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Abstract

Background: Global climatic change is generally expected to stimulate net primary production, and consequently increase
soil carbon (C) input. The enhanced C input together with potentially increased precipitation may affect soil microbial
processes and plant growth.

Methodology/Principal Findings: To examine the effects of C and water additions on soil microbial properties and plant
growth, we conducted an experiment lasting two years in a temperate steppe of northeastern China. We found that soil C
and water additions significantly affected microbial properties and stimulated plant growth. Carbon addition significantly
increased soil microbial biomass and activity but had a limited effect on microbial community structure. Water addition
significantly increased soil microbial activity in the first year but the response to water decreased in the second year. The
water-induced changes of microbial activity could be ascribed to decreased soil nitrogen (N) availability and to the shift in
soil microbial community structure. However, no water effect on soil microbial activity was visible under C addition during
the two years, likely because C addition alleviated nutrient limitation of soil microbes. In addition, C and water additions
interacted to affect plant functional group composition. Water addition significantly increased the ratio of grass to forb
biomass in C addition plots but showed only minor effects under ambient C levels. Our results suggest that soil microbial
activity and plant growth are limited by nutrient (C and N) and water availability, and highlight the importance of nutrient
availability in modulating the responses of soil microbes and plants to potentially increased precipitation in the temperate
steppe.

Conclusions/Significance: Increased soil C input and precipitation would show significant effects on soil microbial
properties and plant growth in the temperate steppe. These findings will improve our understanding of the responses of
soil microbes and plants to the indirect and direct climate change effects.
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Introduction

Human activity is altering the global atmosphere and climate in

multiple ways. The increase in atmospheric CO2 concentration

contributes to rising global temperatures and precipitation over

some areas, including northeastern China [1,2]. Anticipated global

warming and elevated atmospheric CO2 concentration are

generally assumed to increase primary production in most

terrestrial ecosystems [3–5]. Consequently, much more plant

residues will be incorporated into soil organic matter. Moreover,

climate models predict that annual precipitation will increase by

30–100 mm in this century in the steppe [1,6]. However, there is

still a large uncertainty about how increased litter input and

precipitation would affect soil microbial properties and plant

growth. Some studies highlight the importance of soil microor-

ganisms in controlling soil organic matter decomposition [7,8].

Any changes in soil microbial activities and community structure

would influence plant growth and productivity [9,10]. The

alteration of plant growth may affect soil microbial properties in

return [11].

Sylvia et al. [12] and Drenovsky et al. [13] demonstrated that

soil organic C availability and soil water content are particularly

important factors potentially influencing soil microbial processes.

Organic C availability limits soil microbial activity in most

ecosystems. Thus, additions of labile organic material rapidly

increased soil microbial activity and alter microbial communities

by selecting for populations that are most competitive in terms of

growth rates and ability to absorb nutrients [14,15]. The

relationship between soil water availability and microbial processes

is complex, and usually varies with soil texture, water retention,

porosity, pH and soil depth [16,17,18]. In semiarid ecosystems,
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soil microbial activity is particularly influenced by water

availability. Higher water availability may increase the rates of

microbial respiration and nutrient mineralization [19,20,21].

Alterations in soil water content will induce changes in physiology

and growth of some specific groups within soil microbial

communities through impacts on nutrient availability and oxygen

concentrations [22,23,24]. In water- and nutrient-limited grass-

land ecosystems, increased soil organic matter and water

availability would accelerate soil microbial activity and thus

increase nutrient availability for plant growth and productivity

[15].

Concurrent enhanced C input and increased precipitation may

potentially trigger complex interactive influences on ecosystem

functioning. Although several related studies have documented the

combined effects of soil C and water additions on soil microbial

activity and communities in farmland and stream systems [13,25],

detailed mechanistic studies evaluating their interactive effects on

soil microbial properties are still limited. Available results show

that regardless of organic C input, flooded soils had significantly

lower ratios of fungal to bacterial biomarkers, whereas under

relatively drier conditions and increased organic C availability the

microbial communities had higher proportions of fungal biomass

in California farmland and Australia semi-arid intermittent stream

soils [13,25]. Compared with farmland and stream systems, less is

known about interactive effects of C and water additions on soil

microbial properties and plant growth in temperate grassland

ecosystems. Soil water, N and phosphorus (P) are key limiting

factors in grasslands [26,27,28]. With water availability increasing,

microbial activity and plant growth are expected to be more

limited by nutrient availability than by water. In this context, the

responses of soil microbial activity and plant growth to water

addition may be stronger when C (substrate) is added.

