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Abstract

The western flower thrips, Frankliniella occidentalis (Pergande), is an invasive species and the most economically important
pest within the insect order Thysanoptera. F. occidentalis, which is endemic to North America, was initially detected in
Kunming in southwestern China in 2000 and since then it has rapidly invaded several other localities in China where it has
greatly damaged greenhouse vegetables and ornamental crops. Controlling this invasive pest in China requires an
understanding of its genetic makeup and migration patterns. Using the mitochondrial COI gene and 10 microsatellites,
eight of which were newly isolated and are highly polymorphic, we investigated the genetic structure and the routes of
range expansion of 14 F. occidentalis populations in China. Both the mitochondrial and microsatellite data revealed that the
genetic diversity of F. occidentalis of the Chinese populations is lower than that in its native range. Two previously reported
cryptic species (or ecotypes) were found in the study. The divergence in the mitochondrial COI of two Chinese cryptic
species (or ecotypes) was about 3.3% but they cannot be distinguished by nuclear markers. Hybridization might produce
such substantial mitochondrial-nuclear discordance. Furthermore, we found low genetic differentiation (global FST = 0.043,
P,0.001) among all the populations and strong evidence for gene flow, especially from the three southwestern populations
(Baoshan, Dali and Kunming) to the other Chinese populations. The directional gene flow was further supported by the
higher genetic diversity of these three southwestern populations. Thus, quarantine and management of F. occidentalis
should focus on preventing it from spreading from the putative source populations to other parts of China.
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Introduction

Among the different ecological, genetic, and evolutionary

features that determine whether an invasion will succeed or fail,

genetic characteristics have received increasing attention [1–3].

For instance, introduced populations often show lower genetic

diversity than do native populations, likely as a result of the

founder effect [4–7]. Furthermore, successful invaders may often

pass through only short-lived bottlenecks that are followed by

rapid population expansions [8]. Thus, successive loss of genetic

diversity would occur due to a specific evolutionary scenario

termed the bridgehead effect, which refers to widespread

secondary invasions stemming from a particular primary invasive

population [9,10]. Alternatively, enhanced genetic diversity of

invasive species could arise due to multiple independent

introductions and subsequent admixture, hybridization and

introgression, which in turn may facilitate adaption [11,12].

Therefore, an understanding of the genetic characteristics of

invasive species is essential for understanding their performance in

invaded habitats and the rapid evolution of invasiveness [3]. Such

information is also critical to predicting the future movements of

invasive species, preventing their further introduction, and

controlling and eradicating them [13,14].

The western flower thrips, Frankliniella occidentalis (Pergande), is

an invasive species and the most economically important pest

within the insect order Thysanoptera, which includes more than

5500 described species [15,16]. F. occidentalis causes enormous

damage by directly feeding on greenhouse vegetable and

ornamental crops and by transmitting plant-pathogenic tospo-

viruses [17]. F. occidentalis is endemic to North America in an area

west of the Rocky Mountains from Mexico to Alaska [18]. Over

this range, Brunner & Frey [19] identified two ecotypes

corresponding to different climate regimes. They might represent

two cryptic species, between which reproductive isolation

occurred, as suggested by Rugman-Jones et al. [20]. Since the

late 1970s, F. occidentalis has rapidly invaded most countries in the

world and now exists on every continent but Antarctica [21].

In China, F. occidentalis was first discovered in flowers from

Myanmar at the Kunming International Floral Festival of China

in 2000 [22], but it wasn’t reported as an invasive species until

2003 when it was discovered in a greenhouse in Beijing [23]. Since

then, it has rapidly spread to several provinces, including Yunnan,

Heilongjiang, Shandong, Liaoning, Guizhou where it not only

causes severe economic losses but also threatens endemic

invertebrates and associated ecosystems [24–26]. In order to

control F. occidentalis, it is first necessary to know its genetic
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diversity, population structure and pathways of range expansion in

China.

Genetic tools, such as mitochondrial DNA (mtDNA) and

microsatellites, can reveal the origins of newly established

populations, their genetic makeup and their routes of migration

[27,28]. However, genetic studies of F. occidentalis have been

hampered by a lack of polymorphic molecular markers. Presently,

only 6 polymorphic microsatellites are known [29].

In this study, we isolated new polymorphic microsatellites

markers for F. occidentalis and used them and the mitochondrial

COI gene to characterize the genetic structure of 14 introduced

populations of F. occidentalis in China. The primary goals of this

study were to (1) investigate the genetic diversity and differenti-

ation of introduced populations across China and (2) identify the

potential avenues of dispersal and determine whether their range

expansion in China is the result of a bridgehead effect.

Materials and Methods

Sample collection and species identification
In total, 506 F. occidentalis female adults were sampled

representative of 14 sites in China during May 2009 to August

2010 (Table 1, Figure 1). The sampled localities cover a great part

of the recent invasion areas ranging from HRB in the northeast to

BS in the southwest of China. We caught the individuals either by

beating the flowers, leaf over a white plastic tray or placing the

flowers, leaf directly into jars with 95% ethanol separately. To

limit the chance of sampling individuals that share the same

parents, each thrips was collected from a single host plant

separated by at least 1 m from the next sample. The collected

individuals were examined and identified unambiguously using a

dissecting microscope based on the characters such as the number,

size and location of the major setae on the head, pronotum,

forewing and abdominal tergite II, as well as colouration

characteristics and comb of abdominal segment VIII [30,31].

No specific permits were required for the described field studies.

(a) No specific permissions were required for these collections

because the thrips are pests on common crops; (b) The location is

not privately-owned in any way; (c) The field studies did not

involve endangered or protected species.

