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Abstract

Intracellular ice is generally lethal. One way to avoid it is to vitrify cells; that is, to convert cell water to a glass rather than to
ice. The belief has been that this requires both the cooling rate and the concentration of glass-inducing solutes be very
high. But high solute concentrations can themselves be damaging. However, the findings we report here on the vitrification
of mouse oocytes are not in accord with the first belief that cooling needs to be extremely rapid. The important
requirement is that the warming rate be extremely high. We subjected mouse oocytes in the vitrification solution EAFS 10/
10 to vitrification procedures using a broad range of cooling and warming rates. Morphological survivals exceeded 80%
when they were warmed at the highest rate (117,000uC/min) even when the prior cooling rate was as low as 880uC/min.
Functional survival was .81% and 54% with the highest warming rate after cooling at 69,000 and 880uC/min, respectively.
Our findings are also contrary to the second belief. We show that a high percentage of mouse oocytes survive vitrification in
media that contain only half the usual concentration of solutes, provided they are warmed extremely rapidly; that is,
.100,000uC/min. Again, the cooling rate is of less consequence.
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Introduction

The ability to cryobiologically preserve mammalian sperm and

preimplantation embryos has played a central role in assisted

reproduction in women, in improving the genetic quality of

livestock, and in the maintenance of mutant and transgenic lines of

mice and other mammals [1]. The successful cryopreservation of

mammalian embryos was first reported in 1972 for mice [2]. More

recently, the cryopreservation of the human oocyte has become a

matter of intense interest [3]. First, it would permit women to

delay the onset of child bearing without adverse consequences.

Second, it would permit women who face the daunting prospects

of becoming sterile from chemotherapy and radiation therapy to

subsequently give birth to children. Third, the preservation of

unfertilized oocytes does not create the ethical and legal problems

that can occur with frozen embryos. These are the chief reasons

for the interest; but unfortunately, the results so far have not

matched the interest. As of the end of 2008, only about 900 babies

world-wide have been derived from cryopreserved oocytes as

opposed to tens of thousands that have developed from frozen

embryos [4], and the procedure is still considered experimental.

A major cause of lethal injury during cryopreservation is the

formation of more than a trace amount of ice within a cell.

(Karlsson et al. [5] have calculated that the limiting amount of

internal ice compatible with viability in hepatocytes is 2 to 4% of

their water.) One route to avoid it is vitrification. In the

vitrification approach, ice formation is avoided by suspending

the cells in very high concentrations of solutes, including ones that

permeate the cell, and cooling them at high rates to temperatures

below 2100uC. As a result, the water in the system is converted

from a liquid to a glass with no ice formation. The approach also

requires high warming rates to ensure that the system does not

convert from glass to ice during warming.

There have been two firmly held premises in the vitrification

approach. One is that avoiding ice formation in cells and

obtaining high survivals demands the highest of cooling rates.

Consequently, a series of devices have been developed over the

past decade that achieve cooling rates of $10,000uC/min by

permitting the manipulation of very small volumes of oocyte

suspensions. These include electron microscope grids [6], nylon

mesh [7], open-pulled straw (OPS) [8], cryoloop [9], microdrop

method [10,11], and Cryotops [12,13].

Some authors have noted almost parenthetically that rapid

warming is also necessary to prevent the vitreous water in cells

from crystallizing during warming. But apart from a few scattered

reports, only recently has it been experimentally demonstrated

that the warming rate is much the more critical determinant of

whether mouse oocytes survive vitrification procedures, and not

the cooling rate [14].

The second premise in the vitrification approach is that the

vitrification solution in which the cells are suspended must have a

very high concentration of a mixture nonelectrolytic solutes. We

have used EAFS 10/10, a solution developed by Pedro et al. [15],
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where E, A, F, and S refer to ethylene glycol (EG), acetamide,

Ficoll, and sucrose. The mass composition (Table 1, top row) is

3.23 molal EG, 3.27 m acetamide, 0.72 m sucrose, 0.15 m salt,

and 20.7 wt. % Ficoll (24% w/v). The total molality is 7.37 molal,

of which 6.5 molal is permeating (EG and acetamide), and the

remainder non-permeating. This composition is relatively typical

of most vitrification solutions in containing mixtures of permeating

and nonpermeating solutes. These very high concentrations can

have serious consequences. First, they can be chemically toxic to

the cells. Second, they produce major cell osmotic dehydration

that may itself be damaging. In EAFS 10/10, for example, in

approximately 2 min, the oocyte water contents will drop to near

0.3/7.4 or ,5% of their isotonic value. However, as they

approach equilibrium over the next ,20 min, their water volume

will gradually increase to 28% as the permeating solutes enter

(Table 1, column M) [16]). Ordinarily, if one attempts to reduce

this problem by reducing the concentration, one faces the ‘‘catch

222’’ problem faced by Ulysses that the farther from Charybdis,

the nearer is Scylla; that is, slight reductions in solute

concentration greatly increase the cooling rate required to achieve

vitrification and greatly increase the warming rate needed to

prevent devitrification [17].