To examine the effects of the predicted enhanced precipitation

and C input in the temperate steppe of northeastern China, we

conducted a field experiment in which we artificially manipulated

C input to topsoils (+60%) and increased precipitation (+30%) to

study the effects on soil microbial biomass, microbial activity,

microbial community structure and plant growth. The specific

questions addressed here were: (1) how do soil microbial properties

respond to C and water additions during two growing seasons; (2)

if C and water additions stimulate plant growth by the changes of

soil microbial properties; and (3) whether C and water additions

interact to affect soil microbial properties and plant growth.

Results

Soil Microclimate and Properties
Seasonal dynamics of both precipitation and air temperature

exhibited one-peak patterns, which were higher in summer and

lower in spring and autumn (Fig. 1A). Total precipitations over the

entire growing season (May to September) in 2010 (328.8 mm)

and 2011 (278.2mm) were 6% and 20.5% lower than the long-

term mean (350mm), respectively. No difference in mean annual

or seasonal air temperature was detected between 2010 and 2011.

Soil C addition showed no effect on soil temperature and water

content during the two growing seasons (Fig. 1B, C). Water

addition increased soil water content by 12% and 9% (P,0.05,

Fig. 1C) in 2010 and 2011, respectively. There was a significant

interaction between soil C and water additions in affecting soil

water content (P,0.05, Table 1, Fig. 1C), as water addition

significantly increased soil water content under soil C ambient

conditions but had no effect under C addition treatments.

Soil organic C and total N content (top 0–10 cm) were

unchanged under both C and water additions during the two

growing seasons (Fig. 2A-D, Table 2). Water addition caused a

consistent decrease in soil inorganic N by 8.3% (P,0.05) and 20%

(P,0.01, Fig. 2E, F) in the two years, respectively.

Soil Microbial Biomass
In general, both soil microbial biomass C (MBC) and microbial

biomass N (MBN) showed pronounced seasonal variations with

the higher values in summer and lower values in spring and

autumn during the two growing seasons (Fig. 3A-D). Soil C

addition increased MBC by 10.5% and 10.8% (P,0.001, Table 1,

Fig. 3A, B), and increased MBN by 12.9% and 14.3% (P,0.001,

Table 1, Fig. 3C, D) in 2010 and 2011, respectively. However,

water addition showed no effect on MBC and MBN. Year did not

interact with C (or water) addition to affect MBC and MBN.

There were no significant effects of C and water additions

interactions on MBC and MBN during the two growing seasons

(Fig. 3A-D).

Microbial Community Structure
The soil total phospholipid fatty acids (PLFAs) followed a similar

pattern of seasonal dynamics to soil microbial biomass (MBC and

MBN). Soil C addition increased total PLFAs by 22.8% and

28.1% (P,0.001, Table 1, Fig. 4A, B) in 2010 and 2011,

respectively, whereas water addition had no effect. Soil C addition

did not significantly affect the percentage of soil fungal PLFAs,

bacterial PLFAs, and the ratio of fungal to bacteria PLFAs (F: B)

during the two growing seasons (Fig. 4C-H). Water addition

enhanced the proportion of soil fungal PLFAs by 11.5% and

11.8% (P,0.05, Fig. 4D), and reduced the proportion of bacterial

PLFAs by 7.3% and 8.8% (P,0.05, Fig. 4F) in August and

September 2011, respectively. Consequently, extra water en-

hanced soil F: B by 23.1% and 22.8% in August and September

2011 (P,0.05, Fig. 4H). There were significant interaction effects

between soil C and water additions on soil F: B in August and

September 2011, in that water addition significantly increased the

F: B in ambient C levels but had no effect when extra C was added

(Table 1, Fig. 4H). Across the 24 plots, soil F: B was negatively

correlated with soil inorganic N (R = 20.50 in 2010, P,0.05;

R = 20.69 in 2011, P,0.01).

