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Abstract

Background and Purpose: The edible blue pigments produced by gardenia fruits have been used as value-added colorants
for foods in East Asia for 20 years. However, the biological activity of the blue pigments derived from genipin has not been
reported.

Methodology/Principal Findings: The anti-inflammatory effect of blue pigments was studied in lipopolysaccharide (LPS)
stimulated RAW 264.7 macrophage in vitro. The secretions of nitric oxide (NO) and prostaglandin E2 (PGE2) were inhibited in
concentration-dependent manner by blue pigments. Real-time reverse-transcription polymerase chain reaction (Real-time
RT-PCR) analyses demonstrated that the mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-
2), interleukin (IL)-6, and tumor necrosis factor alpha (TNF-a) was inhibited, moreover, ELISA results showed that the
productions of IL-6 and TNF-a were inhibited. Cell-based ELISA revealed the COX-2 protein expression was inhibited. The
proteome profiler array showed that 12 cytokines and chemokines involved in the inflammatory process were down-
regulated by blue pigments. Blue pigments inhibited the nuclear transcription factor kappa-B (NF-kB) activation induced by
LPS, and this was associated with decreasing the DNA-binding activity of p65 and p50. Furthermore, blue pigments
suppressed the degradation of inhibitor of kB (IkB) a, Inhibitor of NF-kB Kinase (IKK) a, IKK-b, and phosphorylation of IkB-a.
The anti-inflammatory effect of blue pigments in vivo was studied in carrageenan-induced paw edema and LPS-injecting ICR
mice. Finally, blue pigments significantly inhibited paw swelling and reduced plasma TNF-a and IL-6 production in vivo.

Conclusions and Implications: These results suggest that the anti-inflammatory properties of blue pigments might be the
results from the inhibition of iNOS, COX-2, IL-6, IL-1b, and TNF-a expression through the down-regulation of NF-kB
activation, which will provide strong scientific evidence for the edible blue pigments to be developed as a new health-
enhancing nutritional food for the prevention and treatment of inflammatory diseases.
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Introduction

With growing concern on the safety of synthetic dyes, the

importance of natural colorants suitable for using in foods has gained

increasing attention. Genipin, the aglycon of geniposide, is obtained

from the fruit of Gardenia jasminoides ELLIS. Genipin itself is colorless

but it reacts spontaneously with amino acids to form blue pigments

which are used in food industry widely [1]. The edible blue pigments

produced by gardenia fruits have been widely used as a blue food

colorant in East Asia [2]. Since the blue pigments were used in the

food industry, the stability with regard to pH, temperature, and light

conditions were also investigated [3], however, very few biological

activity studies of the blue pigments are reported.

The inflammation process is crucial to defense against microorgan-

ism infection. Key events in the inflammatory process include

expression of inflammatory cytokines, chemokines, and other

mediators [4]. Macrophages play an important role in inflammatory

disease and host defense through the release of factors such as NO,

prostaglandin mediators, and cytokines involved in the immune

response [5,6,7]. LPS is one of the most powerful activators of

macrophages known, and macrophages induced by LPS are known to

be activated through the production of inflammatory mediators, such

as NO and other free radicals, in addition to numerous cytokines, such

as TNF-a, IL-1b and IL-6 [8,9,10]. NO is a major product which is

controlled by nitric oxide synthases (NOS), such as iNOS, eNOS and

nNOS [11]. Most importantly, iNOS is highly expressed in

macrophages, which leads to organ destruction in some inflammatory

and autoimmune diseases [12]. PGE2 is also another important

mediator which is produced from arachidonic acid metabolites which

are catalyzed by COX-2 in inflammatory responses [13].
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NF-kB, a nuclear transcription factor, regulates the expression

of various genes, including cytokines, iNOS and COX-2, which

play critical roles in apoptosis, various autoimmune diseases, and

inflammation [14]. NF-kB exists in most cells as homodimeric or

heterodimeric complexes of p50 and p65 subunits and remains

inactive in the cytoplasm of cells associated with the NF-kB

inhibitory protein (I-kB) [15]. NF-kB is activated in response to

LPS, which induced NF-kB activation through increasing nuclear

p65 protein associated with decreased cytosolic I-kB protein [15].

The resulting free NF-kB is then translocated into the nucleus,

where it binds to kB binding sites in the promoter region of target

genes, and induces the transcription of pro-inflammatory media-

tors, including iNOS, COX-2, TNF-a, IL-1b, and others

[16,17,18]. Because of its ubiquitous role in the pathogenesis of

inflammatory gene expression, NF-kB is a current target for

treating various diseases [19,20].

The macrophage cell line (RAW 264.7) used in experiments has

been established as a suitable model to investigate compounds

interfering with LPS-inducible inflammatory cascades in vitro

[21,22,23,24,25]. In this study, the anti-inflammatory effects of the

blue pigments on the generation of several chemokines, cytokines

and enzymes involved in the inflammatory process, such as NO,

PGE2, TNF-a, IL-6, IL-1b, iNOS and COX-2 in LPS-induced

RAW 264.7cells were investigated. We also investigated whether

the blue pigments influence the LPS induced DNA binding

activity of NF-kB and the protein level of its subunit, p65 and p50.

Methods

Ethics statement
The approved ID of the mice experiments is TCM-2009-037-

E05.

This work was supported by the National Natural Science

Foundation of China (30973967, 81173469), which has been

inspected by the Animal Ethics Committee of Tianjin University

of Traditional Chinese Medicine. The ICR mice used in our work

were obtained from Huafukang Bio-technology Co. Ltd. (SCXK

2009-0004, Beijing, China).