Based on our previous demonstration that a very high warming

rate and not a high cooling rate was the essential element to

surviving vitrification procedures in full strength EAFS [16], we

hypothesized for the present study that the use of very high

warming rates might also permit the use of more dilute vitrification

solutions. As we report, that has turned out to be the case.

Materials and Methods

Collection of Oocytes
Mature female ICR mice were induced to superovulate with

intraperitoneal injections of 5 IU of equine chorionic gonadotro-

pin (eCG) and 5 IU of human chorionic gonadotropin (hCG)

(Sigma, St. Louis) given 48 h apart. Ovulated unfertilized oocytes

were collected from the ampullar portion of the oviducts at 13 h

after hCG injection and were freed from cumulus cells by

suspending them in modified phosphate-buffered saline (PB1)

containing 0.5 mg/ml hyaluronidase followed by washing with

fresh PB1 medium.

Ethics Statement
All the procedures involving mice were carried out under the

University of Tennessee Institutional Animal Care and Use

Committee protocol 911-0710, approved 9 July 2010 and renewed

3 May 2011. It has been assigned a pain/distress category of C.

Composition of Vitrification Solution
The vitrification solution (EAFS 10/10) was developed by Pedro

et al. [15] for cryopreservation of mouse oocytes at metaphase II

stage. It consists of 10% (v/v) ethylene glycol (EG) and 10.7% (w/

v) acetamide dissolved in a stock consisting of 30% (w/v) Ficoll 70

and 0.5 M sucrose in PB1 medium. The final concentration of

sucrose and Ficoll are 0.4 M and 24% w/v (20.7 wt %),

respectively. Its mass composition was given in a previous report

[16] and is shown in the top row of Tables 1 and 2; namely, 3.23

molal EG and 3.27 molal acetamide as the highly permeating

cryoprotectants, and 0.150 molal salts (as NaCl) and 0.720 molal

sucrose as impermeable solutes, plus 20.68 weight % of Ficoll and

0.166 weight % of bovine serum albumin. We refer to this as 16
EAFS. The 20.7 wt% of Ficoll 70 corresponds to 431 g/kg water

[16], which is ,0.006 molal.

To prepare 0.8756, 0.756, 0.506, and 0.336 dilutions of the

16EAFS 10/10, we added 1.25 ml, 2.5 ml, 5.0 ml, and 6.67 ml

of PB1 to 8.75 ml, 7.5 ml, 5.0 ml, and 3.33 ml of the full-strength

solution. The mass compositions of the resulting diluted solutions

are also shown in Tables 1 and 2. The permeable solutes EG and

acetamide cause a transient osmotic decrease in oocyte volume

followed by a return to their original volume in less than 15 min.

In contrast, the non-permeating solutes, sucrose and salts, result in

the cells having a permanently lowered water content. The water

contents at equilibrium are shown in the right hand column of

Table 1. They are calculated from the Boyle van’t Hoff law which

states that the volume of water in an anisotonic medium relative to

the volume of water in an isotonic medium is equal to the isotonic

osmolality divided by the osmolality of nonpermeating solutes in

the medium. Note that the osmolality of the NaCl is about twice

the molality. This is because NaCl dissociates into Na and Cl ions

each of which contribute to the osmotic pressure. Ficoll is also

impermeable but because its average molecular weight is 70,000,

its molality is only ,0.006 molal. However, at high concentra-

tions, the osmolality of such polymers ceases to be a linear function

of their molality. Information in Data Sheet 18-1158-27 AA, 2001-

Table 1. Derivative solute concentrations in various dilutions of the EAFS10/10 vitrification solution.

(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K) (L) (M)

Relative Total Total Molality Molality Molality Molality Molar Molar Molar Molar Osmol Rel. vol