Soil Microbial Activity
Soil microbial activity (SMA) exhibited significant seasonal

variations with the higher values in summer and lower values in

spring and autumn (Fig. 3E, F). Soil C addition significantly

increased SMA by 15.9% and 15.1% in 2010 and 2011 (P,0.001),

whereas it showed minor effect on metabolic quotient (qCO2,

Table 1, Fig. 3G, H). Water addition increased SMA by 10%

(P,0.05) and qCO2 by 10% (P,0.05) in 2010 whereas it had no

effect on SMA and qCO2 in 2011. There were significant effects of

soil C and water additions interactions on the SMA and qCO2

(P,0.001, Table 1), in that the increases in SMA and qCO2 were

significantly smaller than would be expected if the two factors

acted additively during the two growing seasons. Across the 24

plots, SMA showed positive linear correlation with soil inorganic

N (R = 0.47 in 2010, P,0.05; R = 0.51 in 2011, P,0.05).

Plant Growth
Soil C addition significantly increased plant root biomass C by

18.5% in 2011 (P,0.05, Fig. 5D) and N by 29.6% and 34.1% in

2010 and 2011, respectively (P,0.01, Table 2, Fig. 5F, H). Water

addition significantly stimulated aboveground biomass N (13.8%

in 2010, 20.3% in 2011; P,0.05, Fig. 5E, G), and root biomass N

(27% in 2010; Table 2, P,0.05, Fig. 5F).

Global Change on Soil Microbes and Plants
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Figure 1. Daily precipitation (bars) and daily mean air temperature (line) in 2010 and 2011 (A). Data are from the eddy tower adjacent (approximately
100 m) to the experimental site. Seasonal variations of soil temperature (B) and water content (C) at topsoil layer (0–10 cm) in response to carbon
addition (+60%) and water addition (+30%) in the temperate steppe of northeastern China. Insets represent the two seasonal mean values of soil
temperature (ST) and water content (SWC). Vertical bars indicate standard errors of means (n = 6). Difference lowercase letters indicate statistically
significant differences (P,0.05). A = ambient condition (control), C = carbon addition, W = water addition, CW = combined carbon and water
additions.
doi:10.1371/journal.pone.0035165.g001
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Grass and forb biomass showed differential responses to C and

water additions. Carbon addition marginally increased grass

biomass during the two growing seasons, whereas it did not affect

forb biomass (Table 2, Fig. 5I, J). Water addition significantly

increased forb biomass in 2011 (P,0.05, Fig. 5J). The differential

responses between grass and forb biomass also induced changes of

the grass: forb biomass ratio under the C and water additions. For

example, water addition significantly increased the ratio of grass to

forb biomass in the C addition plots but it had minor effect in

ambient C conditions (Table 2, P,0.05, Fig. 5K, L).

Discussion

C Addition Effects
We found no significant changes in soil fungal to bacterial

PLFAs ratios (F: B) in C addition plots during the two growing

seasons, though soil C addition increased soil microbial biomass

(Fig. 3A-D; Fig. 4G, H). Similarly, results from forest ecosystems

showed that incorporation of forest residues into soils had no effect

on soil F: B at four study sites ranging from California to South

Carolina [29]. Busse et al. [29] and Morris et al. [30] found that

soil F: B was relatively constant within watersheds and individual

forest stands, even with large residue additions. In this temperate

steppe, within-site differences of the climate and soil physical and

chemical properties were minor. Thus, although a large

proportion (+60%) of soil C (or substrate) was added, the soil

microbial community showed modest responses. In addition, the

microbial metabolic quotient (qCO2), an indicator of the C-use

efficiency of the microbial community, was similar in the control

and the C addition plots (Fig. 3G, H). This result compliments our

finding of soil F: B and supports the apparent insensitivity of

microbial community structure to extra substrate complements.

Future long-term C addition experiments will clarify whether this

hypothesis is valid.

In agreement with results from farmlands and forests

[31,32,33], soil C addition greatly enhanced soil microbial activity

in this temperate steppe (Fig. 3E, F). The strong response of soil

organic matter decomposition to the below-ground supply of labile

C indicated the energy limitation (C availability) of the microbial

activity in this temperate steppe and most added C was released

because soil C sequestration was relatively minor (Fig. 2A, B). Our

results, therefore, suggest that enhanced soil C input in short term

would accelerate soil C cycling rather than induce soil C

sequestration in the temperate grasslands of northeastern China.

