicity in

the drug-treated animals as measured by weight loss. The tumor

growth rate was calculated with the size measured at each time

point normalized to the initial tumor volume at day 0 when tumors

of shFBKP5 and wtFKBP5 xenograft mice reached 100 mm3.

Results of the treatment effect were represented by tumor

inhibition ratio, defined as tumor growth rate of shFKPB5 mice

corrected for that of wt FKBP5 mice. Maximal suppression of

tumor growth was used for statistical comparison between different

treatment groups.

FKBP5 a Biomarker for Pancreatic Cancer Treatment
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Immunohistochemical Staining
The tissue sections were deparaffinized in xylene, dipped in

decreasing concentrations of ethyl alcohol, and then rehydrated in

distilled water. Antigen retrieval for Ki67 (Abcam, Cambridge,

MA) was performed by placing slides in preheated EDTA as the

retrieval solution in a steamer at 98uC for 30 minutes. The staining

procedure was carried out in a Dako Autostainer Plus. Specifically,

the tissue sections were treated with Peroxidase Blocking Reagent

(Dako, Carpinteria, CA) for 5 minutes and then were washed with

1x Wash Buffer (Dako, Carpinteria, CA), followed by treatment

with Protein Block Serum-Free (Dako, Carpinteria, CA) for 5

minutes. The tissue sections were then incubated with the Ki67

primary antibody for 60 minutes at room temperature, followed by

incubation with the secondary antibody (Dako, Carpinteria, CA)

for 15 minutes. High-sensitivity diaminobenzidine (DAB+) chro-
mogenic substrate system (Dako, Carpinteria, CA) was used for

colorimetric visualization.

Statistical Analysis
The experimental data are expressed as mean 6 SEM.

Differences between control and treated groups were determined

by the use of paired t test or ANOVA, and p,0.01 was considered

to be statistically significant.

Results

Knockdown of FKBP5 Results in Increased Pancreatic
Tumor Growth and Gemcitabine Resistance
Previous studies have demonstrated that FKBP5 expression is

down-regulated in pancreatic cancer and have suggested that

FKBP5 may be involved in the tumorigenesis of pancreatic cancer.

The SU86 pancreatic cancer cell line was stably transfected with

pooled FKBP5 shRNA. We then determined the effect of FKBP5

on the formation of xenograft tumors. There was a dramatic

increase of tumor size in FKBP5 knockdown mice compared with

control mice, indicating that FKBP5 is a potential tumor

suppressor (Figure 1A). As shown in Figure 1A, the tumor volume

was significantly greater in shFKBP5 mice than in control mice. At

day 18, the mean volume was 2006101 mm3 in control animals

(n = 5 mice/group), and 9376103 mm3 in shFKBP5 mice (n = 5;

p,0.001). This trend was consistent until day 30 when the mice

were sacrificed (shFKBP5 mice: 29996298 mm3, and wtFKBP5

mice: 11906243 mm3; n= 5; p,0.001). Since our previous

studies showed that the expression level of FKBP5 was correlated

with the sensitivity of pancreatic cancer cells to chemotherapeutic

drugs [10], we next determined whether knockdown of FKBP5

could affect the chemosensitivity of SU86 xenografts to gemcita-

bine in vivo. We first tested the dose effect of gemcitabine with both

wt and shFKBP5 SU86 xenografts once tumors reached the same

size, 100 mm3. A dose-dependent inhibition of tumor growth was

observed with gemcitabine for all the SU86 xenografts (Figure 1B

and C). FKBP5 wild type SU86 xenografts showed a statistically

significant response to 100 mg/kg of gemcitabine treatment

compared with shFKBP5 SU86 xenografts treated with the same

dose of gemcitabine (Figure 1D, p,0.05), suggesting that low

expression of FKBP5 can cause resistance to gemcitabine. We also

found that at the lower concentrations of gemcitabine, the

wtFKBP5 also exhibited a trend toward better response than

shFKBP5 xenograft mice, although not statistically significant

(data not shown). All treatments were well tolerated, with no

significant body weight loss (Figure 1E and F).