concn, mass volume EG acet. sucros. NaCl EG acet. sucros. NaCl non-perm. cell

EAFS (g) (ml) water

16 11.52 10 3.23 3.27 0.72 0.15 1.345 1.362 0.292 0.062 0.996 0.277

0.8756 11.33 10 2.57 2.6 0.57 0.15 1.217 1.233 0.272 0.056 0.849 0.325

0.756 11.14 10 2.01 2.04 0.45 0.15 1.079 1.093 0.241 0.051 0.726 0.38

0.56 10.76 10 1.15 1.16 0.26 0.15 0.771 0.78 0.172 0.035 0.533 0.518

0.336 10.51 10 0.7 0.71 0.16 0.15 0.538 0.544 0.12 0.024 0.436 0.633

Columns D–G. The molalities are calculated as Columns N-Q of Table 2/MW of the respective solute.
Columns H–K: The molarities are calculated as 1006Column B/Wt% in Column G-K of Table 2/MW of the solute.
Column L: The nonpermeating solutes are sucrose and PBS (we ignore the very small contribution of the Ficoll and BSA.) Their combined osmolality is Column F+0.276.
We assume the osmolality of PBS to be equal to that of the same molality of NaCl. The osmolality of NaCl = 2wm where 2 is the number of species into which the
molecule dissociates and w is the osmotic coefficient.
Column M: The volume of water in the oocytes after equilibration with the external medium relative to the volume of water in an isotonic cell. It is 0.276/Column L.
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11 published by Amersham Biosciences (Piscataway, NJ) , the

manufacturer of Ficoll 70, shows that the osmolality of a

0.003 molal solution of Ficoll 70 in water is roughly four times

the molality. For the 0.006 molal in EAFS 10/10, the osmolality is

probably 0.06 osm, or 10-fold higher. But that is still too small to

contribute significantly to the osmotic equilibrium, and we have

ignored that contribution.

Description of the Cryotop
The Cryotop (Kitazato Co., Fuji, Japan) consists of a flat

rectangular leaf of polypropylene measuring 2060.760.1 mm that

is attached to a thin handle some 5 cm long. A photograph is

shown in [18]. For a run, about 6 oocytes were transferred at 22uC
to successive drops of the desired dilution of EAFS 10/10, and

then 0.1 ml of the last solution along with the six oocytes was

pipetted onto the rectangular leaf of the Cryotop, To minimize

evaporation, the cooling of the Cryotops to 2196uC was initiated

within 15 to 30 sec by the methods described in the next section.

In some cases the Cryotop was inserted into an outer insulating

tube(s) just prior to cooling. The elapsed time between the initial

exposure of the oocytes to the EAFS and the initiation of cooling

was held close to two minutes.

Achieving Various Cooling and Warming Rates with
Cryotops

As indicated in Table 3, three of the seven cooling rates studied

used Cryotops cooled either in LN2 (2196uC) (Cooling Protocol 7)

or in LN2 vapor (,2150uC)(Cooling Protocols 2 and 5). In two

cases (Protocols 2 and 5), the Cryotop was insulated. In one case

(Protocol 7) it was not. All samples on Cryotops were warmed at

the highest rate of 117,500uC/min by abrupt immersion of the

naked Cryotop in 2 ml of 0.5 M sucrose at 23uC. (Sucrose is an

impermeant solute, the purpose of which is to provide osmotic

buffering when the oocytes are diluted out of the concentrated

EAFS 10/10). This means that the insulation surrounding the

Cryotops in cooling protocols 2 and 5 had to be removed under or

just above the LN2 prior to initiating warming. Cooling rates were

calculated from 20uC to 2120uC; warming rates from 2130uC to

230uC. The upper limit of 230uC was chosen because the

temperature/time curve became very curvilinear above 230uC as

a result of the progressive melting of ice in the concentrated

solution.

The cooling and warming rates of samples on Cryotops were

determined by cementing the junction of a 50 mm copper/

constantan thermocouple to a Cryotop and overlaying it with

0.1 ml of EAFS [18]. The highest cooling and warming rates were

so high that they required a special, but inexpensive computerized

oscilloscope to record the temperature- time traces. An oscillo-

scope trace of one cooling and warming run involving an

uninsulated Cryotop is shown in [18].

Achieving Various Cooling and Warming Rate with J ml
Straws

Lower cooling and warming rates were achieved by placing

samples in J ml insemination straws (L’Aigle, Normandy,

France). For cooling (Table 3), the straws were placed in LN2 or

in LN2 vapor. Two of the samples in straws were cooled with

insulation; two of them were cooled without insulation. All four

were warmed without insulation in a water bath at 0uC or at 25uC
(Table 4).

The cooling and warming rates in straws were determined by

placing a 36 ga thermocouple in the column of medium in the

straw [14,16].

Post-Thawing Procedures and the Determination of
Survival

The ‘‘thawed’’ oocytes on Cryotops were collected from the

2 ml of 0.5 M sucrose/PB1 and were then pipetted into fresh

0.5 M sucrose/PB1 solution. Approximately 10 min later, they

were transferred to fresh PB1 medium lacking sucrose, and then

transferred to and cultured in modified M16 medium for 2 hrs.

(We simply refer to this as M16). Oocytes thawed in the straws

were expelled into a watch glass containing 2 ml of 0.5 ml sucrose

in PB1 [19]. From there on, the procedure was the same as with

Cryotops.

Viability was initially assessed at three time points based on

osmotic responsiveness and morphological normality. First, the

oocytes were examined during the 10 min in sucrose/PB1.