DNA extraction
Total genomic DNA was extracted by homogenizing a single

female adult in a 50 ml mixture of STE buffer (100 mM NaCl,

10 mM Tris-HCl, 1 mM EDTA, pH 8.0) in a 1.5 ml Eppendorf

tube. The mixture was incubated with 2 ml proteinase K (10 mg/

ml) at 37uC for 30 min, followed by 5 min at 95uC. The samples

were centrifuged briefly, and used immediately or stored at 220uC
for the PCR reactions.

Mitochondrial and nuclear DNA sequencing
All the individuals sampled were sequenced with primers C1-J-

1751 and C1-N-2329 to yield a 571-bp fragment of the

mitochondrial cytochrome c oxidase subunitIgene (COI) [32].

PCRs were performed on a Veriti machine (ABI Biosystems) in a

25 ml reaction volume containing 0.75 units of DreamTaq

polymerase, 16 DreamTaq Buffer (including 2 mM MgCl2;

Fermentas), 0.2 mM dNTPs (Takara), 1 ml of DNA (concentration

not estimated) and 0.4 mM each of the oligonucleotide primers.

The thermal profile used an initial denaturation step of 95uC for

3 min followed by 35 cycles of denaturing at 94uC for 30 s,

annealing at 53uC for 30 s, and extension at 72uC for 45 s. A

7 min final extension at 72uC was added at the end of cycle to

increase copy number. Negative controls were included in both

DNA isolation and PCR reactions.

We also amplified a 456-bp fragment of the D2 domain of 28S

(28SD2) nuclear ribosomal DNA from a sub-set of samples

possessing the five different mtDNA haplotypes found in this study

(see Results; at least 12 individuals for each haplotype (except

Hap5) were sequenced) to compare our results to previous studies

in its native range. The PCR was similar to the amplification of the

COI mentioned above, except the annealing temperature at 50uC
and the primer pairs, 28sF3633 (59-TACCGTGAGGGAA-

AGTTGAAA-39) and 28sR4076 (59-AGACTCCTTGGTC-

CGTGTTT-39) [33]. After verification via gel electrophoresis,

the PCR templates were purified and then sequenced in both

directions using the same primer pairs on an Applied Biosystems

3130 Genetic Analyzer.

Microsatellite genotyping
Samples were genotyped at ten microsatellite loci developed for

F. occidentalis. Eight new polymorphic microsatellites (WFT01-

WFT08; Table S1 and Table 2) isolated from a genomic DNA

library enriched for (TC)6(AC)5, (AC)6(TC)5 or (AC)6(AG)5 were

used in this study, details of genomic library construction and

microsatellite isolation was described by Lian et al. [34]. For the

newly isolated microsatellite, each 15 ml genotyping PCR reaction

volume containing 0.5 units of DreamTaq polymerase, 16
DreamTaq Buffer (including 2 mM MgCl2; Fermentas), 0.2 mM

dNTPs (Takara), 1 ml of DNA (concentration not estimated),

0.3 mM forward primer, 0.3 mM fluorescent (FAM or HEX)

labeled new ssr primer ((TC)6(AC)5, (AC)6(TC)5 or (AC)6(AG)5).

The thermal profile used an initial denaturation step of 95uC for

3 min followed by 35 cycles of denaturing at 94uC for 30 s,

annealing at 54uC for 30 s, and extension at 72uC for 45 s and a

final 10 min extension at 72uC. Two additional microsatellites

(FOCC75, FOCC125) were selected and PCR conditions were

described previously by Brunner & Frey [29]. Products with

different color and size range were combined and run in an

Applied Biosystems 3130 Genetic Analyzer using LIZ-500 size

standard. Data were collected and binned with GeneMapper v

4.0.

Data analysis
Sequence data. Sequences were assembled with CodonCode

Aligner 3.6.1 (CodonCode, Dedham, MA, USA) and manually

edited before creating consensus sequences. The resulting

consensus sequences of all individuals were aligned using Clustal

X 2.0.11 [35]. All population genetic parameters such as number

of haplotypes (Nh), nucleotide diversity (p) and haplotype diversity

(Hd) were calculated using the program DNASP v5 [36]. An

analysis of molecular variation (AMOVA) implemented in

Arlequin v3.01 [37] was used to test the hierarchic genetic

structure of the populations. TCS v1.21 was used to generate a

haplotype network using statistical parsimony [38].

Microsatellite data. The population genetic diversity indices

such as total alleles per locus (NA), observed heterozygosity (HO),

unbiased expected heterozygosity (uHE), mean number of alleles

(Na), and number of private alleles (NP) were assessed using

GenAlEx 6.41 [39]. The program Genepop 4.0.10 [40] was used

to test for linkage disequilibrium between pairs of loci in each

population (100 batches, 1000 iterations per batch) and for

deviations from Hardy-Weinberg equilibrium (HWE) at each

locus/population combination using Fisher’s exact tests. Allelic

richness (AR) was calculated with FSTAT 2.9.3.2 [41] using a

rarefaction index (2N = 10) to account for different sample sizes.

The program FSTAT was also used to calculate the gene diversity
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(HS). We used the one-side group comparisons in FSTAT with

1000 permutations to test for significant differences in allelic

richness and gene diversity between the two groups inferred by

population-pairwise FST analysis (see below).