Reagents
Dulbecco’s modified Eagle’s medium-high glucose (DMEM), 2-

(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide

(MTT), Lipopolysaccharides from Escherichia coli 0111:B4

(LPS) were purchased from Sigma-Aldrich Co. (USA). Prosta-

glandin E2 Express EIA Monoclonal Kit was obtained from

Cayman Chemical (USA). IL-6 Mouse ELISA Kit and TNF-a
Mouse ELISA Kit were obtained from Invitrogen (USA). 4-amino-

5-methylamino- 29, 79-difluorofluorescein diacetate (DAF-FM

diacetate) was purchased from Invitrogen (USA). BCA Protein

Assay Kit was obtained from Pierce (USA). Mouse Cytokine Array

Panel A Array kit was purchased from R&D Systems, Inc. (USA).

Mammalian Cell Lysis Kit and UNIQ-10 column Trizol total

RNA extraction kit were bought from Sangon Biological

Engineering Technology & Services Co., Ltd. (Shanghai, China).

Improm-II Reverse Transcription System was purchased from

Promega Corporation (USA). FastStart Universal SYBR Green

Master (ROX) kit was purchased from Roche (Germany). Mouse

Anti-COX-2 Monoclonal Antibody was from BD Pharmingen

(USA) and Goat Anti-Mouse IgG Peroxidase Conjugate was from

Calbiochem (Germany). Nuclear Extract Kit was purchased from

Active Motif (Japan). Universal EZ-TFA Transcription Factor

Assay and NF-kB Family EZ-TFA Transcription Factor Assay kits

were purchased from Millipore (USA). P-IkB-a, IkB-a, IKK-a,

IKK-b monoclonal antibodies and peroxidase-conjugated second-

ary antibody were purchased from Cell Singaling Technology

(USA), and b-actin monoclonal antibody was purchased from

Sigma-Aldrich Co. (USA). NF-kB inhibitor BAY 11-7082 was

purchased from Beyotime Institute of Biotechnology (China).

Carrageenan was purchased from Sigma-Aldrich Co. (USA) and

Dexamethasone was purchased from Shanghai General Pharma-

ceutical Co., Ltd.(Shanghai, China).

Preparation of the blue pigments
Genipin was purchased from Wako (Osaka, Japan). Dietary

blue pigments derived from genipin were prepared according to

the methods described earlier [26]. Briefly, 8.8 mmol of genipin

and amino acids (glycine, 8.8 mmol) were added respectively into

400 mL of 100 mM phosphate buffer (pH 7.0) at 80uC and stirred

for 4 h. The blue pigments were passed through Diaion HP-20

resin and ODS columns chromatography and the fractions at

595 nm were collected. The blue pigments were cold-sterilized

using a 0.22-mm pore size membrane filter (Millipore, USA) and

stored in the refrigerator for further use. The proposed formation

structure of blue pigments from genipin with glycine were shown

in Figure 1 [26]. The concentrations of blue pigments were

calculated by the molar mass of genipin.

Cells and cell culture
RAW 264.7 murine macrophages cell line was obtained from

Cell Culture Center of Chinese Academy of Medical Sciences

(Beijing, China). RAW 264.7 cells were maintained in DMEM

supplemented with 10% heat inactivated fetal bovine plasma (HI-

FBS), 100 U/mL penicillin and 100 mg/mL streptomycin at 37uC
in a humidified incubator containing 5% CO2. For the

determination of cell viability, nitrite concentration as an index

for NO synthesis, PGE2 concentrations, as well as different acute

phase proteins, cytokines, and chemokines in culture medium, the

cells were plated at 56105 cells/well in 96-well plates and treated

with various concentrations of blue pigments in the presence of

0.2 mg/mL LPS for 18–24 h as indicated. Moreover, for the

determination of protein levels of COX-2, cells were treated with

various concentrations of blue pigments and in the presence of

0.2 mg/mL LPS for 24 h. For real-time RT-PCR, the cells were

pre-incubated with various concentrations of blue pigments for 2 h

and were then treated with 0.2 mg/mL LPS for an additional 6 h.

The blue pigments at various concentrations dissolved in

Phosphate buffered saline (PBS, pH 7.4) were added together

with LPS. Cells were treated with PBS as vehicle control.

Figure 1. The proposed formation structure of blue pigments
from genipin with glycine.
doi:10.1371/journal.pone.0034122.g001
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Cell viability assay (MTT assay)
RAW 264.7 cells were treated with various concentrations of blue

pigments (12.5, 25, 50, 100 and 200 mM) for 24 h. Then MTT

(stock solution of 5 mg/mL) was added to a final concentration of

0.5 mg/mL, and the cells were incubated for an additional 4 h at

37uC and 5% CO2. The medium was removed and the formazan

precipitate was solubilized in 100 mL DMSO, and the absorbance

was measured at 570 nm on a multifunctional microplate reader

(FlexStation 3, Molecular Devices, USA).