Membrane-intact oocytes were expected to shrink with time

because the sucrose is hypertonic. Second and third, they were

Table 2. Mass compositions of various dilutions of EAFS10/10 vitrification solution.

(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K) (L) (M) (N) (O) (P) (Q)

Rel. Volume Mass Mass Total Mass Wt % Wt % Wt % Wt % Wt % Wt% Wt % g EG/ g acet/ g sucr/ g NaCl/

Concn 16EAFS 16EAFS PB1 mass fraction EG Acet salt Ficoll sucr BSA water

EAFS (ml) (g) (g) (g) EAFS (g/100 g) (kg/water)

16* 10 11.52 0 11.52 1 9.62 9.27 0.42 20.68 11.84 0.16 48.01 200.37 193.08 246.62 8.75

0.8756 8.75 10.08 1.25 11.33 0.89 8.56 8.25 0.37 18.4 10.53 0.14 53.75 159.25 153.45 195.99 8.75

0.756 7.5 8.64 2.5 11.14 0.78 7.46 7.19 0.33 16.04 9.18 0.12 59.68 125.03 120.48 153.88 8.75

0.56 5 5.76 5 10.76 0.54 5.15 4.96 0.22 11.07 6.34 0.09 72.17 71.36 68.76 87.83 8.75

0.336 3.33 3.84 6.67 10.51 0.37 3.51 3.38 0.15 7.55 4.32 0.06 81.02 43.36 41.78 53.37 8.75

*From Table 1 of [16].
Column C: Col. B X density EAFS from [16].
Column D: Density of PB1 = 1.003; therefore volume (ml) V mass (g).
Column F = Column C/Column E.
Column G = 9.626Column F, where 9.62 is from Table 1 in [16].
Columns H-L: Wt% of solutes in 16 EAFS from Table 1 of [16] X Column F.
Column N = (G/(M/100)*10); Column O = (H/(M/100)*10); etc.
doi:10.1371/journal.pone.0036058.t002
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examined after being placed in M16 and after two hours

incubation. They fall into two binary groups: Degenerate oocytes

are clearly non-viable. The others are indistinguishable from fresh

oocytes, and we know from past experiments that the plasma

membranes in this latter group are intact and function normally

with respect to their osmotic response to hypertonic and hypotonic

media, and with respect to their ability to remain supercooled in

the presence of external ice. The ability to manifest these

characteristics after two hours in M16 is considered a rather

stringent test of viability. Still other criteria of normality are given

in [19, pp. 48–49]. They mostly deal with measures of the integrity

of the plasma membrane.

Functional Assay: In vitro Fertilization and Development
to 2-Cell Embryos

In later experiments, we subjected a subset of samples of oocytes

to a functional assay of viability; namely, oocytes that had yielded

high survival based on the morphological/osmotic criteria. The

functional assay consisted of carrying out in vitro fertilization (IVF)

of the oocytes and determining the percentage that developed to

the 2-cell stage. Sperm from male ICR mice were collected from

the epididymides, transferred to M16 medium, incubated in a 5%

CO2/95% air for 1 hr, and then transferred to fresh M16

medium. After the sperm had incubated 1 hr, the selected oocytes

on Cryotops were removed from LN2 and, after removing any

outer insulating tubes, were warmed at 117,500uC/min by abrupt

immersion in 0.5 M sucrose/PB1 at 22uC. Over the ensuing

10 min, the oocytes shrank because of the hypertonic sucrose. At

this point, a portion of the zona pellucida was dissected away using

a surgical knife (Feather Industry Ltd., Gifu, Japan) by hand. The

partially dissected (PZD) oocytes were then transferred to the

suspension of sperm in M16 (1.06106 cell/ml). Four hours later,

the presumptive fertilized eggs (zygotes) were transferred into fresh

M16 medium lacking sperm, and allowed to incubate for 1 day. At

that point, the percentage that had developed to the 2-cell stage

was determined.

Statistics
Error figures in tables and error bars in graphs are standard

errors (SEM, standard deviations of the mean). Tests of

significance were carried out by 1-way ANOVA using Graphpad

Software’s Instat, V. 3.02 followed by the Turkey-Kramer

Multiple Comparison Test.

Results

Figure 1 plots survival as a function of cooling rate and warming

rate for oocytes suspended in 16EAFS 10/10 (top panel) and in

three dilutions of EAFS (0.8756, 0.756, and 0.56). For each

dilution, the oocytes were cooled at 3 or 4 different rates ranging

from a low of 37uC/min to a high of 69,250uC/min, and for each

cooling rate they were warmed at three rates; namely, 2,170uC/

min, 2,950uC/min, and 117,500uC/min. The survivals in this plot

are based on the morphological normality, membrane intactness,

and osmotic responsiveness of the oocytes after the post thawing

Table 3. Protocol of each cooling procedure.