Populations that have recently experienced a bottleneck should

exhibit larger gene diversity than expected from the number of

alleles at mutation–drift equilibrium since the allele numbers

decrease faster than gene diversity in a recently bottlenecked

population [42]. A possible significant heterozygosity excess

(signature of bottleneck) was detected using a Wilcoxon signed-

rank test, as implemented in Bottleneck version 1.2.02 [43]). Most

microsatellites fit a two-phase model of mutation (TPM) better

than a strict stepwise mutation model (SMM) or infinite alleles

model (IAM) [44]. However, microsatellites with imperfect repeat

motifs are more likely to evolve under the IAM model [45]. As we

found no strong a priori reason to select or reject one model over

another, we ran Bottleneck under all three mutational models. We

used a TPM model with the default settings of 30% variation from

the IAM model and 70% from the SMM model.

The levels of genetic differentiation between pairs of popula-

tions were estimated using pairwise FST values [46] computed with

10000 permutations in Arlequin [37]. The AMOVA [47] was

performed using the Arlequin program to calculate the variance

among and within groups and within populations. Significance for

AMOVA analysis was ascertained using 10000 permutations. We

used sequential Bonferroni correction for part tests involving

multiple comparisons [48].

To assess population genetic structure, we used a Bayesian

model-based clustering analysis with Structure 2.3.3 [49,50]. We

specified an initial range of potential genotype clusters (K) from 1

to 10 under the admixed model and the assumption of correlated

allele frequencies among populations. For each value of K, 10 runs

were performed with 100000 iterations discarded as burn-in

followed by an additional 1 million iterations. The most probable

number of K in the data was detected both by comparing the log

probability of the data lnP (D) for each value of K across all 10

runs of Structure and by examining the standardized second-order

change of lnP (D), DK [51]. For the selected values of K, the

software CLUMPP v1.1.2 [52] was used to align cluster

membership coefficients from the 10 replicate cluster analyses

using the Greedy algorithm with 10000 random input orders, the

results were graphically displayed with DISTRUCT 1.1 [53].

A Mantel test for isolation by distance, as revealed by a

correlation between pairwise linearized genetic and log-geographic

distances (Euclidean) [54], was performed using IBDWS 3.16 [55],

with significant level evaluated based on 10000 permutations.

IBDWS uses a Reduced Major Axis (RMA) regression to estimate

the slope and intercept of the isolation by distance relationship.

Asymmetric pairwise measures of recent gene flow were estimated

using two different genetic approaches: (i) assignment tests and

detection of first generation migrants for each population imple-

mented in Geneclass 2 [56], and (ii) a Bayesian approach

implemented in BayesAss+ to estimate recent migration rates [57].

The Geneclass tests were performed using a partially Bayesian

method [58] and Monte-Carlo resampling algorithm of Paetkau et al.

[59] with 10000 simulated individuals and type I error of 0.01.

Otherwise, L-home likelihood computation, which is the most

appropriate statistics when all potential source populations have not

been sampled, was used to detect first generation migrants. BayesAss+
was implemented with 3000000 MCMC iterations, with a burn-in of

1000000 iterations to allow the chain to reach stationarity, a sampling

frequency of 2000, and delta values were adjusted to ensure that 40–

60% of the total changes were accepted. Only migration estimates

whose confidence intervals did not overlap with the confidence limits

of a simulated distribution with no information content were

considered reliable (see BayesAss+ manual).

Table 1. Collection information for samples used in this study.

Code Location Nb samples Coordinates Sampling dates Host

BJ Beijing 48 39u57934.520N, 116u19948.550E 2 July 2010 Phaseolus vulgaris. L

DH Dunhuang 24 40u08922.250N, 94u39935.090E 18–19 July 2009 Tagetes erecta L.

GY Guiyang 30 26u39946.080N, 106u48957.380E 25 April 2009 Petunia hybrida Vilm; Cucurbita
moschata; Cucurbita pepo L.

JQ Jiuquan 35 39u46942.820N, 98u30921.880E 16–17 July 2009 Tagetes erecta L.

HRB Harbin 44 45u44930.540N, 126u37959.840E 23 August 2009 Tagetes erecta L.; Hosta
ventricosa (Salisb.) Stearn

QHD Qinhuangdao 47 39u54909.810N, 119u32918.920E 27–28 August 2009 Petunia hybrida Vilm; Canna
indica L.

CC Changchun 10 43u53908.630N, 125u18920.380E 25 August 2009 Hemerocallis fulva (L.) L.;

SY Shenyang 47 41u49949.100N, 123u34909.650E 26 August 2009 Fuchsia hybrida Voss; Petunia
hybrida Vilm

QTX Qingtongxia 7 37u54924.570N, 105u57902.790E 15–16 July 2009 Althaea rosea

QD Qingdao 47 36u19910.290N, 120u23932.180E 1–2 June 2009 Trifolium L.; Rosa chinensis

TA Taian 41 36u11944.020N, 117u07912.760E 30–31 May 2009 Rosa chinensis; Tagetes erecta L.

BS Baoshan 48 25u10924.550N, 99u13912.530E 5 August 2009 Solanum melongena L.; Brassica
campestris L.

DL Dali 30 25u36917.490N, 100u14949.750E 7 August 2009 Trifolium L.; Nicandra
physalodes; Canna indica L.;
Rosa chinensis

KM Kunming 48 24u42943.910N, 102u43907.760E 10–11 August 2009 Dianthus caryophyllus; Trifolium
L.