Given the strong response of microbial activity, the addition of

C (POM) in the present study is likely to have increased nutrient

availability. This may explain why C addition remarkably

increased plant biomass (e.g. aboveground biomass + root biomass)

(Fig. 5A-H) . This result is in line with the previous studies on

effects of increased nutrient availability on plant growth in

semiarid grasslands [15,34]. These results suggest that plant

productivity is nutrient (N availability)-limited in this temperate

steppe of northeastern China.

Water Addition Effects
Although water addition showed no effect on soil microbial

biomass, it significantly increased the soil F:B in the second

growing season (Fig. 4H), which may contribute to the observed

shift of microbial community structure showing an increasing

contribution of soil fungi. In water addition plots, we found

increased above- and below-ground plant N (Fig. 5E-H) and

decreased soil inorganic N content (Fig. 2E, F) in topsoil layer,

indicating that the enhancement of plant growth may accelerate

soil nutrient transfer from soil to plants and significantly reduce

soil N availability. The reduced soil N availability would intensify

nutrient competition between plants and soil microbes and result

in nutrient limitation of microbes [35]. When soil nutrient

availability is low, fungi can relocate nutrients due to their

filamentous nature and recycle limited nutrients (especially

inorganic N) via cytoplasm translocation. This feature may

enhance fungi competitive advantages over bacteria for exploita-

tion of available nutrients [36]. Thus, the decrease in soil N

availability likely contributes to the enhancement of fungal

dominance in the whole soil microbial community [37,38].

There have been many reports showing positive responses of

soil microbial activity to increased precipitation (or water addition)

in arid and semiarid ecosystem [15,39]. In contrast, we found that

the effects of water addition on soil microbial activity were

inconsistent during the two years (Fig. 3E, F). The water-induced

changes in soil microbial activity could be ascribed to the decrease

Table 1. Results (F-values) of Four-way ANOVAs on the effects of carbon addition (C), water addition (W), sampling date (D), year
(Y), and their interactions on soil temperature (ST), soil water content (SWC), microbial biomass C (MBC), microbial biomass N
(MBN), microbial activity (SMA), metabolic quotient (qCO2), soil inorganic N (IN), soil total PLFAs (TP), contribution of soil fungal
PLFAs (F) and bacterial PLFAs (B), and the ratio of fungal to bacterial PLFAs (F: B).

ST SWC MBC MBN SMA qCO2 IN TP F B F:B

C 0.18 5.94* 197.06*** 102.95*** 116.64*** 0.34 9.55** 154.57*** 2.23 3.41 3.50

W 1.95 11.72** 1.90 0.44 8.95** 3.06 67.53*** 1.04 8.89** 7.27** 9.56**

C6W 0.24 7.18* 0.04 0.06 30.06*** 21.80*** 3.40 0.58 4.20* 4.16* 5.35*

D 41.43*** 134.54*** 1041.07*** 359.16*** 733.76*** 5.46** 46.24*** 683.54*** 5.12* 2.81 3.73*

D6C 0.20 0.11 0.78 3.05 0.05 0.05 0.18 0.83 0.88 0.05 0.71

D6W 0.50 0.57 0.63 0.64 1.36 2.25 0.15 0.57 2.82 2.17 2.83

D6C6W 0.39 0.18 0.18 1.34 0.69 0.68 0.10 0.43 2.06 1.15 2.19

Y 1.89 7.24** 0.16 3.08 3.76* 3.81* 13.44*** 0.09 3.88* 3.75* 3.95*

Y6C 0.09 0.13 0.02 0.62 0.11 0.14 9.27** 0.14 2.04 2.11 2.16

Y6W 3.01 2.43 0.26 0.11 5.16* 5.48* 10.11** 0.31 4.66* 3.15 3.74*

Y6C6W 0.01 0.06 0.06 0.04 0.20 0.36 2.33 0.16 2.05 2.74 3.22

*, **, and ***represent significant at P,0.05, 0.01, and 0.001, respectively.
doi:10.1371/journal.pone.0035165.t001
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of soil N availability and the shift in the soil microbial community

structure (Fig. 4H). Firstly, the decrease of soil inorganic N

availability following water addition likely leads to nutrient

limitation for the soil microbial activity [35,40]. Secondly, the

increase in fungal proportion may alter the decomposition process

from a faster bacterial-based channel to a slower fungal-based

channel [41,42,43] .