Protocol No. Device The device was covered with Cooled by Cooling rate ±SE (6C/min)

1 Straw 1/2-ml straw + double glass* LN2 vapor{ 37601

2 Cryotop Cryotop-cap-straw + small glass{ LN2 vapor{ 9564"

3 Straw None LN2 vapor{ 187661

4 Straw 1/2-ml straw LN2 5226541

5 Cryotop Crytop-cap-straw LN2 vapor{ 876611"

6 Straw None LN2 1,82762141

7 Cryotop None LN2 69,25064,285"

*1/4 ml sample straw was covered with a 1/2 ml straw, a 7 mm OD 690 mm glass tube, and a 10 mm OD 690 mm glass tube.
{The Cryotop was covered with the Cryotop-cap-straw and a 7 mm OD 690 mm glass tube.
{The straw or Cryotop were placed horizontally on a Styrofoam disk (14 cm diameter, 1.5 cm thick) floated on the surface of LN2 in a 41 Dewar flask for .5 min before
being immersed in LN2.
1The cooling rates were determined from 20 to 2120uC. N = 5.
"The cooling rates were determined in [14].
doi:10.1371/journal.pone.0036058.t003

Table 4. Protocol of each warming procedure.

Protocol No. Device Air at 23–256C Covered by Warmed with Stirring*

Warming rate ±SE

(6C/min)

Time (s) Stirring*

1 Straw 10 - None Water at 0uC + 2,1706114{

2 Straw 10 - None Water at 25uC + 2,9506119{

3 Cryotop 0 - None Sucrose solution at 25uC 2 117,500610,632{

*+, yes; 2, no.
{The warming rates were calculated between 270 and 235uC in [16].
{The warming rate was determined in [18].
doi:10.1371/journal.pone.0036058.t004
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treatment. Details are given in [19]. Table 5 gives details on the

statistics.

In Figure 1, the curves connecting the four closed circles depict

the survivals of oocytes in straws cooled at 37, 187, 522, and

1,827uC/min and warmed at 2,950uC/min, the highest rate

obtainable in straws. In full-strength EAFS, survivals are $65%

with all four cooling rates as we reported previously [14], but they

drop to ,50%, 45%, and 25% as the EAFS is diluted to 0.8756,

0.756, and 0.56. If the warming rate is decreased just slightly to

2,170uC/min (closed squares), the drop in survival with dilution of

the EAFS becomes exaggerated. In 0.56 EAFS, it approached

0%.

The curves connecting the three open triangles present a

striking contrast. They depict the survivals of oocytes cooled on

Cryotops at 95, 876, and 69,250uC/min and warmed at the

highest rate attainable–2117,500uC/min. We see that with all

four concentrations of EAFS, survivals range from 80 to 90% and

are independent of the cooling rate.

Figure 2 shows morphological/osmotic survival as a function of

the relative concentration of EAFS and includes the results for

decreasing the concentration of EAFS from 1/26to 1/36. In that

last case, we see that even with the highest warming rate of

117,500uC/min (open triangles), survival drops from ,90% to

5%. Decreasing the concentration of solutes in the EAFS means

decreasing the concentration of the non-permeating sucrose and

Ficoll in the solutions and that in turn means that the oocytes are

more hydrated in 1/26EAFS than in full strength EAFS 10/10,

and are more hydrated in 1/36EAFS than in 1/26EAFS. In the

case of those in 1/36 EAFS, we presume that the high water

content leads to the formation of enough intracellular ice during

the subsequent cooling to kill them at that point. In the case of

those cooled in concentrations of EAFS $0.56 the internal

crystals that form during cooling can be prevented from

recrystallizing to a lethal size by warming very rapidly.

Recrystallization is the conversion of a population of small ice

crystals to a fewer number of larger crystals, a conversion that is

driven by the former having a higher surface free energiy than the

latter. This implies that if warming rates higher than the

117,500uC/min used here were attainable, it might be possible

to achieve reasonably high survivals of mouse oocytes that are

subjected to vitrification procedures in even more dilute solutions.

As indicated, the survivals in Figures 1 and 2 are based on

morphological and osmotic normality. We have also obtained a

measure of functional survival after vitrification in terms of the

percentages of the oocytes that undergo fertilization and

development to the 2-cell stage. Those percentages are shown in

Table 6 where they are compared with morphological/osmotic

survivals. In all these cases, the oocytes were warmed at the highest

rate attainable (117,500uC/min). Several conclusions can be

drawn with respect to morphological/osmotic survivals: [1] The

average morphological survival (Column 3) is 89.3% [2]. Cooling

rates ranging from 95uC/min to 69,000uC/min are essentially

without effect [3], Relative EAFS concentrations ranging from

0.56 to 16 are almost without effect, and [4] these conclusions

hold only when oocytes are warmed at the highest achievable rate.