We have previously shown that activated Akt signaling is

associated with low levels of FKBP5 in pancreatic cancer cells

[10]. Therefore, we examined the activity of the Akt pathway in

tumor samples for each cell line. In shFKBP5 xenografts,

phosphorylated Akt-Ser473, FOXO1and GSK3b were signifi-

cantly increased compared with the control (Figure 2, p,0.01).

Addition of gemcitabine had no effect on levels of phosphorylation

for these proteins. These results were consistent with our previous

findings using pancreatic cell lines [10]. Collectively, this series of

experiments suggests that FKBP5 functions as a tumor suppressor

by negatively regulating the Akt pathway in vivo. In addition, the

level of FKBP5 affects sensitivity to gemcitabine treatment

associated with its effect on Akt phosphorylation in the pancreatic

xenograft model.

Akt Inhibitor Sensitizes Tumor Cells with Low FKBP5 to
Chemotherapeutic Agents in vitro
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is a cell

survival pathway that is important for normal cell growth and

proliferation [20,21,22,23]. This pathway is also an important

target for cancer treatment, including mammalian target of

rapamycin (mTOR) inhibitors, inhibitors of PI3K and inhibitors

of Akt that have already demonstrated clinical efficacy for different

tumors [24]. Since FKBP5 negatively regulates Akt activity, we

would expect that the addition of inhibitors targeting the Akt

pathway might reverse resistance to gemcitabine. To test this

hypothesis, we performed a series of in vitro experiments using

three pancreatic tumor cell lines (ASPC1, BXPC3 and SU86) and

two breast cancer cell lines (MCF7 and HS578T). We selected

three different Akt pathway inhibitors, including an upstream

inhibitor of PI3K, LY294002, a specific Akt inhibitor, triciribine

(TCN) that inhibits phosphorylation of all three isoforms of Akt,

and an mTOR inhibitor, rapamycin. We then evaluated the

cytotoxicity effect of gemcitabine in combination with LY294002,

TCN, and rapamycin, respectively. Table 1 summarizes IC50

values of each treatment for these five cell lines. Our data

confirmed, once again, that knockdown of FKBP5 desensitized

cells to gemcitabine treatment in all of the cell lines tested (Table 1

and Figure S1). LY294002, TCN and rapamycin had very modest

effects when used alone in either FKBP5 knockdown cells or

control cells, especially at the concentrations (10 mM of TCN,

1.4 mM LY294002, and 1 nM rapamysin) that we used for

combination treatments (Figure S2). TCN sensitized both control

and FKBP5 knockdown cells to gemcitabine (Table 1, and Figure

S1, p,0.005). However, the TCN sensitization effect was greater

in FKBP5 knockdown cells than in wtFKBP5 cells (p,0.001)

(Table 1 and Figure S1). The sensitization effects of LY294002

and rapamycin were much less than that of TCN (Table 1

LY294002, p = 0.0023,0.3412; rapamycin, p = 0.0171,0.931).

We had previously found that level of FKBP5 also affects

response to other chemotherapeutic agents, including etoposide

and taxanes [10]. Therefore, we tested whether TCN could also

sensitize those agents in the four cell lines studied. In all four cell

lines, FKBP5 knockdown made the cells more resistant to

etoposide treatment alone, which is consistent with previous

findings. We found that TCN could significantly sensitize etopo-

side in BXPC3, ASPC1, HS578T and MCF7 cells when

compared IC50 values for etoposide treatment alone vs. different

combination treatments (Table S1). The sensitization effect was

more prominent in cells with FKBP5 knockdown. LY294002

could also sensitize etoposide in BXPC3 and MCF7 cells with both

control and siFKBP5 transfection, while rapamycin had a much

less significant effect in control or FKBP5 knock down cells (Table

S1). Addition of TCN could also sensitize paclitaxel in all four cell

lines (Table S2). However, there was no significant difference in

the degree of the sensitization effect between control and FKBP5

FKBP5 a Biomarker for Pancreatic Cancer Treatment
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knockdown cell lines. LY294002 and rapamycin had limited effect

on paclitaxel sensitization.