There was a positive response of the plant biomass (above-

ground biomass + root biomass) to water addition, although no

shift in plant functional groups composition was observed (Fig. 5A-

H). This is similar to the results from some previous studies in the

temperate grassland ecosystems subjected to increased precipita-

tion [27,34]. These results suggest that soil microbes and plant

growth are also limited by water availability in this semiarid

grassland.

Interactive Effects of Combined C and Water Additions
Our results showed that no water effects on soil microbial

activity and community structure were visible under C addition

during the two years (Fig. 3E, F; Fig. 4G, H), this is likely because

C input (and the associated nutrient release) alleviates energy and

nutrient limitation to soil microbes. Hence, water-induced

alterations in microbial activity and community structure in the

second year are masked by soil C addition.

The interaction between C and water additions caused the shift

in plant functional groups composition due to the increase of grass

Figure 2. Responses of soil organic carbon (C), total nitrogen (N) and inorganic N content to carbon addition (+60%) and water
addition (+30%) during the two growing seasons in temperate steppe of northeastern China. Vertical bars indicate standard errors of
means (n = 6). Difference lowercase letters indicate statistically significant differences (P,0.05). A = ambient condition (control), C = carbon addition,
W = water addition, CW = combined carbon and water additions.
doi:10.1371/journal.pone.0035165.g002
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biomass (Table 2, Fig. 5I-L). That is, water addition significantly

increased the ratio of grass to forb biomass in the C addition plots

but it showed no effect in ambient C conditions. The positive

response of grass biomass could be primarily ascribed to the

enhancement of dominant species (Stipa baicalensis and Leymus

chinensis) that can quickly explore available resources relative to

other species [44]. These findings highlight that the multifactor

effects would be more complex than simple combinations of single-

factor responses. Considering the unprecedented enhancement of

soil C input associated with expected changing precipitation

regime changes under global climate change [45], multifactor

experiments are needed to fully understand the impacts of global

change on terrestrial ecosystem structure and function.

Conclusions
With a field manipulative experiment, this study showed that

enhanced soil C input and water addition affected soil microbial

processes and stimulated plant growth in the temperate steppe.

Soil C addition increased soil microbial biomass and activity but

showed no effect on microbial community structure. Water

addition increased soil microbial activity in short term and then

showed minor influence on microbial activity as the water addition

progresses. However, this alteration was invisible under C

addition. Moreover, combined C and water additions caused the

shift in plant functional groups composition due to the increase in

the ratio of grass to forb biomass. Our results indicated that soil

microbial activity and plant growth are limited by nutrient (e. g. C

and N availability) and water availability, and that nutrient

availability would regulate the effects of water availability in the

temperate grassland. We conclude that soil microbial properties

and plant growth would be more pronounced in response to

potential future enhanced soil C input and increased precipitation.

Further long-term multifactorial field experiments will be needed

to capture potential effects of global changes on soil microbial

processes and plant growth.

Materials and Methods

Ethics Statement
Hulunber Grassland Ecosystem Observation and Research

Station is a department of Chinese Academy of Agriculture

Sciences. This study was approved by State Key Laboratory of

Vegetation and Environmental Change, Institute of Botany, the

Chinese Academy of Sciences and Hulunber Restoration Ecology

Experimentation and Demonstration Station.

Study Site and Experimental Design
A typical native steppe was selected in Hulunber Grassland

Ecosystem Observation and Research Station, which is located at

Xiertala farm, the center of Hulunber Meadow steppe. This field

site is situated at the most east part of Eurasia steppe, northeastern

China (Latitude 49u 199 N, Longitude 120u 029 E, Altitude

628 m). Mean annual air temperature is 23 , 21uC. The mean

precipitation during the summer (May to September) was

approximately 350 mm for periods 1980–2009, 328.8 mm and

278.2 mm in 2010 and 2011, respectively. Mean growing season

length is approximately 150 days. Soils in the experimental sites

are characterized as chestnut (Chinese classification; soil texture:

sand is 42%, silt is 35% and clay is 23%), with low nutrient

availability in the surface layer. Soil bulk density is 1.37 g cm-3

and pH is 7.7 (for top 10 cm). The vegetation at the site was

dominated by perennial grasses (Stipa baicalensis, Leymus chinensis)

and forbs (Artemisia frigida, Serratula centauroides). Total vegetation

ground cover ranges from 60–75%.