The picture changes somewhat when we compare functional

survivals (columns 5 and 6). When the highest cooling rate and

highest warming rate are combined, functional survivals range

from 81% to 67% as the EAFS concentration is reduced from 16
to 0.56. A cooling rate of 880uC/min is still relatively benign, but

now a cooling rate of 95uC/min is decidedly damaging. The most

likely explanation is that when oocytes are cooled at 95uC/min,

the crystals that form intracellularly are large enough to be

immediately lethal.

Discussion

Subsequent to our initial finding published in 1972 [2], our

laboratory has found that if mouse oocytes or preimplantation

embryos suspended in a cryoprotectant like 1 M ethylene glycol

are cooled at rates exceeding 2uC/min, they undergo lethal

intracellular ice formation near 240uC, the homogeneous

nucleation temperature of water [19]. As stated in the Introduc-

tion, one route to avoiding lethal IIF, and one being increasingly

favored, is to suspend cells in much higher concentrations of

cryoprotectants and cool them at much higher rates. Under such

conditions, intracellular water can be converted into an innocuous

vitreous or glassy state. Although the oocytes/embryos are cooled

too rapidly in this procedure to undergo any osmotic dehydration

during cooling, the nonpermeating solutes in vitrification solutions

cause appreciable osmotic dehydration before cooling begins, and

that dehydration in turn enhances the probability of vitrification.

The next step in the conceptual picture was our finding that if

the water content of oocytes was reduced to between 40 and 23%

of normal, only 12% and 0%, respectively, underwent visible IIF

Figure 1. Survival of mouse oocytes as a function of the
dilution of EAFS and the cooling and warming rate to and from
21966C. The dilutions were 1.06, 0.8756, 0.756, or 0.56. The cooling
rates ranged from 37uC/min to 69,250uC/min; the warming rates (uC/
min) were 117,500 (D). 2,950 (N). and 2,170 (&). The protocols are
given in Tables 3 and 4. Survivals are based on morphological
appearance and osmotic behavior after warming and after 1–2 hr
incubation in M16 medium.
doi:10.1371/journal.pone.0036058.g001
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during cooling. For the others, the manifestations of internal ice

appeared during warming [20]. We concluded that what we were

seeing in these others during warming was the recrystallization or

growth of small innocuous ice crystals that had formed during

cooling to a lethal size during warming. We further found that the

shorter the time spent during warming, the higher the temperature

at which recrystallization of intracellular ice became evident [21].

And that led to the view that if the warming rate was high enough,

intracellular recrystallization could be suppressed, and the oocytes

or embryos would survive. We confirmed that hypothesis in two

subsequent papers [16,22]. The final step has been to extend this

thinking to the possibility that with very high warming rates, one

could substantially lower the concentrations of solutes in the

vitrification medium. That has been the subject of the present

paper.

We have identified three previous reports over the past 25 years

of mouse embryos and two reports of oocytes surviving vitrification

procedures in diluted vitrification media. The earliest of these by

Rall [23] achieved good survival of 8-cell mouse embryos in a

slightly diluted (0.856) VS1 vitrification solution. Six years later,

Leibo and Oda [24] obtained similar results for 8-cell mouse

embryos suspended in a solution made with a low concentration of

EG (2 M). and 7.5% polyvinylpyrrolidone When cooled at

1,250uC/min and warmed at 2,000uC/min, 76% developed into

blastocysts. When the warming rate was slowed to 1,450uC/min,

survival dropped to 26%. The other three [25–27] subjected

mouse oocytes and embryos to very rapid cooling in or on devices

like Cryotops and open and closed pulled straws, and by cooling in

a liquid/solid nitrogen slush rather than LN2.. Cooling rates

ranged from 32,000 to a reported 250,000uC/min and survivals

ranged from 45% to 98% with the molarities of the vitrification

media in the range of 2 to 5 M. For comparison, our survivals are

67–73% in 1.8 M medium [the sum of columns H–K for the 0.56
dilution in Table 1). All three groups attributed their success to the

use of very high cooling rates, presumably because they believed

that the ability of cells to vitrify in dilute solutions demands the use

Table 5. Survival based on morphological normality and osmotic responsiveness of mouse oocytes suspended in various dilution
of EAFS10/10, and cooled and warmed at indicated rates in straws or on Cryotops.