The effects of LY294002, TCN and rapamycin in combination

with gemcitabine on the Akt signaling pathway were also

evaluated in SU86 cells. FKBP5 was knocked down using

siRNA that targets FKBP5 (Figure 3A). Akt 473 phosphorylation

was increased in FKBP5 knock down cells compared with control

(Figure 3B, column 1 for both left and right panels, p,0.005), as

well as downstream signaling molecules, such as phosphorylated

GSK3b and FOXO1 (Figure 3C and D, column 1 for both left

and right panels), consistent with our previous results [10]. TCN

alone was sufficient to inhibit the Akt pathway as shown by

decreased phosphorylation levels of Akt compared with control

(Figure 3B, column 3 for both left and right panels, p,0.005),

GSK3b and FOXO1 (Figure 3C and D, column 3 for both left

and right panels). LY294002 also had an effect on the PI3K-Akt

signaling pathway (Figure 3C and D, column 5 for both left and

right panels). However, rapamycin alone had less of an inhibitory

Figure 1. Loss of FKBP5 expression in pancreatic cancer cells results in increased tumor growth in mice. Mice bearing subcutaneous
wtFKBP5 SU86 and shFKBP5 SU86 tumors entered the study when tumors reached ,100 mm3 (day 0). All mice were randomized to control or
treatment groups and were treated with vehicle or gemcitabine at doses of 25, 50, and 100 mg/kg intraperitoneally twice per week. (A) Formation of
subcutaneous (s.c.) tumors in wt and shFKBP5 SU86 injected nude mice. Results are represented by the tumor volume measured at each time point.
**P,0.001 (5 mice/group) as compared between wtFKBP5 and shFKBP5 xenografts treated with saline. (B and C) Gemcitabine response in wt or
shFKBP5 xenograft mice. Results are represented by the tumor volume measured at each time point corrected to day 0 when mice entered the study.
(D) shFKBP5 xenografts are resistant to gemcitabine in vivo. Results are represented by tumor inhibition ratio, defined as the measurements of tumor
volume at each time point normalized to day 0 for shFKPB5 mice, corrected for that of wt FKBP5 mice. **P,0.001; *P,0.05 (5 mice/group) as
a comparison of tumor growth inhibition ratio between wtFKBP5 and shFKBP5 treated with 100 mg/kg of gemcitabine. (E and F) Measurements of
body weight for wt and shFKBP5 xenografts. Body weight was recorded for each mouse every 3 days throughout the experiment. Statistical
significance was assessed by two-way ANOVA.
doi:10.1371/journal.pone.0036252.g001
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effect on PI3K-Akt pathway compared with TCN and

LY294002 (Figure 3B, C and D, column 7 both left and right

panels). TCN in combination with gemcitabine (Figure 3B, C

and D, column 4 for both left and right panels,) further

decreased the phosphorylation levels of Akt 473, GSK3b and

FOXO1 when compared with either gemcitabine (Figure 3B, C

and D, column 2 for both left and right panels) or TCN

(Figure 3B, C and D, column 3 for both left and right panels)

alone (p,0.005) and this effect was much more significant for

TCN plus gemcitabine than for LY294002 or rapamycin plus

gemcitabine (Figure 3B, C and D, column 6 and 8 for both left

and right panels). Since knockdown of FKBP5 significantly

increased Akt 473 phosphorylation levels, the reduction seen with

TCN plus gemcitabine was much more significant in FKBP5

knockdown cells (Figure 3B, C and D, column 4 for both left and

right panels), confirming our hypothesis that cells with low

FKBP5 might depend more on Akt activation and, therefore,

benefit more from the addition of Akt inhibitor.