Nb samples, number of samples.
doi:10.1371/journal.pone.0034567.t001
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Results

Sequence diversity and phylogenetic pattern
An alignment of a fragment of the COI gene (571 bp) from 506

F. occidentalis individuals from 14 populations across China

revealed five haplotypes (Hap 1, 2, 3, 4 and 5, GenBank accession

numbers are JN790696, JN790697, JN790698, JN790699 and

JN790700, Table 3). The sequences had 22 polymorphic sites, of

which 21 were parsimony informative. The number of haplotypes

per population ranged from 2 to 4 (Table 3). The haplotype

diversity (Hd) ranged between 0.172 and 0.656 with the lowest in

HRB (The locations and abbreviations of the 14 populations are

Table 2. Characteristics of eight new polymorphic microsatellite loci in Frankliniella occidentalis.

Locus Repeat motif Primer sequence (59-39) Size range Ta (6C) N NA GenBank number

WFT01 (TC)6(AC)23 F: GAGGGAAATGGGAATCGTC R: TCTCTCTCTCTCTCACACAC 123–163 55 506 16 JN790701

WFT02 (TC)6 (AC)8 F: ATCGGTGACGAGTCACTTTG R: TCTCTCTCTCTCTCACACAC 131–143 55 506 7 JN790702

WFT03 (AC)6 (TC)7 F: ATTGCGCCGATTCCATGTC R: ACACACACACACACTCTCTC 86–96 55 506 6 JN790703

WFT04 (AC)6 (AG)21 F: GCGTGCCTCAAACCCTGTAC R: ACACACACACACACAGAGAG 105–162 55 502 18 JN790704

WFT05 (TC)6 (AC)5 F: TCGGCACTGTAATCGCATAT R: TCTCTCTCTCTCTCACACAC 118–146 55 505 11 JN790705

WFT06 (TC)6 (AC)21 F: CAAGCGTGTATCGCATAAG R: TCTCTCTCTCTCTCACACAC 138–201 55 497 23 JN790706

WFT07 (AC)6 (TC)9 F:GACCTTAGGGCAAATCTGAG R: ACACACACACACACTCTCTC 179–231 55 490 21 JN790707

WFT08 (AC)6 (TC)6 F: TTTGCTCGGCCTCGTTGTAG R: ACACACACACACACTCTCTC 129–137 55 505 5 JN790708

Ta, anneal temperature; N, Number of individuals with successful amplification; NA, total number of alleles.
doi:10.1371/journal.pone.0034567.t002

Figure 1. Sampling sites and haplotype frequencies in the examined populations of F. occidentalis. (A) Haplotype frequencies of COI in
14 populations in China. The abbreviations and coordinates of collection sites are shown in Table 1. (B) Haplotype network based on mitochondrial
COI sequence. Frequency of haplotype is proportional to circle area. Each line between circles represents one mutational event.
doi:10.1371/journal.pone.0034567.g001
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shown in Table 1) and highest in TA (Table 3, Figure 1). The most

common haplotype (Hap1) was found in 316 individuals represent-

ing all 14 populations. Hap2 was found in 85 individuals from 10

populations and Hap3 was found in 92 individuals from 12

populations. Interestingly, a haplotype (Hap5) that has not been

found in other studies was found in one of the populations from

southwestern China, DL, which had high Hd. Hap4, which was

found in 12 individuals across 7 populations, was separated by at

least 19 mutations from the other four haplotypes (Figure 1B) and

formed a distinct lineage. Rugman-Jones et al. provided strong

evidence that this lineage (Hap4 in this study) could represent a

cryptic species, western flower thripsL (WFTL). The other lineage

(Hap1, 2, 3, and 5 in this study) was referred to as western flower

thripsG (WFTG) [20]. When compared to the results of Brunner &

Frey [19], Hap1 and Hap2 correspond to the hot/dry (HD) ecotype

and Hap4 corresponds to the cool/moist (CM) ecotype. One

haplotype (Hap3) was not discovered in Brunner & Frey [19].

Furthermore, the sequences of 28SD2 were identical across all the

92 randomly selected individuals representing the five mitochon-

drial haplotypes identified in China.

Microsatellite markers
Coexistence of two different forms [19,20] in our sample might

influence the results and conclusions of our study. Thus, we

performed our analysis on two different datasets. One included both

forms while the other included only WFTG/HD. The results

revealed that there was excellent concordance between these two

datasets (Table 3–5, Table S2, S3, S4, Figure 2). This might be due

to the low number of the WFTL/CM (n = 12) or the occurrence of

hybridization between the two forms in China (see Discussion).

Therefore we present the results of the whole datasets below.

Intrapopulation genetic diversity
All the newly developed microsatellite markers proved to be

polymorphic (Table 2). The number of alleles per locus ranged

from 5 to 23 and HO ranged from 0.085 to 1.000 (Table 2 and

Table S1). A total of 506 individuals representing the 14

introduced populations in China were genotyped with 10

microsatellite markers. Significant linkage disequilibrium was

present in 28 out of a total of 630 tests (a= 0.05), but just two

(WFT04 and WFT07 in QD; WFT02 and FOCC75 in DL) were

significant after sequential Bonferroni corrections. The linkage

disequilibrium was possibly due to population structures rather

than physical linkage because significant allelic association was not

consistently restricted to certain pairs of loci in all populations

analyzed. After sequential Bonferroni corrections for multiple

comparisons [48], all populations except CC and QTX with small

sample sizes deviated significantly from Hardy-Weinberg equilib-

rium (HWE). Fisher’s exact tests showed that 28 of the 140 locus/

population combinations deviated significantly from HWE. Of

these, 26 cases were concentrated in four loci (WFT03, WFT04,

WFT07 and FOCC75). In all cases, the deviations were associated

with a significant positive FIS value.