Dilution of
EAFS10/10 Device

Warming rate

(6C/min) Cooling rate (6C/min)

37 95 187 522 880 1827 69250

1.006 Straw 2170 15.8612.3 A, a - 69.4612.7 B, a 62.969.2 B, a - 44.469.5 AB, a -

(4/28, N = 6) (14/21, N = 6) (22/35, N = 7) (17/39, N = 8)

Straw 2950 65.8610.7 A,*, a - 82.566.3 A,*, a 88.967.7 A, a - 89.663.7 A,*, a -

(24/38, N = 8) (33/40, N = 8) (27/31, N = 6) (33/38, N = 6)

Cryotop 117500 - 82.566.9 A, a - - 75.0614.4 A, a - 91.766.3 A, a

(19/23, N = 4) (18/24, N = 4) (44/48, N = 8)

0.8756 Straw 2170 23.368.5 A, a - 10.0610.0 A, b 26.7613.5 A, b - 30.0616.2 A, ab -

(7/30, N = 5) (3/30, N = 5) (8/30, N = 5) (9/30, N = 5)

Straw 2950 56.768.5 A,*, ab - 33.3614.9 A, b 66.7611.8 A, ab - 46.7614.3 A, abc -

(17/30, N = 5) (10/30, N = 5) (20/30, N = 5) (14/30, N = 5)

Cryotop 117500 - 88.169.4 A, a - - 81.0611.7 A, a - 93.864.4 A, a

(32/35, N = 7) (32/40, N = 7) (45/48, N = 8)

0.756 Straw 2170 23.368.5 A, a - 0.060.0 B, b 0.060.0 B, b - 3.363.3 AB, b -

(7/30, N = 5) (0/23, N = 4) (0/24, N = 4) (1/30, N = 5)

Straw 2950 52.8610.0 A, ab - 36.168.0 A,{, b 47.268.0 A,{, b - 56.368.3 A,*, ab -

(19/36, N = 6) (13/36, N = 6) (17/36, N = 6) (27/48, N = 8)

Cryotop 117500 - 90.569.5 A, a - - 97.162.9 A, a - 97.962.1 A, a

(36/40, N = 7) (34/35, N = 7) (47/48, N = 8)

0.506 Straw 2170 0.060.0 A, a - 6.766.7 A, b 16.765.3 A, b - 3.363.3 A, b -

(0/30, N = 5) (2/30, N = 5) (5/30, N = 5) (1/30, N = 5)

Straw 2950 25.069.4 A,{, b - 22.268.2 A, b 44.467.0 A,*, b - 16.768.6 A, c -

(9/36, N = 6) (8/35, N = 6) (16/36, N = 6) (6/36, N = 6)

Cryotop 117500 - 88.6611.4 A, a - - 89.666.3 A, a - 85.465.8 A, a

(36/40, N = 7) (35/38, N = 8) (39/46, N = 8)

0.336 Cryotop 117500 - - - - - - 6.363.0 b

(3/48, N = 8)

The data are % survival 6 SEM. The first sets of parentheses are the ratios of the number of surviving oocytes to the number frozen or vitrified. N is the number of
replicate. Values with different superscripts were significantly different (P,0.05) by one-way ANOVA. Capital letters shows the differences of survivals with the same
warming rate, same diluted vitrification solution and various cooling rate, and small letters shows those with same warming rate and same cooling rate and various
diluted vitrification solutions.
*shows those with same cooling rate, same dilution of vitrification solution, and different warming rates of 2,170 or 2,950uC/min and {shows that it was not possible to
do stastical analysis because the other survival was 0%.
doi:10.1371/journal.pone.0036058.t005
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of the highest of cooling rates. We believe that the data in our

present report oppose that view. Our data show that high

percentages of oocytes in extensively diluted vitrification media

will survive being cooled at moderate rates provided that the

subsequent warming rate is exceedingly high.

Rall [23] was also the first to report that the survival of 8-cell

embryos vitrified in straws in a full strength vitrification solution

medium was highly dependent on the warming rate over a range

of 10 to 200uC/min, but was totally independent of the cooling

rate over a range of 20 to 2500uC/min. Strangely, that highly

important finding was totally ignored the past 22 years until our

reports in 2009 and 2011 [14,22] and the current report. We

believe there are two reasons. One, as mentioned, is that

investigators prescribed to the reverse dogma. The second reason

is that because of small thermal mass and small sample sizes,

devices like Cryotops produce both very rapid cooling and very

rapid warming. Consequently, when investigators used them, the

contributions of the cooling and warming rates to survival were

confounded since they took no specific steps to separate the effects.

Our findings are relevant both to fundamental cryobiology and

to its applied aspects. On the fundamental side, they emphasize

how critically survival in vitrification procedures depends on the

use of the highest of warming rates to avoid or minimize the

recrystallization of intracellular ice. They suggest that even higher

warming rates might permit high survivals with even more dilute

vitrification solutions.