Enhanced Tumor Growth Inhibition with TCN Plus
Gemcitabine in vivo
Next, we used our xenograft mice with either wt or shFKBP5

SU86 cells to test whether FKBP5 knockdown mice might benefit

more from the addition of the Akt inhibitor, TCN. Wild type and

FKBP5 knockdown SU86 xenograft tumors were grown in nude

mice. Once xenograft tumors formed, TCN and gemcitabine were

injected i.p. A more rapid tumor growth rate was, once again,

observed in shFKBP5 xenograft mice (Figure 4A and B). To

evaluate antitumor efficacy, tumor-bearing mice were treated with

TCN (0.5 mg/kg/day) i.p. for 4 weeks or gemcitabine (50 mg/kg)

i.p. three times a week for 4 weeks in the presence or absence of

TCN at 0.5 mg/kg, i.p. once a day for 5 days. Monotherapy with

TCN alone was not effective in wt or FKBP5 knockdown

xenografts, and there was no significant difference of maximal

suppression of tumor growth in wt and shFKBP5 xenografts when

treated with 50 mg/kg of gemcitabine alone (Figure 4C). How-

ever, cotreatment with TCN significantly enhanced gemcitabine

antitumor effect compared with either gemcitabine or TCN alone

in both wt and shFKBP5 xenograft mice (p,0.005 for both wt and

shFKBP5) (Figure 4D and E). Greater inhibition effect of TCN

plus gemcitabine was observed in shFBKP5 xenograft mice

compared with wtFKBP5 (p,0.005) (Figure 4F). All treatments

were well tolerated, and no animals died during the course of

treatment. Therefore, the combination of gemcitabine and TCN

showed a good safety profile in mice with no mortality or body

weight loss (Figure 4G and H). Thus, the combination of TCN and

gemcitabine exerted significantly greater in vivo antitumor effects

than either agent alone, especially when the level of FKBP5 was

decreased.

We next examined relative Akt 473 phosphorylation within the

xenograft tumors after different treatments. We found that

gemcitabine-resistant shFKBP5 xenografts had elevated levels of

phosphorylated Akt 473 compared with wtFKBP5 (Figure 5A,

column 1 for both left and right panels, p,0.005) as expected.

TCN alone moderately inhibited phospho-Akt (53.1 6 6.2% of

control) (Figure 5A). Gemcitabine alone only slightly inhibited

phospho-Akt in tumor (Figure 5A). With the addition of TCN,

levels of phosphorylated Akt 473 were significantly reduced

compared with controls (Figure 5A, p,0.005). To further address

the underlying mechanism for inhibition of tumor progression,

proliferation was determined by immunostaining in the xenograft

Figure 2. FKBP5 Regulates Akt Phosphorylation at Ser473 in
vivo. Tumor samples from wtFKBP5 SU86 or shFKBP5 SU86 xenografts
were prepared and analyzed for phosphorylation of Akt and
downstream signaling molecules by Western blot analysis.
doi:10.1371/journal.pone.0036252.g002

Table 1. Combinatory effects of gemcitabine and inhibitors
targeting PI3K-Akt-mTOR pathway in human pancreatic and
breast cancer cells.

