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Abstract

About 90% of the people infected with Mycobacterium tuberculosis carry latent bacteria that are believed to get activated
upon immune suppression. One of the fundamental challenges in the control of tuberculosis is therefore to understand
molecular mechanisms involved in the onset of latency and/or reactivation. We have attempted to address this problem at
the systems level by a combination of predicted functional protein:protein interactions, integration of functional
interactions with large scale gene expression studies, predicted transcription regulatory network and finally simulations with
a Boolean model of the network. Initially a prediction for genome-wide protein functional linkages was obtained based on
genome-context methods using a Support Vector Machine. This set of protein functional linkages along with gene
expression data of the available models of latency was employed to identify proteins involved in mediating switch signals
during dormancy. We show that genes that are up and down regulated during dormancy are not only coordinately
regulated under dormancy-like conditions but also under a variety of other experimental conditions. Their synchronized
regulation indicates that they form a tightly regulated gene cluster and might form a latency-regulon. Conservation of these
genes across bacterial species suggests a unique evolutionary history that might be associated with M. tuberculosis
dormancy. Finally, simulations with a Boolean model based on the regulatory network with logical relationships derived
from gene expression data reveals a bistable switch suggesting alternating latent and actively growing states. Our analysis
based on the interaction network therefore reveals a potential model of M. tuberculosis latency.
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Introduction

Increased rate of tuberculosis (TB) infection and the emergence

of multi and extensively-drug-resistant tuberculosis [1] have

necessitated urgent efforts towards enhanced understanding of its

causative agent, Mycobacterium tuberculosis. The complete genome

sequence of the common laboratory strain M. tuberculosis H37Rv

was unraveled in 1998 [2] and the sequence was later re-annotated

[3]. The genome annotation combined with comparative genomic

studies has revealed several novel features including gene families

that are unique to this bacterium such as PE and PPE genes and

the eukaryotic like serine threonine protein kinases (STPKs). The

genome also harbors unique genes involved in lipid biosynthesis,

drug resistance and pathogenesis [2].

Owing to its distinct characteristics and the disease causing

ability, M. tuberculosis has been studied widely across the world. For

example, different experiments have accumulated information

about the biochemical and structural properties of a number of

proteins of this organism [4,5]. There is also large amount of data

on mycobacterial gene expression under a variety of growth

conditions [6]. Genome-wide surveys of essential genes of M.

tuberculosis, both in vitro and those potentially involved in

pathogenesis, have been carried out [7–9]. Similarly, large-scale

proteome profiling to classify M. tuberculosis proteins into different

cellular compartments has been carried out [10]. Such varied

studies have helped in understanding not only the unique genetic

makeup of the bacillus, but also the possible roles of individual

genes during different steps of pathogenesis.

M. tuberculosis has also been the centre of attention for a few

studies executed at the systems level. In this regard, there have

been attempts to model gene regulation, protein interactions and

metabolic pathways of the organism. Functional linkage maps of

M. tuberculosis have been defined by using genome context methods

[11]. In another study, Balaszi et al have assembled gene

regulation information and studied transcriptional changes that

might mediate switch to dormancy [12]. Flux balance analysis

(FBA) on the model of mycolic acid biosynthesis pathway has

revealed potential drug targets pertaining to this pathway [13].

Nonetheless, the systems level understanding of M. tuberculosis

remains inadequate. One of the major obstacles being that a large
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fraction of genes are either putative or are unannotated, and

thereby coherence among different pathways that contribute to

virulence remains to be defined systematically. There is therefore a

pressing need to integrate different approaches to understand

tuberculosis and perceive mechanisms by which M. tuberculosis

enters a dormant phase, or emerges out of it. A new promise in this

aspect is the availability of a number of genome sequences of

clinical strains and the data gathered by individual and high-

throughput experiments which permit studies at the systems level.

One of the promising approaches to understand complex

functional associations of the molecules and their organization is

by analyzing genome-wide protein:protein interactions by means

of graph theoretical representations. In this regard, there have

been a few attempts to generate protein interaction maps of M.

tuberculosis, all of them being in silico predictions. Strong et al used

genome context methods to derive a functional linkage map of

4,886 interactions among 1,958 proteins followed by clustering of

the network in order to reconstruct some of the biochemical

pathways in M. tuberculosis [11]. Another study involved translating

high confidence interactions of E. coli to M. tuberculosis [14]. A set of

6,091 interactions among 793 proteins was obtained in this study

to identify proteins involved in signaling pathways. The interaction

database STRING [15] houses protein interactions of M.

tuberculosis derived by literature curation and other methods. The

highest confidence interactions in STRING which are supported

by multiple methods or curation include around 6,403 interactions

between 1,653 proteins. However, none of the above sources

represents a comprehensive collection of M. tuberculosis protein

interactions.