Nitrite assay, detection of intracellular NO production,
PGE2 and cytokines

RAW 264.7 cells were treated with various concentrations of

blue pigments (12.5, 25, 50, 100 mM) in the presence of 0.2 mg/

mL LPS. 18 hours later, the medium was collected. The nitrite

accumulated in culture medium was measured as an indicator of

NO production based on a diazotization reaction using Griess

reagent system (Promega, USA). Nitrite concentration was

determined by a standard curve prepared with sodium nitrite

dissolved in DMEM without phenol red supplemented with 5%

HI-FBS. Intracellular NO production was evaluated by confocal

laser scanning microscopy of a fluorescent NO derivative. LPS

stimulated and blue pigments-treated RAW 264.7 cells were

seeded in 4-well chamber slides (Millicell EZ Slide, Millipore,

USA) and incubated for 1 h at 37uC with 10 mM DAF-FM

diacetate. Digitized images were generated with a Zeiss LSM 710

confocal laser scanning microscope (Carl Zeiss Microimaging,

Jena, Germany) with an excitation wavelength of 495 nm and an

emission wavelength of 515 nm. PGE2 production was measured

with the Prostaglandin E2 Express EIA Monoclonal Kit (Cayman

Chemical, USA). IL-6 and TNF-a secreted in the culture medium

were quantified by ELISA kits (Invitrogen, USA) according to the

manufacturer’s instructions. Samples were assayed after a 10-fold

dilution in the medium (DMEM without phenol red supplemented

with 5% HI-FBS).

Cell-based ELISA for COX-2 protein expression in RAW
264.7 cells

RAW 264.7 cells were seeded in 96-well plates treated with

various concentrations of blue pigments (12.5, 25, 50, 100 mM) in

the presence of 0.2 mg/mL LPS. The expression of COX-2 was

determined by a slightly modified original protocol for the cell-

based ELISA [27,28]. After cultivation, cells were fixed with 4%

paraformaldehyde in phosphate-buffered saline (PBS, pH 7.4) for

20 min at room temperature and washed three times with PBS

containing 0.1% Triton X-100 (PBS/T). Endogenous peroxidase

was quenched with 0.6% H2O2 in PBS/T for 20 min, and cells

were washed three times in PBS/T. Following blocking with 10%

FCS in PBS/T for 1 h, cells were incubated for 2 h at 37uC with

the primary antibody in PBS/T containing 1% BSA. After

washing the cells four times with PBS/T for 5 min, the plate was

incubated for 1 h at room temperature with secondary antibody in

PBS/T containing 1% BSA. Subsequently, cells were washed and

incubated with TMB substrate solution (Invitrogen, USA) for

30 min at room temperature in the dark. The reaction was

stopped with 50 mL of 2 N H2SO4, and the absorbance at 450 nm

was determined on a multifunctional microplate reader. The data

were corrected for differences in cell number by staining the cells

with Janus Green B after the cell-based ELISA procedure [29].

Cytokine protein array analyses
RAW 264.7 cells were seeded in 6-well plates treated with blue

pigments (100 mM) in the presence of 0.2 mg/mL LPS for 18 h.

Cells were collected by centrifugation and washed once with PBS.

The washed cell pellets were resuspended in extraction lysis buffer

(Sangon, China) and incubated with 20 min at 4uC. The protein

concentration was determined using the Pierce protein assay

reagent according to the manufacture’s instruction. Screening for

different acute phase proteins, cytokines, and chemokines in cell

lysates were performed with a Proteome profiler array (Mouse

Cytokine Array Panel A Array kit) from R&D Systems [30,31,32].

The array allows to detect the following proteins: BLC, C5a, G-

CSF, GM-CSF, I-309, Eotaxin, sICAM-1, IFN-c, IL-1a, IL- 1b,

IL-1ra, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12p70, IL-13,

IL-16, IL-17, IL-23, IL-27, IP-10, I-TAC, KC, M-CSF, JE, MCP-

5, MIG, MIP- 1a, MIP-1b, MIP-2, RANTES, SDF-1, TARC,

TIMP-1, TNF-a and TREM-1. Horseradish peroxidase substrate

(Millipore Corporation, USA) was used to detect protein

expression and data were captured by exposure to Kodak BioMax

Light films. Films were scanned into a computer and densitometry

was performed using the Image-Pro Plus version 6.0 (Media

Cybernetics, Silver Spring, MD, USA).

Real-time RT-PCR for detecting mRNA expression of TNF-
a, COX-2, iNOS, IL-6

Total RNA was isolated using Sangon UNIQ-10 column Trizol

total RNA extraction kit according to the instructions of the

manufacturer. RNA (1 mg) was reversely transcribed using

ImProm-II Reverse Transcription System cDNA synthesis kit.

The real-time RT-PCR oligonucleotide primers used for mouse

iNOS, COX-2, IL-6, TNF-a and b-actin are shown in Table 1.

The reactions were setup in duplicates in 25 mL total volumes with

1 mL of each primer (0.3 mM final concentrations), 12.5 mL of

FastStart Universal SYBR Green Master (ROX) (Roche), and

1 mL of template. The PCR cycle was as follows: 95uC for 10 min,

40 cycles of 95uC for 15 s, 60uC for 1 min, and a melt curve

analysis was performed at the end of each experiment to verify that

a single product per primer pair was amplified. The amplification

and analysis were performed using an ABI Prism 7500 Real-Time

PCR System. Samples were compared using the relative CT

method. The fold increase or decrease was determined relative to

a blank control after normalized to a housekeeping gene using

22DDCT [33,34].

NF-kB activity assay
RAW 264.7 macrophages cells were plated in 60-mm dishes

(26106 cells/dish). The cells were treated with various concentra-

tions (25, 50, 100 mM) of blue pigments for 2 h, stimulated with

LPS for 30 min, washed three times with cold PBS. Cells were

collected by centrifugation and washed once with PBS. The

washed cell pellets were resuspended in extraction lysis buffer

(Sangon, China) (50 mM HEPES pH 7.0, 250 mM NaCl, 5 mM

EDTA, 0.1% Nonidet P-40, 1 mM PMSF, 0.5 mM DTT, 5 mM

NaF and 0.5 mM sodium orthovanadate) containing 5 mg/ml of

leupeptin and aprotinin, respectively, and incubated with 20 min

at 4uC. Cell debris was removed by centrifugation, and

supernatants were rapidly frozen. The protein was detected by

BCA method (Pierce, USA). Furthermore, nuclear extracts were

prepared with the manufacture’s instruction (Active Motif, Japan).