Cells Agent IC50 (nM)a p valueb

Neg.
siRNA siFKBP5

Neg.
siRNA siFKBP5

BXPC3 Gem 7.45 17.53

Gem+TCN 1.179 2.634 0.0005 0.0003

Gem+LY294002 2.842 6.839 0.0023 0.001

Gem+Rap 9.956 12.19 0.1509 0.1755

ASPC1 Gem 4.935 15.48

Gem+TCN 1.725 4.977 0.001 0.0007

Gem+LY294002 3.122 8.343 0.1985 0.0216

Gem+Rap 3.356 13.74 0.0171 0.2744

MCF7 Gem 5.697 15.63

Gem+TCN 1.999 2.925 0.0036 0.0003

Gem+LY294002 4.339 8.509 0.0045 0.0054

Gem+Rap 5.369 10.84 0.9096 0.0769

HS578T Gem 3.447 14.58

Gem+TCN 1.115 2.92 0.003 0.001

Gem+LY294002 4.095 8.177 0.3412 0.0099

Gem+Rap 3.332 9.903 0.931 0.0342

aThe values represent the average of three independent experiments.
bIC50 values between combination treatment vs. Gem along were analyzed
statistically by performing t tests.
Abbreviations: Gem, gemcitabine; TCN, tricirbine; Rap, rapamycin.
doi:10.1371/journal.pone.0036252.t001
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tumors. Immunostaining of the proliferation marker Ki67 revealed

more proliferating tumor cells in shFKBP5 xenografts when

compared with controls (Figure 5B and C). The proliferative

activity was lower in specimens treated with gemcitabine plus

TCN than with gemcitabine alone in both wt and shFKBP5

xenografts (Figure 5D, p,0.01). These results strongly suggest that

the combination of TCN and gemcitabine enhanced inhibition of

the Akt pathway.

Discussion

We recently reported that FKBP5 is a scaffolding protein that

can enhance PHLPP-Akt interaction [10]. The functional

consequence of this interaction results in negative regulation of

Akt activity. Down regulation of FKBP5 results in decreased

PHLPP-Akt interaction and increased Akt phosphorylation at the

Ser473 site [10], suggesting that FKBP5 may function as a tumor

suppressor, an important fact contributing to chemoresistance.

Based on our previous findings with FKBP5 and its role in

chemoresistance [9,10], we tested this hypothesis in vivo using

a xenograft mice model.

We found that tumors in shFKBP5 mice were more resistant to

gemcitabine treatment and also exhibited a faster tumor growth rate

(Figure1A–D).Thisphenomenonappeared to involve the regulation

of Akt activation, as determined by phosphorylated Akt and

downstream signaling molecules (Figure 2). Since Akt is activated

when FKBP5 is knocked down, we hypothesized that the addition of

inhibitors targeting this pathway might reverse the drug resistance

phenotype. The PI3K-Akt pathway has multiple drugable targets

[25,26,27,28,29,30,31], so we tested a series of inhibitors targeting

PI3K, Akt and mTOR. We observed different treatment effect in

different cell lines (Tables 1,S1andS2),whichmightbedue to thecell

or tissue specificity. We found that the specific Akt inhibitor, TCN,

whenadministered togetherwithgemcitabinehad thebest treatment

outcome when compared with the other inhibitors tested (Table 1,

and Figure S1), suggesting that the effect of FKBP5 on gemcitabine

response depends mainly on Akt 473 phosphorylation. Consistent

with the treatment outcomes, when we tested molecules within the

Akt pathway that reflectAkt activation, treatmentwithLY294002 or

rapamycin together with gemcitabine showed a less significant

decrease of Akt activity when comparedwith gemcitabine plus TCN

(Figure 3). As shown in Figure 4, even with wt xenografts, the

Figure 3. Effects of gemcitabine, TCN, LY294002, rapamycin and the combination of these agents on Akt signaling pathways in
FKBP5 knock down pancreatic cancer cells. (A) FKBP5 knock down efficiency was determined by RT-PCR and Western blot. (B) SU86 cells were
treated with DMSO (vehicle), 10 nM of gemcitabine alone, or 10 mM of TCN, 1.4 mM LY294002, and 1 nM rapamycin alone or in combination. Dose-
dependent effects of different treatments on cellular viability were tested by MTS assay at 48 hours. Only combined treatment with TCN and
gemcitabine inhibited Akt in vitro. ***P,0.005. (C and D) The combination of TCN and gemcitabine showed the most inhibition of pGSK3b and
pFOXO1 when compared with other treatments. Statistical significance was assessed by t test and a p,0.005 was considered significant as shown by
the asterisks (***).
doi:10.1371/journal.pone.0036252.g003
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combination of gemcitabine andTCNhad a better tumor inhibition

effect, suggesting thateven inwtxenografts,Akt ishyperactivatedand

inhibition of this pathway could result in better treatment outcomes.