The allelic richness (AR) based on all 10 loci was strongly

correlated with the AR value based on 6 loci without the 4

problematic loci (Spearman r = 0.903, P,0.001). Similar patterns

were observed for the unbiased expected heterozygosity (uHE;

Spearman r = 0.719, P = 0.002). Thus, all 10 loci were used in the

subsequent analysis. The genetic diversity indices uHE and AR

were not statistically significant across all 14 populations (one-way

ANOVA, F13, 126 = 0.401 and 0.630, P = 0.967 and 0.825,

respectively). The average allelic richness (AR) ranged from

3.776 to 5.191 alleles in QTX and DL localities, respectively.

uHE ranged from 0.621 to 0.770 in QTX and CC, respectively

(Table 3). When all the populations were partitioned into two

groups based on the pairwise FST analysis below, the group that

includes the three homogenous populations (BS, DL, KM) in

southwestern China exhibited a statistically significant higher

allelic richness (AR = 4.946 vs 4.536; P = 0.027), gene diversity

(HS = 0.753 vs 0.722; P = 0.019) and a lower FST (FST = 0.010 vs

Table 3. Basic indices calculated using COI gene and ten microsatellites and haplotype distribution in Chinese populations.

POP mtDNA microsatellite

Nh Hap1 Hap2 Hap3 Hap4 Hap5 Hd (±SD) k p (±SD) AP AR HO uHE HS

BJ 3 29 15 4 0 0 0.542 (0.052) 0.595 0.00104 (0.00013) 0 4.517 0.531 0.727 0.729

DH 3 14 0 8 2 0 0.565 (0.071) 3.493 0.00612 (0.00312) 2 4.512 0.570 0.718 0.721

GY 3 17 1 12 0 0 0.536 (0.048) 0.563 0.00099 (0.00012) 0 4.361 0.586 0.689 0.691

JQ 2 30 0 5 0 0 0.252 (0.085) 0.252 0.00044 (0.00015) 5 4.728 0.654 0.750 0.751

HRB 3 40 1 3 0 0 0.172 (0.074) 0.175 0.00031 (0.00013) 2 4.707 0.613 0.733 0.734

QHD 3 40 3 4 0 0 0.270 (0.081) 0.281 0.00049 (0.00015) 1 4.817 0.541 0.722 0.724

CC 2 8 0 0 2 0 0.356 (0.159) 6.756 0.01183 (0.00529) 0 5.027 0.626 0.770 0.778

SY 4 29 13 4 1 0 0.547 (0.060) 1.377 0.00241 (0.00133) 1 4.349 0.593 0.720 0.721

QTX 2 4 0 0 3 0 0.571 (0.119) 10.857 0.01901 (0.00398) 0 3.776 0.506 0.621 0.633

QD 4 27 9 10 1 0 0.600 (0.057) 1.467 0.00257 (0.00133) 1 4.549 0.610 0.709 0.710

TA 3 19 12 10 0 0 0.656 (0.035) 0.802 0.00141 (0.00013) 1 4.553 0.562 0.707 0.708

BS 4 19 21 6 2 0 0.648 (0.037) 2.276 0.00399 (0.00175) 1 4.716 0.627 0.737 0.738

DL 4 13 3 13 0 1 0.634 (0.049) 0.761 0.00133 (0.00018) 0 5.191 0.595 0.764 0.767

KM 4 27 7 13 1 0 0.601 (0.053) 1.449 0.00254 (0.00131) 2 4.933 0.614 0.759 0.760

Total 316 85 92 12 1

Mean 0.496 4.624 0.588 0.723 0.726

Nh, number of haplotypes; Hd, haplotype diversity; k, average number of nucleotide differences; p, nucleotide diversity; AP, number of private alleles; AR, allelic richness;
HO, observed heterozygosity; uHE, unbiased expected heterozygosity; HS, gene diversity.
doi:10.1371/journal.pone.0034567.t003
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0.051; P = 0.014) than the other group which includes the other

populations. The same results were obtained when the two small

populations (CC, QTX) were excluded from the comparative

analysis.

The Bottleneck test revealed that 7 of 14 populations had a

statistically significant excess of heterozygotes under the IAM,

suggesting these populations might undergo a recent genetic

bottleneck (Table S5). Additionally, the test was non-significant for

all populations under the TPM and SMM models (Table S5).

Interpopulation genetic differentiation
The global FST value, calculated across all populations and loci

within China, was 0.043 (P,0.001) indicating a low but significant

population differentiation in China. When considering all the

populations, 70 of the 91 pairwise comparisons tested were

significantly different from zero (Table 4). QTX and CC were not

significantly different from most other populations, possibly due to

the lack of sufficient power to detect a significant difference when

unbalanced sampling schemes are used [60]. Excluding these two

populations, there are 5 population comparisons with nonsignif-

icant FST values: BS versus DL and KM; DL versus QHD and

KM; KM versus DH. Interestingly, three geographically close

populations in southwestern China (BS, DL and KM) appeared

homogenous, with no significant differentiation following the use

of Bonferroni correction, suggesting the occurrence of extensive

gene flow among these three populations. Additionally, JQ seems

to be an isolated population since it was significantly differentiated

from the other populations (mean FST = 0.079) (Table 4).

The Bayesian clustering analysis for F. occidentalis revealed that

K = 2 was the best fit of the data for the 14 populations in China

(Figure 3). BJ, DH, JQ and HRB formed one genotype cluster and

SY, QTX, QD were assigned to the other cluster with a slightly

higher membership coefficient (Q.0.6). Individuals from the

other populations are a mixture of individuals that did not appear

Table 4. Pairwise FST matrix obtained using 10 microsatellite loci.