Briefly, Cell pellets were resuspended in hypotonic buffer (10 mM

HEPES, pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 0.2 mM PMSF,

0.5 mM DTT, 10 mg/mL aprotinin) and incubated on ice for

15 min. They were then lysed by adding 0.1% Nonidet P-40 and

vortexing vigorously for 10 s. Nuclei were pelleted by centrifuga-

tion at 12,000 g for 10 min at 4uC and resuspended in high salt

buffer (20 mM HEPES, pH 7.9, 25% glycerol, 400 mM KCl,

1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM DTT, 1 mM NaF,

Dietary Blue Pigments Attenuate Inflammation

PLoS ONE | www.plosone.org 3 March 2012 | Volume 7 | Issue 3 | e34122



1 mM sodium orthovanadate). Cell debris was removed by

centrifugation, and supernatants were rapidly frozen. The DNA-

binding activity of NF-kB p50 and p65 was detected with universal

EZ-TFA transcription factor assay kit (Millipore, USA) as the

manufacturer’s instructions. The expressions of IKK a, IKK b,

IkB-a, P- IkB-a were analyzed by western blot. Of cellular

protein, 40 mg from treated and untreated cell extracts were

electro-blotted onto a polyvinylidene difluoride (PVDF) membrane

following separation on a 10% SDS-polyacrylamide gel electro-

phoresis. The immunoblot was incubated for 2 hours with

blocking solution (5% skim milk) at room temperature, and then

incubated overnight with a 1:1000 dilution of anti- IKK a, anti-

IKK b, anti-IkB-a, P-IkB-a, b-actin antibody at 4uC (Cell

Singaling Technology, USA). Blots were washed five times with

Tween 20/Tris-buffered saline (TTBS) and then incubated with a

1: 1000 dilution of horseradish peroxidase-conjugated secondary

antibody (Cell Singaling Technology, USA) for 1 h at room

temperature. Blots were again washed five times with TTBS and

then developed by Horseradish peroxidase substrate (Millipore

Corporation, USA) and data were captured by exposure to Kodak

BioMax Light films.

Animals
Male ICR strain of mice (4–5 weeks of age), purchased from

Beijing Huafukang Bio-technology Co. Ltd., were group-housed

under controlled light (12-h/12-h light–dark cycle; lights on at

07:00 a.m.) in the Laboratory Animal Center of Tianjin University

of Traditional Chinese Medicine. Ambient temperature and

relative humidity were maintained at 2461uC and 5565%,

respectively. All the animals had free access to water and food in a

home cage.

Carrageenan-induced paw edema test in mice
Paw edema was induced by subcutaneous injection of 50 mL of

1% carrageenan into the right hind paw of mice as previously

described [35]. The mice were divided into 5 groups: vehicle

control group, 1% carrageenan+0.9% saline; 1% carrageenan+-
Dexamethasone (10 mg/kg); or 1% carrageenan+blue pigments

(30, 60, 120 mg/kg) (n = 10 for each group). Groups were

pretreated intraperitoneally (i.p.) with 200 mL of 0.9% saline,

Dexamethasone or Genipin blue (30, 60, 120 mg/kg) for

30 minutes. 50 mL of 1% carrageenan was then administered in

200 mL i.p for every group. The paw thickness was measured using

a 7140 Plethysmometer (UGO BASILE, Italy) before and every

hour after edema induction for 4 h. The percent increase of paw

thickness was calculated based on the volume difference between

the paw with and without carrageenan injection.

Plasma concentrations of TNF-a and IL-6 in LPS-
stimulated ICR mice

The mice were divided into 6 groups: negative control group,

injected with 0.9% saline; LPS+0.9% saline; LPS+Dexamethasone

(10 mg/kg); or LPS+blue blue pigments (30, 60, 120 mg/kg) (n = 8

for each group). Groups were pretreated intraperitoneally (i.p.)

with 200 mL of 0.9% saline, Dexamethasone or genipin blue for

30 minutes. Lipopolysaccharide (1 mg/kg) was then administered

in 200 mL i.p for 5 treatment groups, and 0.9% saline was

administered i.p. for the negative control group. Blood was

withdrawn from the animals under ether anesthesia ninety minutes

later [36]. The centrifuge tube was heparinized and blood from

mice was centrifuged at 2000 rpm for 15 minutes, and the plasma

was collected and stored at 280uC until analysis. Plasma levels of

TNF-a and IL-6 were determined using Mouse ELISA kit

(Invitrogen, USA).

Statistical analysis
One-way ANOVA or t-test was used for determining the

statistically significant differences between the values of various

experimental groups. Data were expressed as means 6 SD and a P

value,0.05 was considered statistically significant.

Results

Effect of blue pigments on RAW 264.7 cells viability
The cytotoxicity of blue pigments on RAW 264.7 cells was

measured with MTT assay. Cell viability was not significantly

altered by blue pigments at up to 200 mM. These results suggest

that concentrations of blue pigments below 200 mM are not toxic

to RAW 264.7 cells. Therefore, for all experiments, cells were

treated with blue pigments in the concentration range of 12.5–

100 mM. The MTT assay results of blue pigments on RAW 264.7

cells were shown in Figure S1.

Effect of blue pigments on LPS-induced NO production
The effect of blue pigments on NO in LPS-induced RAW 264.7

cells was tested to investigate the anti-inflammatory effects.