HoweverTCNshowedapoor inhibition effect onproliferationwhen

used as a single-agent in spite of the fact that it could reduce Akt

phosphorylation, suggesting that other pathways also contribute to

tumor development.

In addition to the role of FKBP5 in chemoresistance [10], based

on our xenograft models it could also function as a tumor

suppressor through negative regulation of the Akt pathway. As

shown in Figures 3 and 5A, activity of the Akt pathway is

significantly higher in FKBP5 knockdown SU86 xenografts than

that in wild type SU86 xenografts and these observations

correlated with higher tumor growth rates in shFKBP5 mice

Figure 4. TCN sensitizes shFKBP5 pancreatic tumors to gemcitabine. Combination of TCN with gemcitabine effectively inhibited tumor
growth in vivo. Mice with subcutaneously established tumors from wtFKBP5 SU86 or shFKBP5 SU86 cells entered the study when tumors reached
,100 mm3 (day 0), and were treated with TCN at 0.5 mg/kg daily and/or gemcitabine at 50 mg/kg every 3 days for 30 days. (A) wtFKBP5 mice and
(B) shFKBP5 mice tumor growth rate. ***P,0.005. (C) Comparison of maximal tumor suppression between wt and shFKBP5 xenografts. No significant
difference in maximal suppression of tumor growth was observed for wt and shFKBP5 xenografts when treated with 50 mg/kg of gemcitabine alone.
(D and E) Cotreatment with TCN significantly enhanced gemcitabine antitumor effect in both wt and shFKBP5 xenograft mice. **P,0.001; *P,0.05 (5
mice/group) as a comparison of tumor growth inhibition ratio between TCN plus gemcitabine and gemcitabine alone in wtFKBP5 and shFKBP5
groups, respectively. (F) Loss of FKBP5 expression results in increased sensitization effect for TCN on gemcitabine response. ***P,0.005 as
a comparison of tumor growth inhibition ratio between wtFKBP5 and shFKBP5 mice. Mean 6SEM for five tumors at each data point. (G and H)
Measurements of weight loss in wt and shFKBP5 xenografts. The toxic effects of administration of gemcitabine and gemcitabine plus TCN were
determined by recording body weight for each mouse every 3 days throughout the experiment. ANOVA analysis was performed and p,0.005 was
considered significant as shown by the asterisks (***).
doi:10.1371/journal.pone.0036252.g004

FKBP5 a Biomarker for Pancreatic Cancer Treatment

PLoS ONE | www.plosone.org 7 May 2012 | Volume 7 | Issue 5 | e36252



FKBP5 a Biomarker for Pancreatic Cancer Treatment

PLoS ONE | www.plosone.org 8 May 2012 | Volume 7 | Issue 5 | e36252



(Figure 1A). Therefore, probably because of the higher basal levels

of Akt activity, shFKBP5 xenografts responded better to combi-

nation treatment, which was seen as enhanced inhibition of tumor

growth (Figure 4F). This phenomenon was also reflected by

decreased Akt 473 phosphorylation levels after gemcitabine and

TCN treatment. The shFKBP5 xenografts showed a more

dramatic decrease in Akt 473 phosphorylation levels wt xenografts

(Figure 5A).