BJ DH GY JQ HRB QHD CC SY QTX QD TA BS DL

DH 0.043

GY 0.057 0.061

JQ 0.072 0.086 0.064

HRB 0.025 0.040 0.043 0.058

QHD 0.033 0.043 0.039 0.063 0.020

CC 0.018 0.007 0.016 0.047 0.012 0.015

SY 0.066 0.060 0.063 0.084 0.052 0.029 0.026

QTX 0.043 0.087 0.067 0.090 0.044 0.043 0.047 0.078

QD 0.067 0.053 0.060 0.097 0.062 0.055 0.007 0.057 0.064

TA 0.053 0.059 0.058 0.079 0.049 0.052 0.017 0.069 0.060 0.038

BS 0.022 0.024 0.028 0.063 0.018 0.015 20.008 0.033 0.051 0.033 0.042

DL 0.028 0.036 0.023 0.060 0.028 0.010 20.006 0.034 0.041 0.029 0.033 0.008

KM 0.025 0.019 0.037 0.058 0.014 0.017 20.007 0.040 0.044 0.043 0.031 0.013 0.012

Bold indicates significant values after Bonferroni correction (P = 0.05).
doi:10.1371/journal.pone.0034567.t004

Table 5. Results of assignment test and detection of first generation migrants (F0), with source populations list by column and
recipient populations by row.

BJ DH GY JQ HRB QHD SY QD TA BS DL KM

BJ 28 1 1 1 2 6 (1) 8 (1)

DH 20 2 2

GY 20 1 8 (1) 1

JQ 34 (1) 1 (1)

HRB 1 29 3 (1) 1 (1) 6 4

QHD 1 1 29 1 2 10 (3) 3 (1)

SY 1 2 29 1 (1) 1 10 (1) 2

QD 1 38 1 5 (1) 2

TA 2 28 9 (1) 2

BS 3 29 13 (2) 3

DL 1 (3) 28 1

KM 1 1 1 (2) 5 (1) 40

Populations with sample size of #10 individuals were not included.
doi:10.1371/journal.pone.0034567.t005
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to belong to any of the two genotype clusters (0.40,Q,0.60).

More strikingly, the WFTL/CM individuals cannot be distin-

guished from the WFTG/HD individuals (Figure 2). It was also

supported by the AMOVA analysis which revealed no genetic

differentiation between the two forms at microsatellite loci (Table

S6).

The AMOVA analysis revealed that more than 88% and 95%

of variation was attributed to among individuals within popula-

tions using mitochondrial and microsatellite data, respectively, and

only a small portion of the variation was attributed to among

populations within groups and among groups. Furthermore, the

microsatellite data did not reveal any significant variation between

the putative source populations and the other populations but it

did reveal significant variation between the clusters inferred by

STRUCTURE. Additionally, no significant variation was found

among groups using the mitochondrial data (Table S6).

If the dispersal of F. occidentalis is limited by distance, genetic and

geographical distances should be positively correlated, producing a

pattern of isolation-by-distance. On the contrary, the isolation by

distance correlation was non-significant and slightly negative

(Z = 28.655, r = 20.035, P = 0.349; Figure 4), suggesting a possible

anthropogenic influence on the spread of the F. occidentalis in

China.

Individual assignment tests
The partial Bayesian method computed with GeneClass

revealed high overall assignment success, approximately 99.6%

(487 of 489 individuals were definitively classified at a P value of

0.05). The majority of putative migrant genotypes (110/135) were

restricted to southwestern China and the migration events were

highly directional, from the Southwest to other parts of China.

GeneClass also identified 23 individuals as potentially first-

generation (F0) migrants, of which 20 migrated from the three

southwestern populations to almost all of the other populations

(Table 5). Together, the GeneClass results suggest that a

directional spread occurred from the three southwestern popula-

tions to other parts of China. The BayesAss+ analysis revealed that

our data set did not contain enough information to suitably

estimate migration since the confidence intervals recovered from

the data set always overlapped those obtained from the null

hypothesis.

Discussion

This study constitutes the first attempt to understand the pattern

of genetic variability in F. occidentalis as a consequence of its

introduction and expansion in China. Given the short time span

between detection of the invasion and observations of this study

Figure 3. Inference of the number of genetic clusters (K) from STRUCTURE simulations for Chinese Frankliniella occidentalis
populations. The likelihood of the data given K [ln P(D); left] and DK ([51]; right) are plotted against the number of genetic clusters (K). Error bars
represent standard deviations over ten runs.
doi:10.1371/journal.pone.0034567.g003

Figure 2. Bayesian clustering analysis using STRUCTURE indicating the presence of two clusters. Each individual is represented by a
vertical bar displaying membership coefficients to each genetic cluster. (A) Analysis based on the whole datasets, the arrows point to the 12 WFTL
individuals. (B) Analysis based only on WFTG individuals.
doi:10.1371/journal.pone.0034567.g002
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(10 years), our results shed light on the dynamic aspects of the

invasion process soon after the introduction.