The experiment was based on a complete randomized block

factorial experimental design with soil C and water additions as

fixed factors and two levels in each factor in mid-May of 2010.

Twenty-four 262 m plots were established at the grassland site

and plots were exposed to ambient conditions (control), soil C

addition, water addition and combination of soil C and water

additions. There were six replicates for each treatment.

Treatments of enhanced soil C input were addition of fresh

particulate organic matter (POM) to the surface soil layer (0–

10 cm) at the rate of 288 (+60%) g C m-2. The fresh POM used in

this study consisted of senescent above-ground tissues from a mix

of plant species occurring at the site. Senescent plant biomass was

harvested from an adjacent field, air-dried and milled to 1–2 mm

before use. The C and N contents, the C: N ratio, and the P and

lignin contents of the POM were 40.33% (standard error

(SE) = 2.64%; n = 6), 0.32% (SE = 0.03%; n = 6), 144.6

(SE = 13.2%; n = 6), 0.025% (SE = 0.002%; n = 6) and 20.41%

(SE = 1.24%; n = 6), respectively.

We expected to add the POM to the upper soil layers without

drastically damaging the root systems. For this purpose, we

carefully used sharp forks to loosen the surface soil (10 cm), and a

predetermined quantity of POM was gradually and homoge-

neously added to the soil in the 0–10 cm layer. The soil pores were

carefully filled with soil and gently compacted by hand. To create

consistent soil disturbance across treatments, the plots with no

POM addition were processed in the same manner as the plots

that received POM. The actual amount of POM applied was

Table 2. Results (F-values) of Three-way ANOVAs on the effects of carbon addition (C), water addition (W), year (Y), and their
interactions on soil organic C (SOC), soil total N (TN), aboveground biomass C (ABC) and N (ABN), root biomass C (RBC) and N (RBN),
grass biomass (GB), forb biomass (FB) and the ratio of grass to forb biomass (GB: FB).

SOC TN ABC ABN RBC RBN GB FB GB:FB

C 1.44 0.31 2.08 3.11 3.97* 6.19* 2.99 1.02 3.32

W 1.06 0.26 2.25 5.22* 1.63 4.51* 2.78 4.16* 0.69

C6W 0.64 0.18 0.53 0.77 1.34 3.64 0.57 3.52 3.94*

Y 1.75 0.64 3.04 1.53 3.72 1.04 3.89* 1.15 0.82

Y6C 0.68 0.17 0.21 0.43 5.75* 1.27 0.38 0.64 1.32

Y6W 0.92 0.32 0.36 0.71 4.38* 3.02 0.52 4.62* 0.76

Y6C6W 0.47 0.16 0.42 1.29 1.47 0.73 0.77 1.53 0.65

*represents significant at P,0.05.
doi:10.1371/journal.pone.0035165.t002
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Figure 3. Seasonal variations of soil microbial biomass carbon (C) and nitrogen (N), soil microbial activity and microbial metabolic
quotient (qCO2) in the 0 - 10 cm soil layer as influenced by carbon addition (+60%) and water addition (+30%) in temperate steppe
of northeastern China. Values show the monthly means from June to September in the two growing seasons. Vertical bars indicate standard errors
of means (n = 6). Difference lowercase letters indicate statistically significant differences (P,0.05). A = ambient condition (control), C = carbon
addition, W = water addition, CW = combined carbon and water additions.
doi:10.1371/journal.pone.0035165.g003
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Figure 4. The total biomass phospholipid fatty acids (PLFAs), percentages of fungal and bacterial PLFAs to the total biomass PLFAs,
and the ratio of fungal to bacterial PLFAs as influenced by carbon addition (+60%) and water addition (+30%) in temperate steppe
of northeastern China. Values show the monthly means from June to September in the growing season. Vertical bars indicate standard errors of
means (n = 6). Difference lowercase letters indicate statistically significant differences (P,0.05). A = ambient condition (control), C = carbon addition,
W = water addition, CW = combined carbon and water additions.
doi:10.1371/journal.pone.0035165.g004
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720 g m-2 for target addition rates of 288 g C m-2. Because the