Concentrations of nitrite accumulated in the culture medium

were estimated by Griess reagent as an index for NO. RAW 264.7

Table 1. The real-time RT-PCR oligonucleotide primers.

Gene primer sequence (59-39) PCR product (bp)

b-actin forward AGAGGGAAATCGTGCGTGAC 138

(NM_007393.3) reverse CAATAGTGATGACCTGGCCGT

iNOS forward GGCAGCCTGTGAGACCTTTG 72

(NM_010927.3) reverse GCATTGGAAGTGAAGCGTTTC

COX-2 forward TGAGTACCGCAAACGCTTCTC 151

(NM_011198.3) reverse TGGACGAGGTTTTTCCACCAG

IL-6 forward TCCAGTTGCCTTCTTGGGAC 140

(NM_031168.1) reverse GTGTAATTAAGCCTCCGACTTG

TNF-a forward TTCTGTCTACTGAACTTCGGGGTGATCGGTCC 354

(NM_013693.2) reverse GTATGAGATAGCAAATCGGCTGACGGTGTGGG

doi:10.1371/journal.pone.0034122.t001
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cells were pretreated with different concentrations (12.5, 25, 50,

100 mM) of blue pigments, which were found to significantly

inhibit LPS-induced NO production in a concentration-dependent

manner (P,0.01). The NO inhibitor, L-NAME (100 mM), as a

positive control, also inhibited the production of NO in activated

RAW 264.7 cells (Figure 2A). Furthermore, confocal laser

scanning microscopy also showed blue pigments to be a stronger

inhibitor of intracellular NO production than that in single LPS

stimulation (Figure 2B).

Effect of blue pigments on LPS-induced cytokines TNF-a
and IL-6

TNF-a, IL-6 are known to be pro-inflammatory cytokines that

posses a multitude of biological activities linked to the immune-

pathology of acute or chronic inflammatory diseases. After

treatment with blue pigments and activated with LPS (0.2 mg/

mL), the secretion of IL-6 and TNF-a were detected by ELISA. As

shown in Figure 3A–B, pretreatment of RAW 264.7 cells with blue

pigments (25, 50, 100 mM) significantly reduced IL-6 production

(P,0.01), whereas TNF-a production were only inhibited slightly

by 50 mM blue pigments (P,0.05).

PGE2 production and Protein expression of COX-2 on
blue pigments

LPS-induced PGE2 production was detected by ELISA. As

shown in Figure 3C, blue pigments inhibited the production of

PGE2. Blue pigments (50, 100 mM) had a markedly higher

inhibitory effects (P,0.01). In order to investigate whether the

inhibition of PGE2 production was due to a decreased protein

expression of COX-2, the effect of blue pigments on COX-2

protein expression was studied by cell-based ELISA. As shown in

Figure 3D, LPS treatment significantly increased COX-2 protein

expression levels, whereas COX-2 protein expression was

suppressed the induction of blue pigments (P,0.01 or P,0.05).

Effect of blue pigments on multiple cytokines
In Inflammatory, multiple cytokines secreted in macrophages

were activated significantly. After stimulating with 0.2 mg/mL

LPS, multiple cytokines such as, G-CSF, sICAM-1, IL-1a, IL-1b,

IL-1ra, KC, JE, MIP-1a, MIP-1b, MIP-2, RANTES and TNF-a
were up-regulated. However, the expressions of G-CSF, sICAM-1,

IL-1a, IL-1ra, KC, JE, MIP-1b, RANTES could be significantly

down-regulated by the blue pigments (Figure 4B P,0.01 or

P,0.05, the optical density data are presented in Table S1),

however, the expressions of IL-1b, MIP-2, TNF-a were inhibited

by blue pigments, but no significant (P.0.05). The blue pigments

could modulate the synthesis of several cytokines which were

involved in the inflammatory process.

Effect of blue pigments on LPS-induced mRNA
expression of TNF-a, IL-6, iNOS and COX-2

Since blue pigments was found to most potently inhibit the pro-

inflammatory mediators, e.g., NO, PEG2, TNF-a, IL-6 in

supernatants, we investigated the effects of blue pigments on

LPS-induced iNOS, COX-2, TNF-a, IL-6 gene expression using

real-time RT-PCR. The inhibitions of blue pigments on LPS-

induced mRNA expression of TNF-a, IL-6, iNOS, COX-2, were

observed in Figure 5A–D. The results showed that the effect of

blue pigments on mRNA expression of TNF-a, IL-6, iNOS,

COX-2 was coincidence with the secretion of TNF-a, IL-6, NO,

PEG2 that in culture medium. Moreover, the mRNA expression of

COX-2 was significantly inhibited by the blue pigments, which

was coincidence with the expression of COX-2 protein.

Effects of blue pigments on NF-kB activity
As the activation of NF-kB is critically required for the

activations of iNOS, COX-2, TNF-a, PEG2 and IL-6 by LPS,

we determined the DNA-binding activity of NF-kB subunits p50

and p65 using the Universal EZ-TFA transcription factor

colorimetric assay, which instead of the DNA-binding principle

of the electrophoretic mobility shift assay with the 96-well format

of an enzymelinked immunosorbent assay. Accordingly, a NF-kB

DNA binding assay was carried out using nuclear extracts from

RAW 264.7 cells stimulated with LPS in the presence or absence

of blue pigments. Treatment of RAW 264.7 cells with LPS

(0.2 mg/mL) was found to increase the expression of NF-kB

subunits p50 and p65, however, the expressions of p50 (Figure 6A)