Genetic diversity and population differentiation
Overall, our genetic diversity estimates for F. occidentalis in China

are lower than those reported in the native regions based on

mitochondrial and microsatellite DNA markers [19]. For example,

the mitochondrial genetic diversity estimates for the 14 invasive

populations in China (Nh = 5, Hd = 0.549) were much lower than

those reported in the 12 native populations in the United States

(Nh = 30, Hd = 0.897; [19]). Consistent with the mtDNA data, the

microsatellite genetic diversity indices (uHE = 0.723 and

HS = 0.726) in the 14 invasive populations were lower than those

in the United States (uHE = 0.855 and HS = 0.853) [19]. Moreover,

the genetic diversity estimates (Nh and uHE) for F. occidentalis in

China was comparable to those reported for populations of fire ant

Solenopsis invicta in newly invaded areas in China, Australia, New

Zealand and the Caribbean (Nh = 3; [61]) and Bactrocera invadens in

Africa (HE = 0.56, computed over 11 microsatellites; [62]). As

expected, the bottleneck signature in China is more pronounced in

the mitochondrial genome, which is subject to stronger genetic

drift than the nuclear genome because of its maternal and haploid

mode of inheritance and reduced effective population sizes

[32,63,64]. However, due to the use of different microsatellite

markers in our study and the studies of Brunner & Frey [19], it was

not possible to estimate the reduction in nuclear diversity between

the introduced populations from China and populations from the

native range.

Furthermore, the reduction in genetic diversity possibly due to

bottlenecks as revealed by the Bottleneck analysis with several

populations of F. occidentalis across China showed recent reductions

in population sizes under the IAM. However, under the TPM and

SMM models, none of these populations exhibited a heterozygos-

ity excess, which may be because heterozygosity excess observed in

populations that have declined in size is a transient feature,

expected to last only a few generations [65]. In many cases, we also

do not know whether the populations we examined were within

this small population period. Additionally, the high gene flow

among the Chinese populations might obscure the genetic effects

of a bottleneck via the introduction of rare alleles, especially under

the more conserved SMM model. Thus, although the IAM can

occasionally detect genetic bottlenecks erroneously [65], the above

analysis coupled with the low genetic diversity suggested that slight

genetic bottlenecks might take place in these populations. The

bottlenecks could be due to a small founding population or few

introduction events. The invasion success of this species does not

appear to depend on high levels of genetic variation, although we

did not measure the variation of adaptive traits. Indeed, most

successful invasive insect species show a reduction in genetic

diversity from the native to invaded areas [4,6,66,67]. The

successful invasion of F. occidentalis in China is probably due to its

biological attributes together with the existence of numerous

suitable habitats and climates across China [68]. The minute size,

cryptic behavior, egg deposition inside plant tissue and polypha-

gous nature (feeding on over 250 different plants in 62 different

families [69]), make detection difficult and facilitate the invasion of

F. occidentalis to new environments. In addition, because of its high

fecundity (average total lifetime fecundities exceeding 200 progeny

per female [70]), high resistance to many pesticides [71], high

population growth potential [72], F. occidentalis can easily become

established in new areas. The haplodiploid sex determination of F.

occidentalis makes it relatively resistant to the detrimental effects of

inbreeding and allows to rapidly adapt to new suitable

environments [17].

All populations of F. occidentalis showed significant deviation

from HWE due to heterozygosity deficiency that could arise from

recurrent inbreeding, subpopulation structure (i.e. Wahlund effect)

and/or null alleles. Brunner & Frey also found a significant

deviation from HWE of F. occidentalis within two different habitats

in its native area [19]. Strong inbreeding may be the main factor

contributing to the departure from HWE (0.124,FIS,0.276 with

a mean of 0.188), since a female thrips could survive long enough

to mate with her own haploid male progeny because of their

special haplodiploid sex determination, potentially long adult

lifespan and rapid immature development rate [17,73]. An

analogous situation was observed in the invasive haplodiploid

palm-seed borer Coccotrypes dactyliperda whose principle mating

strategy was inbreeding with an average inbreeding coefficient of

FIS = 0.27 within populations in California [74]. Three species of

solitary gall thrips (Kladothrips xiphius, K. arotrum, K. antennatus) were

also highly inbred (FIS = 0.54–0.68; [75]). A Wahlund effect is

unlikely given that there is no subpopulation structure in most

populations in China. Null alleles could not have major impacts on

the heterozygote deficiency due to the highly successful PCR

amplification rate (.96.8% for each locus across all populations).

However, we could not rely on software programs that test for null

alleles because they assume random mating.

Analysis of F. occidentalis population structure in China based on

FST and AMOVA analysis revealed weak but significant

differentiation (global FST = 0.043, p,0.001) which is comparable

to the differentiation level of an invasive fruit fly pest B. invadens

across its introduced range in Africa (0.015,FST,0.129; [62]).

The low differentiation and the absence of isolation by distance

may be largely due to the high gene flow, especially over long

distances, which should homogenize gene frequencies over

populations within China. Anthropogenic transport is the most

likely explanation for the large-scale dispersion of F. occidentalis,

since it is a weak flier and other localities are far away (110–

3300 km) from the source populations in southwestern China.

This is especially the case for DH, which is separated by desert and

xeric grasslands from other desert-edge localities where more host

Figure 4. Correlation between pairwise linearzed FST values
and the logarithm of geographic distance in Chinese popula-
tions of Frankliniella occidentalis. Reduced Major Axis (RMA)
regression line is shown.
doi:10.1371/journal.pone.0034567.g004
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plants could survive. The main means of spreading of F. occidentalis

is the movement of floricultural and horticultural products [21],

and this is probably also the case in China, although other means

such as wind currents [76] cannot be ruled out.

Furthermore, JQ with more private alleles (Np = 5) seems to be

an isolated population with significant and much higher FST

compared with other populations. Its isolation is also supported by

the Bayesian analysis. The isolation of JQ might be the result of

genetic drift, natural selection or a separate introduction event(s).

Multiple introductions seem unlikely given JQ has only two

mitochondrial haplotypes which also exist in most populations

across China. The presence of a greater number of nuclear private

alleles in JQ is probably due to the low sample number in the

founder populations and high allele number of microsatellites.