ecosystem above and below-ground biomass production was 480 g

C m-2 yr-1 (Ma, unpublished data), these POM additions

correspond to increases in ecosystem biomass production of

60%. The soil organic C content before POM addition was

3.43 kg m22 (SE = 0.13; n = 15) in the top 10 cm layer. The POM

Figure 5. Responses of aboveground biomass carbon (C) and nitrogen (N), root biomass C and N, peak aboveground biomass of
grass and forb and the grass: forb ratio to carbon addition (+60%) and water addition (+30%) in 2010 and 2011 in temperate
steppe of northeastern China. Vertical bars indicate standard errors of means (n = 6). Difference lowercase letters indicate statistically significant
differences (P,0.05). A = ambient condition (control), C = carbon addition, W = water addition, CW = combined carbon and water additions.
doi:10.1371/journal.pone.0035165.g005
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addition represented an increase in SOC of 8% in the top layer.

However, due to the predominance of nonlabile C in most soils

[46], POM addition in our study was expected to markedly

enhance the labile C pool of the 0–10 cm soil layer.

For water addition treatments simulating a 30% increase in

summer precipitation from 2010 to 2011, two open-top iron boxes

(length 85 cm6width 71.5 cm6height 15 cm) were set outside

each water addition plot. The base area of each iron box was

approximately 15% of every plot (262 m). A circular hole (1.5cm

inner diameter) was punched on one side of the box (facing the

plot) and a rubber water pipe (1.5cm inner diameter) was

connected to the hole. The rains fell into the boxes was rapidly

transferred from the boxes to plots by these water pipes. Each pipe

was an S-shaped distribution on the ground and many small holes

were drilled along the pipe so that the rains uniformly flowed into

the water addition treatment.

Soil Samplings
Soil core samples were collected from the topsoil (0–10 cm) of

all the plots in late June, mid-August and September in 2010 and

2011. Four cores (5 cm inner diameter, 10 cm length) were

collected at each plot. The four replicates in each plot were pooled

and mixed to get one composite sample and then brought

immediately to the laboratory for analyses. The fresh samples were

sieved using a 2 mm sieve and visible plant tissues were removed.

Two subsamples of the sieved soil from each composite sample

were obtained; one was kept in the refrigerator at 4uC for routine

analyses and the other at 270uC, for phospholipid fatty acids

(PLFAs) analysis.

Soil Microclimate and Nutrient Measurements
Soil temperature and water content measurements were

conducted one day after the rainfall events. Soil temperature at

the depth of 10 cm was measured using a temperature probe

connected to a Li-6400 (Li-Cor, USA). Gravimetric soil water

content was measured by oven-drying samples at 105uC for 24 h.

Concentrations of inorganic N (NH4
+-N and NO3

--N) in the

filtered extracts were determined using a flow injection autoan-

alyzer (FIAstar 5000 Analyzer, Foss Tecator, Denmark). Soil

organic C and total N contents were measured by the dichromate

oxidation method [47] and Kjeldahl method [48].

Soil Microbial Biomass and Activity Measurements
Soil microbial biomass C and N were measured by

fumigation-extraction method [49]. Briefly, the fresh soil

samples were incubated for one week at 25uC after adjusting

to 60% of water holding capacity in the dark. Then the moist

samples (15 g dry weight equivalent) were fumigated for 24 h

with CHCl3. Soil extracts from the fumigated and unfumigated

samples were obtained by shaking soil samples with 60 ml

0.5 M K2SO4 for 30 min. The extracts were filtered through

0.45 mm filters and their extractable organic C and inorganic N

analysed by dichromate digestion and Kjeldahl digestion as

described by Lovell et al. [50]. Microbial biomass C and N

were calculated as the difference in extractable organic C and

inorganic N contents between the fumigated and the unfumi-

gated samples using conversion factors (kec and ken) of 0.38 and

0.45 [50], respectively.