and p65 (Figure 6B) pretreated these cells with blue pigments prior

Figure 2. The effect of blue pigments on LPS-induced NO in RAW 264.7 cells. (A) RAW 264.7 cells were incubated with the indicated
concentrations of blue pigments and 0.2 mg/mL LPS for 18 h. The NO content of culture medium was analyzed by Griess reagent system. Data
represent means 6S.D. values from three independent experiments. * P,0.05, ** P,0.01 (n = 6) compared with LPS treated cells alone. (B) RAW 264.7
cells were incubated with the indicated concentrations of blue pigments and 0.2 mg/mL LPS for 18 h. Intracellular NO production was evaluated with
DAF-FM diacetate by confocal laser scanning microscopy: (a) control (cells alone); (b) cells stimulated with LPS; (c) 100 mM blue pigments was added
under the condition of part (b); (d) 100 mM L-NAME was added under the condition of part (b).
doi:10.1371/journal.pone.0034122.g002
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Figure 3. Effect of blue pigments on LPS-induced TNF-a, IL-6, PGE2 production and COX-2 protein expression. RAW 264.7 cells were
incubated with the indicated concentrations of blue pigments and 0.2 mg/mL LPS for 18 h or 24 h. TNF-a (A), IL-6 (B), PGE2 (C) in the culture medium
were analyzed by ELISA, and the COX-2 protein expression (D) was analyzed by cell-based ELISA. Data represent means 6S.D. values from three
independent experiments. * P,0.05, ** P,0.01 (n = 6) compared with LPS treated cells alone.
doi:10.1371/journal.pone.0034122.g003

Figure 4. Effect of blue pigments on LPS-stimulated multiple cytokines produced in RAW 264.7 cells. RAW 264.7 cells were incubated
with the concentrations of blue pigments and 0.2 mg/mL LPS for 18 h. (A) The R&D Systems Mouse Cytokine Antibody Proteome Profiler Array system
was used to screen for activation of different acute phase proteins, cytokines, and chemokines involved in the inflammatory process in RAW264.7
cells. (a) Control; (b) RAW 264.7 cells were induced by LPS (0.2 mg/mL); (c) RAW 264.7 cells were treated with blue pigments in the presence of LPS
(0.2 mg/mL). The cytokines in cell lysates were analyzed by Proteome profiler array. Presented numbers on membranes mark the following targets: ‘‘1’’
G-CSF; ‘‘2’’ sICAM-1; ‘‘3’’ IL-1a; ‘‘4’’ IL-1b; ‘‘5’’ IL-1ra; ‘‘6’’ KC; ‘‘7’’ JE; ‘‘8’’ MIP-1a; ‘‘9’’ MIP-1b; ‘‘10’’ MIP-2; ‘‘11’’ RANTES; ‘‘12’’ TNF-a. (B) Quantification of
cytokines optical density. Measurement was obtained with the Image-Pro Plus version 6.0.
doi:10.1371/journal.pone.0034122.g004
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to LPS were reduced in a concentration-dependent manner when

compared with the single LPS stimulation group (P,0.01). Taken

together, the above findings showed that blue pigments suppressed

iNOS, COX-2, TNF-a, PEG2 and IL-6 expression at least in part

via an NF-kB-dependent mechanism. We also explored whether

blue pigments inhibited the LPS-stimulated degradation of IkB-a
in RAW 264.7 cells by Western blotting with anti-IkB-a antibody.

Figure 7 shows that LPS-induced IkB-a degradation was

significantly blocked by blue pigments pretreatment. Furthermore,

to determine whether this IkB-a degradation was related to IkB-a
phosphorylation, we examined the effect of blue pigments on the

LPS-induced p-IkB-a by Western blotting, and found that blue

pigments also significantly reduced LPS-induced IkB-a phosphor-

ylation. The b-actin protein was used as internal controls. Since

IKK-a and -b are upstream kinases of IkB in the NF-kB signal

pathway [17], we examined the effects of blue pigments on LPS

induced IKK-a, -b activation by immunoblotting using IKK-a, -b
antibodies. Blue pigments (100 mM) inhibited the expression of

IKK-a and IKK-b. The b-actin protein was used as internal

control. (The western blot bands were quantified by densitometry

and the data are presented in Figure S2).

Effects of blue pigments on carrageenan-induced paw
edema in mice

The anti-inflammatory effect of blue pigments was examined

using the carrageenan-induced paw edema model. As shown in

Figure 8, treatment with blue pigments (60, 120 mg/kg) showed

significant inhibitory effects on paw swelling, compared with the

vehicle control group. Maximal edema inhibition was observed at

1 h after edema induction. Notably, treatment with blue pigments

(120 mg/kg) reduced edema by 21.9% at 1 h, whereas the positive

control, Dexamethasone (10 mg/kg) decreased the edema rate by

34.5% at 1 h.

Effects of blue pigments on plasma concentrations of
TNF-a and IL-6 in LPS-stimulated ICR mice

Injecting mice with LPS lead to increase in plasma TNF-a and

IL-6 levels compared to untreated mice. Blue pigments signifi-

cantly reduced the plasma TNF-a and IL-6 levels in a dose-

dependent manner in the LPS-stimulated animals (Figure 9). Blue

pigments reduced the plasma TNF-a and IL-6 levels by 59.2%

and 19.5% in the LPS-stimulated animals. Pretreatment with the

anti-inflammatory steroid dexamethasone caused 81.7% and

36.1% reduction in plasma TNF-a and IL-6 in LPS-stimulated

mice.

Discussion

The pharmacological studies showed that genipin had exhibited

neuroprotective effect [37], anti-inflammatory effect [38] and

suppression of fas-induced lethal liver apoptosis in vitro [39].