We have attempted to combine genome context methods,

namely phylogenetic profile [16,17], gene distance [18] operonic

co-occurrence [19,20] with the available high throughput gene

expression studies for the prediction of genome-wide functional

linkages. The predictive features of these were combined using a

Support Vector Machine (SVM). These functional linkages were

analyzed to understand the phenomenon of latency, thus

providing an integrated perspective of latency. In addition, a

Boolean model is employed to investigate the patterns of

expression of genes identified as being up and down-regulated

during latency. Boolean or logical models [21] are known to be an

effective and straightforward means of reproducing the behaviour

of gene regulatory networks over time [22–24], especially for

systems where only qualitative data is available. The model

simulations strengthen our understanding of the regulatory control

exerted by a small number of genes in order to sustain the latency

stage.

Results

Generation of the Protein Functional Linkages
We have reported earlier that the genome context methods,

namely phylogenetic profile, operonic frequency and gene distance

can be effectively combined using a SVM to predict protein

functional linkages in E. coli [25]. Apart from the genome context

methods it is interesting to note that the proteins which have

functional relations are also known to show good correlation in

their gene expression [26]. We therefore attempted to include

correlation in gene expression among the genes as a feature for

SVM training.

It is well known that large-scale gene expression datasets are

expected to be noisy [27]. However, the expression levels between

gene pairs, if functionally related, are likely to be correlated across

different experimental conditions. In general, no gene pair is

anticipated to exhibit high expression correlation except when the

two genes are coregulated thereby suggesting a functional

relationship between the two. This conjecture was sought to be

tested using known operonic gene pairs. Significantly, the operonic

gene pairs show high expression correlation compared to the same

number of randomly generated non-operonic pairs (Figure 1). This

observation, therefore, strengthened the confidence in using the

microarray data for interaction predictions. Thus, we have

supplemented genome context methods with correlations in gene

expression to generate genome-wide protein functional linkages

map of M. tuberculosis.

In order to test whether the positive and negative pairs used in

training the SVM show characteristic distribution for the data

features chosen, students’ t-test was performed on the available

positive pairs and equal number of randomly chosen negative

pairs. Figure 2 depicts the distribution of vectors of the gene pairs

used in training, which show a distinctly different distribution with

a p value of 2.2e216. All the data features chosen are therefore

capable of distinguishing between positive and negative pairs,

Figure 1. Pearson correlation coefficient between expression values of pairs of genes. A) The genome-wide gene expression correlations
of all the gene pairs and B) expression correlation between operonic gene pairs and randomly paired non-operonic gene pairs. As anticipated, it is
evident that the genes on operons exhibit higher correlation in their expression compared to the non-operonic gene pairs.
doi:10.1371/journal.pone.0033893.g001

Network Perspective of Mycobacterial Latency
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suggesting their potential application in the prediction of

functional linkages. Thus, using these features, optimization of

training for the SVM was performed with 5-fold cross-validation.

Furthermore, performance of SVM classification was evaluated by

plotting ROC (Figure S1), and the best predictive model showed

AUC of 0.834 with 0.85 Mathews Correlation Coefficient (MCC).

This optimized model with prediction accuracy and sensitivity of

88% and 76% respectively, was chosen for prediction of functional

linkages on the genome-wide scale.

The Functional Linkages of M. tuberculosis Proteins
The predicted protein functional linkages network has 32,546

interactions among 3,571 proteins (Table S1). The largest

connected component of the network comprises of 95% of the

nodes and has a diameter of 12. The network shows scale free

property with the degree exponent of 1.67. The overall topological

parameters of the network are summarized in Table 1. Compar-

ison of the network with previously derived interaction maps

shows around 30% overlap (Table S2). Though the overlap

appears less, it is observed that protein interaction maps obtained

from different sources generally have fewer interactions in

common due to inherent bias in the method used or the noise [25].

The average degree and clustering coefficient of the proteins

classified into different metabolic pathways is shown in Figure 3.