Soil microbial activity, i.e. the microbial respiration, was

estimated by determining CO2 evolution over 2-wk incubation

period. Respired CO2 was then captured in 5.0 ml of 0.5 M

NaOH contained in a beaker suspended inside each Mason jar

[36]. The NaOH solution was removed and titrated to determine

the amount of CO2 evolved. The soil microbial activity was

expressed as mg CO2 kg-1 day-1. The metabolic quotient (qCO2)

was calculated as: [(mg CO2 C evolved in 14 days kg-1soil)/(mg

microbial biomass C kg-1soil)/(14 days624 h) 61000] with the

unit being mg CO2 C g-1Cmic h-1 [51].

Microbial Community Structure
Phospholipid fatty acids (PLFAs) were extracted and quantified

from 8.0 g (dry weight equivalent) soils using a procedure

described by Bossio et al. [52]. The separation and identification

of extracted PLFAs were carried out according to the standard

protocol of the Sherlock Microbial Identification System V4.5

(MIDI) and a Gas Chromatograph (Agilent 6850, USA). Fatty acid

nomenclature used in this study was as that defined by Bossio et al.

[52]. The fatty acids i15: 0, a15: 0, i16: 1c, i16: 0, 16: 1v7c, i17: 0,

17: 1v6c, a17: 0, 17: 0cy, 18: 1v7c, 18: 1v5c and 19: 0cy were

chosen to represent the PLFAs of the bacterial group [53,54].

Three fatty acids (16: 1v5c, 18: 2v6, 9c and 18: 1v9c) were

chosen to represent the fungal group [54,55]. Data from the

PLFAs was presented as the percentage of the total PLFAs

detected within a sample. Total percentages of PLFAs identified

for each microbial group was calculated to represent their relative

contributions to the total microbial biomass. The ratio of fungal to

bacterial PLFAs was also included in the data analysis. This ratio

has often been used as the indicator of the change in the soil

microbial community structure [24,56].

Plant Biomass
In August 2010, one 1m 61m quadrat was established in each

plot. Presence of species in the measured quadrats was recorded as

species richness of the plant community in August 2010 and 2011.

Individual species frequency was used as the abundance of the

species [57]. Plant species were categorized into two functional

groups: grasses and forbs. Plant height of each species within a plot

was the mean values of at least four random measurements of the

species height.

We conducted a nondestructive method by developing

regression equations to estimate peak plant species biomass in

this study. In order to include all the species occurred in our

study, we set 15 random calibration plots (1m61m) near our

experimental plots in both years. We also measured the specie

frequency of each species, and then we clipped living

aboveground biomass in the calibration plots and separated

into difference species. Living plant aboveground tissues were

separated from dead tissues, oven-dried at 65uC for 48 h, and

weighed. We developed regression equations among peak

biomass and specie frequency and plant height for each species

for the calibration plots. All species showed good correlations

between peak biomass and specie frequency and plant height in

both years. Finally, we estimated the peak biomass of each

species in the four treatments plots using the regression

equations. Peak grasses and forbs biomass in each plot was

the sum of biomass of grass and forbs species, respectively. On

September 2010 and 2011, above-ground living tissues were

harvested from one randomly located, 0.5m60.5m quadrat of

each plot, respectively, and root biomass was determined by soil

coring to a depth of 10 cm using a cylindrical root sampler (9-

cm inner diameter). Living and dead root fragments were

separated based on color and consistency [58]. All samples of

above-ground living tissues and roots were oven-dried at 65 uC
to constant weight. Plant aboveground and root C and N

contents measured by the dichromate oxidation method [47]

and Kjeldahl method [48]. After analysis, plant samples were

returned to their respective plots to maintain natural litter levels.
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Statistical Analysis
Seasonal mean values used in this study were calculated from

the monthly mean values, which were first averaged from all

measurements in the same month. Four-way ANOVAs were used

to examine year (growing season), sampling times, soil carbon

addition, water addition, and their interactions on soil microcli-

mate, soil microbial properties, and inorganic N. Three-way

ANOVAs were used to examine year, soil carbon addition, water

addition, and their interactions on aboveground biomass, root

biomass, grass and forb biomass, the ratio of grass to forb biomass,

soil organic C, and soil total N content. Multiple comparisons were

also performed to permit separation of effect means using the least

significant difference test at a significance level of P,0.05.

Correlation analyses were used to determine the relationships

among soil microbial properties, soil microclimate, soil inorganic

N, and soil organic C and total N pools. Data management and

statistical analyses were performed using SPSS 11.5 software

(SPSS, Chicago, IL, USA).
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