Because it was a naturally occurring crosslinking reagent with

low cytotoxicity, genipin has recently been investigated as a cross-

linking regent in many biological applications. Recent explorations

into using of genipin cross-linked gelatin as a wound-dressing

membrane [40], bioadhesives [41], bone substitute [42] and

Figure 5. Effect of blue pigments on LPS-stimulated mRNA expression of TNF-a, IL-6, iNOS and COX-2. RAW 264.7 cells were pre-
incubated with indicated concentrations of blue pigments for 2 h and were then treated with 0.2 mg/mL LPS for an additional 6 h. The mRNA
expression of TNF-a (A), IL-6 (B), iNOS (C) and COX-2 (D) was analyzed by real-time RT-PCR. Data represent means 6 S.D. values from three
independent experiments. * P,0.05, ** P,0.01 (n = 6) compared with LPS treated cells alone.
doi:10.1371/journal.pone.0034122.g005
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heparin immobilization [43], have shown its potential as a new

and safe cross-linking agent, which had low cytotoxicity and

inflammatory reaction, satisfactory biocompatibility and stabile

mechanical properties than glutaraldehyde. Genipin was also

being investigated in the field of forensic science as a fingerprint

reagent to develop latent fingerprints on paper products [44].

Furthermore, genipin could react with amino acid to form the

stable blue pigments, and the blue pigments have been approved

by Ministry of Public Health of the People’s Republic of China

used as value-added colorants for foods in 1990 [45]. The

biological activity of genipin have been reported widely, however,

the biological activity studies of blue pigments have been not

reported. Dietary lutein, one of natural colorants for foods, has

been shown the potential anti-inflammatory effect in vitro [46], and

the present study was elucidating the molecular mechanisms

underlying the anti-inflammatory effect of blue pigments.

NO was recognized as a mediator and regulator of inflamma-

tory responses and was produced in high amounts by iNOS in

activated inflammatory cells [47]. Blue pigments was found to

significantly inhibit LPS-induced NO production in a concentra-

tion-dependent manner. The mRNA expression of iNOS was also

decreased by blue pigments, confirming the suppressive effect of

blue pigments on the NO production. The present work also

showed that blue pigments inhibited the expression of iNOS

mRNA in LPS-stimulated RAW 264.7 macrophage cells. This

blocking effect of blue pigments on LPS-induced iNOS expression

might have resulted from the transcriptional inhibition of iNOS

gene.

The mechanism of various antiinflammatory drug actions was

at least shared by the inhibition of prostaglandin synthesis, which

was mediated by cycloxygenase (COX) [48]. Of the two isoforms

of COX, COX-1 has been suggested to provide a physiologic level

of PGs for normal platelet, stomach and kidney function.

Moreover, COX-2 has been found to be highly induced at

inflammatory sites in animals as well as patients with inflammatory

diseases [49,50]. PGE2 was considered one of the strongest

inflammatory mediators in inflammatory response. It was

transformed from arachidonic acid via the COX-2 catalytic

reaction. COX-2 also could be affected directly at its enzymatic

activity by NO and iNOS [51]. The results showed that blue

pigments significantly reduced PGE2 production, and inhibited the

COX-2 mRNA and protein expression respectively, in a

concentration-dependent manner. It suggested that the anti-

inflammatory effect of blue pigments might be attributed to its

inhibitive effect on PGE2 production through blocking COX-2

gene and protein expression.

In inflammation progress, a series of cytokines and mediators

contributed to evoking and regression of inflammation. TNF-a
and IL-6 were the critical cytokines involved in inflammation and

inhibition of them were regarded as a treatment strategy on

inflammation-related diseases [52,53,54]. So we chose TNF-a and

IL-6 as a parameter to investigate the anti-inflammatory effect of

blue pigments. In the present study, we found that TNF-a and IL-

6 release and mRNA expressions, which were highly stimulated by

Figure 6. Effects of blue pigments on LPS-induced NF-kB
translocation. RAW 264.7 cells were pre-incubated with indicated
concentrations of blue pigments for 2 h and stimulated with LPS
(0.2 mg/mL) for 30 min. The DNA-binding activity of NF-kB p50 (A) and
p65 (B) was detected with universal EZ-TFA transcription factor assay
(Millipore, USA). NF-kB inhibitor BAY 11-7082 (10 mM) was used as
positive control. Data represent means 6 S.D. values. * P,0.05,
** P,0.01 (n = 5) compared with LPS treated cells alone.
doi:10.1371/journal.pone.0034122.g006

Figure 7. Effects of blue pigments on the degradation of IkB-a,
IKK-a, IKK-b and phosphorylation of IkB-a. RAW 264.7 cells were
pre-incubated with indicated concentrations of blue pigments for 2 h
and stimulated with LPS (0.2 mg/mL) for 30 min. Total cellular proteins
were then prepared and Western blotted for IkB-a, IKK-a, IKK-b and p-
IkB-a using specific IkB-a, IKK-a, IKK-b and p-IkB-a antibodies. The b-
actin protein was used as internal controls. NF-kB inhibitor of BAY 11-
7082 (10 mM) was used as positive control.
doi:10.1371/journal.pone.0034122.g007
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LPS, were inhibited by blue pigments. In particular, inhibitions of

IL-6 production and mRNA expression were more enhanced than

those of TNF-a by blue pigments, which presented the potential of

blue pigments to treat typical inflammation -related disorders. For

other cytokines involved in the inflammatory process, blue

pigments also inhibited their expressions, such as, G-CSF,

sICAM-1, IL-1a, , IL-1ra, KC, JE, MIP-1a, MIP-1b, RANTES.