Proteins belonging to translation pathway, such as the ribosomal

proteins and other translation related proteins, have high degree as

well as high clustering coefficient. On the other hand, proteins of

the ‘‘cell growth and death’’ pathway have high degree but are less

clustered. The membrane transport proteins on the other hand

show less degree but are highly clustered. Thus, we observe varied

relationships between clustering and degree in different metabolic

pathways.

Figure 2. Plots indicating the distinctive behavior of the positive and negative protein interaction pairs with respect to genome
context methods and gene expression correlations. All the four features show statistically significant and distinct distribution for the positive
and negative pairs. A) Phylogenetic Profile, B) Gene Distance, C) Operonic Method and D) Expression Correlation.
doi:10.1371/journal.pone.0033893.g002

Table 1. Topological Properties of the predicted protein
functional linkages.

Number of Interactions 32546

Number of Nodes 3571

Percentile Core Nodes 95%

Average Degree 19.2

Degree Exponent 1.67

Diameter 12

Average Clustering Coefficient 0.22

doi:10.1371/journal.pone.0033893.t001

Network Perspective of Mycobacterial Latency
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Proteins coded by essential genes in biological networks are

known to exhibit high network centrality measures compared to

their counterparts [28]. This observation was tested in M.

tuberculosis network for the experimentally proposed essential genes

[7]. From our functional interaction network, we calculated three

centrality values, namely degree, closeness and betweenness, for

each of the genes, and divided them into three categories: high

centrality (top 30% nodes), medium centrality (between 30–70%

nodes) and low centrality (others). The proportion of essential

genes for these three centrality parameters was plotted as shown in

Figure 4. It is evident from the figure that there is a strong

correlation between network centrality and gene essentiality in our

proposed network. The proteins of information pathway such as

DnaG, DnaB, Rho and ribosomal proteins; proteins belonging to

intermediary metabolism and respiration such as ATP synthase

subunits, purine and pyrimidine biosynthesis proteins; proteins in

the amino acid biosynthesis pathways and cell division proteins

such as FtsX, FtsZ and FtsH; and proteins of cell wall formation

such as MurA, MurB, MurC and MurD show very high network

centrality values. Interestingly, PPE4 and PPE46 of the PPE family

proteins have high centrality values, suggesting that these proteins

might also be constituents of the essential gene set of M. tuberculosis.

The complete list of proteins with high centrality values is given in

Table S3.

Proteins involved in closely related functions, or those involved

in the same biochemical pathway, are known to cluster together to

form functional units in an interaction map [29]. Clustering of our

network indicated that it is divided into 184 clusters which we have

annotated using the pathway information taken from Sanger and

TubercuList databases (Table S4). The largest cluster is enriched

with cell wall and cell processes, virulence related proteins and a

large number of conserved hypothetical proteins. The ribosomal

proteins and other translation related proteins cluster along with

DNA replication and repair proteins. A large number of PE-PPE

proteins were found to be associated with virulence proteins. It is

likely therefore that these proteins play an important role in

virulence determination, as has been suggested earlier [2,30].

Thus, the sub-division of the interaction map into clusters based

on the nature of their interaction might lead to a better

understanding of cross-talks between different functional catego-

ries.

Persistence in M. tuberculosis
One of the least understood phenomena associated with M.

tuberculosis is the switch between latent and actively replicating

phases. It is interesting to address this phenomenon of latency in

M. tuberculosis through the analysis of functional interaction

network. The predicted interaction map was therefore used to

demarcate the proteins that might play important role in the

dormant phase of M. tuberculosis. Towards addressing these

questions, we considered several experimental studies that have

attempted to simulate the dormancy phase using the in-vitro models

Figure 3. Average clustering coefficient and degree of the proteins across metabolic pathways. Proteins show high degree or high
clustering coefficient depending on their function. Translation pathway proteins have high degree as well as high clustering coefficient whereas
membrane transport proteins are highly clustered with less connectivity.
doi:10.1371/journal.pone.0033893.g003

Network Perspective of Mycobacterial Latency
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to generate gene expression profiles. Such conditions include

hypoxia [31–35], NO treatment [36], stationary phase [35] and

nutrient deprivation [37]. Along with the in-vitro data, murine

models of M. tuberculosis dormancy have also been studied [38–39].

Since such individual experiments might not capture all the

dormancy features of M. tuberculosis, and moreover considering

that the microarray experiments might be affected by intrinsic

noise, we considered the commonality among these to identify key

genes regulating latency.

The gene expression datasets of different persistence models of

M. tuberculosis were used to identify up and down-regulated genes

during early persistence. The list of different models and the

number of up and down-regulated genes are detailed in Table S5.