Hybridization between the two forms of F. occidentalis
Our mtDNA results (but not the microsatellites) confirmed the

presence of two previously described forms of F. occidentalis in

China. The two forms were suggested to be different cryptic

species (WFTG and WFTL) [19] or different ecotypes (HD and

CM) [20]. One form (WFTG/HD) was observed at extremely

higher frequency (494/506) than the other (WFTL/CM) (12/506).

At the global scale, WFTG/HD established in almost every

continent, but WFTL/CM established only in New Zealand

outside its native range [20]. The invasive pest Bemisia tabaci also

has several biotypes with different degrees of invasive success

[77,78]. The difference in apparent distribution and abundance of

these two cryptic species in the introduced range could result from

their different biology attributes or selection favoring some traits

related to climate, natural enemies and/or insecticide resistance.

However, an unequal number of importations of these two cryptic

species cannot be ruled out. Brunner & Frey have shown that the

ecological niche adaptation may be among the key factors

determining the astonishing invasion potential of F. occidentalis

[19]. In addition, although there were no direct comparisons

between these two cryptic species, several studies might unwit-

tingly show that WFTG/HD exhibits higher fecundity and higher

resistance level to insecticides than WFTL/CM [20,79,80].

In China, these two forms were about 3.3% divergent in terms of

their mtDNA, but they cannot be distinguished by microsatellite

markers. Moreover, the 28SD2 sequences of these two cryptic

species in China were identical to each other and corresponded to

the WFTG/HD which reported in its native range [20]. It is

unlikely that the observed mitochondrial-nuclear discordance is the

result of incomplete lineage sorting since significant differences were

detected between these two cryptic species at the same nuclear and

mitochondrial loci in its native range [20]. The analyses above

suggested that hybridization between these two forms might

produce such substantial mitochondrial-nuclear discordance. If

these two forms are different cryptic species, the Chinese WFTL

individuals were probably derived from unidirectional introgression

of the WFTL mitochondrial genome into the WFTG nuclear

background through hybridization. Extensive mitochondrial intro-

gression have been broadly documented in insects [81,82] and other

organisms, including crustacean, fish, and mammals [83–85].

Introgressive hybridization was observed between the two cryptic

species in China, but reproductive isolation in its native region was

evidenced by Rugman-Jones et al. [20]. One explanation for these

two distinct phenomena is that WFTG and WFTL are sympatric in

China, but they are allopatric in their native range except several

populations [19]. Another explanation is that the rare WFTL

individuals coexisted with more abundant WFTG individuals

(discussed above) in China, but approximately equal abundance

in their native populations where they were sympatric [20]. This

explanation is consistent with the unidirectional hybridization

hypothesis that female mate discrimination should encourage

hybrid reproduction between females of a rare species and males

of a common one [86]. Chan & Levin [87] also demonstrated that

certain models of frequency-dependent prezygotic reproductive

barriers allow for very rapid biased introgression of maternally

inherited genomes. This phenomenon has been reported in several

studies [83,86]. In addition, we cannot completely rule out the

possibility that the introgressive hybridization of the two F.

occidentalis cryptic species in China arises from other factors, such

as natural selection, change of habitat. Alternatively, if these two

forms are different ecotypes, it was possible for hybridization to

occur in China where they were sympatric, because they are not

completely reproductive isolated [19]. Since hybridization has taken

place in China, further studies should be conducted on whether the

fitness of these hybrids is enhanced or reduced. This knowledge is

crucial for the understanding of the evolutionary impact of invasive

species and the integrated control of this pest.

Migration patterns in China
The F. occidentalis neighboring populations BS, DL and KM are

genetically similar and form a single population and differ little

from several other populations with which they share co-ancestry.

Furthermore, these three populations have an asymmetric

migration towards other populations and have a slighter higher

microsatellite genetic diversity than do other populations.

Consistent with the nuclear microsatellite variation, these three

populations have a higher mitochondrial DNA diversity. Togeth-

er, these analyses provide compelling evidence that the invasion

started in southwestern China (BS, DL and KM), where F.

occidentalis was initially found. This hypothesis is supported by the

fact that KM is a center for floriculture production and

transportation and a major centre for international imports of

plants in China [25], where thrips are frequently intercepted.

Thus, KM is probably the port of entry of F. occidentalis. This

appears to be another case of the Bridgehead effect [9], which was

predicted to be common [88] and has been demonstrated by the

movement of several invasive insects. The fire ant Solenopsis invicta,

which is native to South America, was inadvertently introduced

into the southern United States, where it formed the bridgehead

populations that act as a source of the California populations and

other populations in China, Australia, New Zealand and the

Caribbean [61]. The western corn rootworm, Diabrotica virgifera

virgifera, which is native to Mexico, established a bridgehead

population in the United States for its later invasion of Europe

[10,89]. The invasion of Europe, South America and Africa by

Harmonia axyridis also followed the establishment of a bridgehead

population in eastern North America [9].

Implications for management
New knowledge on the genetic diversity and population

structure of F. occidentalis in China as revealed in this study can

help to improve management strategies. Strict trade quarantines

and local eradication should be imposed to prevent further

introduction and spread of the putative three source populations of

F. occidentalis because of the high rates of gene flow from the three

southwestern populations to the rest of the populations in China.

Preventing contaminated plants from the putative source popula-

tions from being transported and population suppression or local

eradication are crucial to eradicating this pest in other areas. To

eradicate F. occidentalis from an area, it is necessary to reduce the

population by various means, such as by using insecticides and

chemical attractants, to a level below the Allee threshold or to

apply biological controls to increase the Allee threshold [13].
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