It has been shown that NF-kB activation was a critical factor to

expression of various proinflammatory enzymes and cytokines,

and iNOS, COX-2, TNF-a, IL-1b and IL-6 in macrophages in

response to LPS [14,15]. NF-kB was composed mainly of two

proteins: p50 and p65. In resting cells, the NF-kB heterodimer was

held in the cytosol through interaction with IkB inhibitory proteins

[55]. NF-kB activation resulted from the phosphorylation and

proteasome- mediated degradation of inhibitory IkB proteins,

moreover, this was followed by the nuclear translocation and DNA

binding of NF-kB [56,57] where the transcription of target gene

was induced. Therefore, we examined NF-kB-DNA binding

activity to confirm that the inhibitions of the expressions of iNOS,

COX-2, TNF-a and IL-6 are influenced by the NF-kB signaling

pathway. Our results indicated that the nuclear translocations of

p65 and p50 proteins were inhibited in a concentration-dependent

manner by blue pigments and these results corresponded with its

inhibition of the expressions of iNOS, COX-2, TNF-a and IL-6.

In the cytoplasm, NF-kB is bound to tightly control by its

inhibitory subunit, IkB. In the present study, we also found that

the translocation of activated NF-kB to the nucleus was inhibited

in a concentration-dependent manner by blue pigments, and that

the degradation and phosphorylation of IkB-a were also inhibited

by blue pigments. These findings indicate that blue pigments may

inhibit NF-kB activation by suppressing the phosphorylation of

IkB-a and the translocations of the p50 and p65 subunits of NF-

kB from the cytosol to the nucleus in LPS-induced RAW 264.7

cells. IKK-a and IKK-b (known as the IkB kinases) are responsible

for phosphorylating IkBs [58]. In the present study, we observed

that blue pigments inhibited the activation of IKK-a and IKK-b.

Thus, we suggest that the inhibition of IKK-a and IKK-b by blue

pigments underlies its inhibition of NF-kB activation. Blue

pigments (60, 120 mg/kg) showed significant inhibitory effects

on carrageenan-induced paw edema in mice, compared with the

vehicle control group. Furthermore, blue pigments significantly

reduced the plasma TNF-a and IL-6 levels in a dose-dependent

manner in the LPS-stimulated animals. Although NF-kB is the

major regulator of pro-inflammatory signaling in macrophages,

other transcription factors activated by PLS, such as activating

protein-1(AP-1), cAMP response element-binding (CREB), The

nuclear factor interleukin-6 (NF-IL6) may affect the production of

inflammatory mediators[59,60,61]. The reason of the little

discrepancies in the distinct potency of genipin-derived blue

pigment against the LPS-induced activation of NF-kB and the

gene expression of some inflammatory mediator might be

associated with lack of inhibition of these transcriptional factors

(AP-1, CREB, NF-IL6).

In conclusion, although the blue pigments have been used as

value-added colorants for foods about 20 years in East Asia, its

biological activity has been first explored. The current study

demonstrated that blue pigments did not only inhibit iNOS and

COX-2 gene expression induced by LPS as well as the subsequent

production of NO and PGE2, but reduced the production of

Figure 9. Effects of blue pigments on plasma concentrations of
TNF-a and IL-6 in LPS-stimulated ICR mice. Blue pigments (30, 60,
120 mg/kg), dexamethasone (10 mg/kg) or 0.9% saline were pretreated
for 30 min. The mice were then either injected with 1 mg/kg
lipopolysaccharide (LPS) or PBS for 90 min. Plasma TNF-a (A) and IL-6
(B) were quantified using ELISA. Data represent means 6S.D. values.
* P,0.05, ** P,0.01 (n = 8) compared with LPS treated alone.
doi:10.1371/journal.pone.0034122.g009

Figure 8. Effects of blue pigments on carrageenan-induced
paw edema in mice. Blue pigments (30, 60, 120 mg/kg), dexameth-
asone (10 mg/kg) or with 0.9% saline were administered 30 min before
carrageenan injection into mice for alleviation of acute inflammation.
Paw thickness was measured using Plethysmometer before and every
hour after edema induction for 4 h. The percent increase of paw
thickness was calculated based on the volume difference between the
paw with and without carrageenan injection. Data represent means 6
S.D. values. * P,0.05, ** P,0.01 (n = 10) indicate significant differences
from vehicle control.
doi:10.1371/journal.pone.0034122.g008
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cytokines (TNF-a, IL-6) induced by LPS in RAW 264.7

macrophages by the inhibition of signaling cascades leading to

the activation of NF-kB. Therefore, the results of our studies will

provide strong scientific evidence for blue pigments to be

developed as a new health-enhancing nutritional food for the

prevention and treatment of chronic inflammatory diseases, which

also advance our knowledge in molecular nutrition by elucidating

pathways for the functional food at a molecular level.

Supporting Information

Figure S1 The effect of blue pigments on cell viability in
RAW 264.7 cells. RAW 264.7 cells were treated with the

indicated concentrations of blue pigments and then incubated for

24 h. Cell viabilities were assessed using MTT assay. Cell viability

was not significantly altered by blue pigments at up to 200 mM.

These results suggest that concentrations of blue pigments below

200 mM are not toxic to RAW 264.7 cells.

(TIF)

Figure S2 Optical density analysis of P-IkB-a (A), IkB-a
(B), IKK-a (C) and IKK-b (D). Each column represents mean

6 SD of 4 samples measured by quantitative western blot analysis

and normalized by that of b-actin. Measurement was obtained

with the Image-Pro Plus version 6.0. * P,0.05, ** P,0.01

compared with LPS treated cells alone.

(TIF)

Table S1 Optical density analysis of cytokine protein
array.

(DOC)
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