Our in vivo results further confirmed findings observed using the

cell lines [11]. Those studies demonstrated that lack of expression

of FKBP5 led to increased Akt phosphorylation at the regulatory

S473 amino acid residue as well as for downstream genes in the

Akt pathway such as phosphorylated FOXO1 and GSK3b.
Therefore, FKBP5 could be a tumor suppressor in pancreatic

cancer and it could also be a biomarker for response to

chemotherapy, especially gemcitabine therapy, a first line treat-

ment for pancreatic cancer. Our findings that a specific Akt

inhibitor can reverse resistance to gemcitabine in FKBP5

knockdown cells and xenografts indicate that FKBP5 levels might

be used to stratify patients into different treatment arms, such as

gemcitabine or gemcitabine plus an Akt inhibitor. Future clinical

studies will be needed to test this hypothesis. In addition, the

mechanisms underlying differences between the effects of PI3K

inhibition, mTOR inhibition and Akt inhibition in combination

with gemcitabine need to be explored further. PI3K activation

causes phosphatidylinositol-3,4,5-triphosphate (PIP3)-dependent

membrane localization of Akt and PDK1, in which the latter

can phosphorylate Akt 308 [32,33,34]. Therefore, the inhibition of

PI3K might have less effect on 473 phosphorylation. Rapamycin

can potentially activate Akt 473 phosphorylation in an mTOR-2

dependent manner due to relief of feedback inhibition of IGF-1R

signaling [35]. That may explain why treatment with rapamycin

plus gemcitabine failed to show a significant reduction of Akt 473

phosphorylation.

Obviously, these findings have to be confirmed by additional

studies using human samples or transgenic mice. However,

currently it is challenging to obtain adequate clinical samples

with similar clinical characteristics treated with gemcitabine alone

to determine the relationship between FKBP5 and treatment

response since most patients are treated with multiple agents.

Certainly future clinical trials designed to test the effect of this

biomarker will be essential to determine whether FKBP5 can be

used as a biomarker for the selection of treatment for individual

patients.

In summary, the findings presented here indicated the

importance of FKBP5 in pancreatic tumor growth and chemore-

sistance. Moreover, the data suggest that specific Akt inhibitors

might be promising adjuvant therapies for pancreatic cancer,

especially in patients with lower level of FKBP5. These findings

could help individualize therapy to achieve better treatment

outcomes for pancreatic cancer patients.

Supporting Information

Figure S1 TCN sensitizes FKBP52/2 human pancreat-
ic and breast cancer cells to gemcitabine in vitro. (A)

Knockdown efficiency for FKBP5 in BXPC3, ASPC1, MCF7 or

HS578T cells determined by real-time QRT-PCR. (B)-(F).

Cytotoxicity was determined with MTS assays in BXPC3, ASPC1,

SU86, MCF7, and HS578T cells. Cells were treated with vehicle

(DMSO), various concentrations of gemcitabine (0.01, 0.1, 1, 5,

10, 25, 50, 100, and 500 nM) alone or in combination with 10 mM
of TCN, 1.4 mM LY294002, or 1 nM rapamysin. Each data point

is mean for 3 independent experiments. Error bars indicate

standard error of the mean (SEM).

(PDF)

Figure S2 Cytotoxicity of TCN, LY294002 and rapamy-
cin in human pancreatic and breast cancer cells. (A)

Knockdown efficiency for FKBP5 in BXPC3, ASPC1, MCF7 or

HS578T cells determined by real-time QRT-PCR. (B)-(D)

BXPC3, ASPC1, MCF7 or HS578T cells were plated in 96-well

plates, treated for 48 hours with various concentrations of TCN

(0.1, 0.5, 1, 2.5, 5, 10, 25, 50, and 100 mM), LY294002 (0.1, 0.5, 1,

2.5, 5, 10, 25, 50, and 100 mM) and rapamycin (0.1, 0.5, 1, 2.5, 5,

10, 25, 50, and 100 nM), followed by MTS assay as described

under Methods. Each data point is an average of triplicates from 3

independent experiments. Error bars indicate standard error of the

mean (SEM).

(PDF)

Table S1 Combinatory effects of etoposide and inhibi-
tors targeting PI3K-Akt-mTOR pathway in human
pancreatic and breast cancer cells.

(PDF)

Table S2 Combinatory effects of paclitaxel and inhibi-
tors targeting PI3K-Akt-mTOR pathway in human
pancreatic and breast cancer cells.

(PDF)
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