On the applied and clinical side, the use of more dilute

vitrification solutions may result in higher and more reproducible

percentages of offspring developing from cryopreserved human

oocytes or higher survivals of other cell types. For example, one

adverse effect of high concentrations of protective solutes in

oocytes appears to be hardening of the outer zona pellucida, a

consequence of which is interference with the ability of sperm to

enter the egg proper without the use of technically demanding

ICSI (Intra-Cytoplasmic Sperm Injection). Another problem is

that ‘‘open’’ devices like Cryotops, which were developed to

achieve the very high cooling rates that were believed to be

mandatory, place oocytes in direct contact with liquid nitrogen

(LN2). There is concern that they could be contaminated by viable

microorganisms in that refrigerant. Our finding that only

moderate cooling rates are needed should eliminate that concern.

By inserting the Cryotop tip with its adhering oocytes into its

covering cap, it can be kept from contacting LN2 during cooling.

The cap can then be removed while holding the device in cold

vapor just above the LN2 to achieve extremely rapid subsequent

warming when the now naked Cryotop is abruptly immersed into

the sterile warming solution. Vanderzwalmen et al. [28] reported a

similar approach to asepsis in 2009. Human blastocysts in

vitrification solutions were placed in capillary VitriSafe devices

which were hermetically sealed within straws and plunged into

LN2. The double layered device slowed the cooling rate more than

10-fold from .20,000uC/min to ,2000uC/min. To maintain a

high rate of warming (.20,000uC/min), the straw constituting the

outer surface was removed and the naked VitriSafe capillary

plunged into the warming solution. They believed that the 10-fold

lower cooling rate had to be compensated for by the use of a

higher CPA concentration and/or a longer exposure to it. As

we’ve noted, our findings differ; namely, one does not have to use

a higher CPA concentration. In fact, our report deals with the

successful use of concentrations of EAFS down to K of normal.

In stating that the findings in this report have clinical

implications, we do not intend to imply that all the particulars

we have found for mouse will apply to human oocytes. This may

especially be the case for EAFS 10/10 since the acetamide it

contains has been found to be somewhat toxic to the human egg.

However, we believe that the matters of cooling rate vs. warming

rate and warming rate vs. the dilution of vitrification solutions will

apply. As we state, nearly all previously published papers have

stressed the need to maximize the cooling rate, and many have

attempted to increase the maximum. Our report shows that

emphasis to be misplaced. It is the warming rate that needs to be

maximized, and it is our hope that our paper will encourage some

readers to attack the problem of obtaining even higher warming

rates. If successful, we believe that will further facilitate the

cryopreservation by vitrification procedures of difficult cell types

like human oocytes and fish oocytes and embryos.

Beginning with our 2005 publication [19], we have based

survival on the morphological/osmotic criteria summarized in

Methods and Materials and detailed in [19]. This has left open the

question of whether this reflects the functional survival of the

oocytes. The current paper answers the question affirmatively to a

considerable extent. The functional assay was the ability of the

vitrified/warmed oocytes to undergo IVF and develop to the two

cell stage. As we see in the far-right column of Table 6, between

63% and 97% of oocytes judged viable on morphological/osmotic

grounds did develop to the 2-cell stage, provided that the cooling

rate was 880uC/min or higher and the warming rate was

117,000uC/min.

To obtain these percentages of fertilization and development,

we had to partially dissect the zona pellucida. In 1997, Nakagata

Figure 2. Survival of mouse oocytes vs. the relative concen-
tration of the EAFS vitrification solution in which they were
suspended. The relative concentrations ranged from 0.336to 16. The
absolute concentrations of the individual solutes are given in Table 1
and 2. The suspensions were cooled to 2196uC at rates ranging from
522 to 69,250uC/min and subsequently warmed at five different rates.
The oocytes in the curves delineated by the open circles and triangles
were warmed on Cryotops at the highest attainable rate of 117,500uC/
min. The cells in the curves delineated by the closed symbols were
warmed at lower rates between 610 and 2,950uC/min. CR and WR stand
for cooling rate and warming rate.
Symbol CR (uC/min) WR (uC/min)

D 69,250 117,500
# 880 117,500
m 69,250 610
& 522 2,950
¤ 522 2,170

Survivals are based on morphological appearance and osmotic
behavior after 1–2 hr incubation in M16 medium.
doi:10.1371/journal.pone.0036058.g002
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et al. showed that partial zona dissection (PZD) of denuded

B57BL/6j oocytes increased the success of IVF from 12% to 73–

88% [29]. Two years later, An et al. [30] reported that the

percentage of ICR 2-cell embryos derived by IVF after PZD that

develop to blastocysts is the same or higher than that of 2-cell

embryos with intact zonae. A more recent example is the 2011

report by Macas et al. [31] that the percentage of human oocytes

that develop to blastocysts after IVF is the same for oocytes with

intact zonae, those with partially dissected zonae, and those with

zonae in which various-sized holes has been created by laser.

Thus, the use of PZD is not a problem. What is a remaining

problem is that vitrified ICR oocytes will not develop beyond the

2-cell stage. They behave as though they have a two-cell block, but

we do not as yet know the explanation or how to resolve it.
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