Intriguingly, the overlap among the differentially regulated genes

between different models of M. tuberculosis dormancy is not very

high. For example, murine model of M. tuberculosis latency has 7%,

19%, 6% and 3% overlap with the other available models of NO

treatment, hypoxia, stationary phase growth and starvation model

respectively (Table S6). We therefore considered only the genes

that are common to at least 5 of the 12 expression conditions

related to latency. Using this criterion, we were able to identify 50

genes that show increase in expression levels and 34 genes that are

down-regulated during latency (Table S7).

In order to understand if the factors leading to dormancy are

shared by different prokaryotic species we first probed evolution-

ary conservation of the 84 genes by constructing a binary

phylogenetic profile of these genes across 481 genomes and then

counted the numbers of genomes harboring these genes.

Interestingly, the 50 genes that are upregulated in M. tuberculosis

dormancy are far less conserved across species than the 34 genes

that are downregulated. As few as 16 upregulated genes are

present in less than 145 of the 481 genomes. On the other hand, as

many as 26 down regulated genes are present in at least 336

genomes (Figure S2). The downregulated genes represent those

involved in basic cellular processes, such as replication, transcrip-

tion and translation. The rates of these basic cellular processes

being significantly slowed during dormancy offers a possible

explanation that the downregulated genes are common to many

species. The remarkable observation, however, that the upregu-

lated genes are less conserved than the downregulated genes

suggests a possible unique mechanism of dormancy adapted by M.

tuberculosis. The 50 upregulated genes therefore appear to

constitute a ‘‘dormancy signal’’ that is unique to M. tuberculosis.

Such a dormancy signal might then be transmitted to the genes

involved in basic cellular processes in order to slow down the

overall metabolic rates.

Although the 84 genes showed coordinated regulation during

latency-like conditions, it was interesting to probe if similar

regulation controlled their expression even under other experi-

mental conditions. The expression correlation among the 50

upregulated genes and the 34 downregulated genes across 154

growth conditions was then computed. Interestingly, the expres-

sion values among the 50 upregulated genes correlate highly

(Figure 5). Similarly, those among the 34 downregulated genes also

show strong correlation. On the other hand, the up and the down-

regulated genes exhibit inverse correlation. This observation

suggests that the 84 genes are coordinately regulated not only

under latency-like conditions, but also are regulated in a controlled

manner under most other conditions of growth. The 84 genes thus

form a regulon-like structure with an extensive cross talk in their

expression. Such a crosstalk can possibly be uncovered using the

functional interaction network.

We then integrated our protein functional linkages with the

available gene regulatory information in order to understand the

crosstalk between the 84 latency-related genes [12]. One of the

important observations upon such an integration of the two

networks was that DosR, a well studied dormancy associated

protein, regulates the expression of about 25 upregulated genes

(Figure 6). Further, the genes regulated by DosR also interact

extensively among themselves forming a clique-like architecture in

the network. Moreover, important latency genes such as hspX,

pfkB, Rv2030c and Rv2028c are additionally regulated by sigma

factor SigC, implying a multifarious regulatory circuit of latency.

On the other hand, Rv3676, a transcriptional regulatory protein of

Figure 4. Proportion of Essential Genes in the bins of decreasing centrality values. For all the three centrality values calculated, namely
degree, closeness and betweenness, it is clearly seen that there exists a good correlation between centrality and lethality.
doi:10.1371/journal.pone.0033893.g004

Network Perspective of Mycobacterial Latency
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the cAMP receptor protein (CRP) family [40], regulates the

expression of downregulated genes such as Rv1566c, Rv1158c, hupB,

lprK and mce1D. Thus, a central regulatory circuit controlled by

DosR, with degeneracy offered by transcription factors such as SigC

and CRP, combined with an extensive network of interactions

among the 84 genes appears to control latency in M. tuberculosis.

Figure 5. Expression Correlation between up and downregulated genes. Upregulated genes correlate in their expression and a similar trend
is observed for downregulated genes. However, there is inverse correlation in expression between up and downregulated genes.
doi:10.1371/journal.pone.0033893.g005

Figure 6. Graphical representation of functional interactions and regulatory interactions of up and downregulated genes. DosR acts
as a master regulator, regulating the expression of a number of upregulated genes. A probable oxidoreductase Rv0082 under the regulation of DosR
associates with the subunits of aerobic respiratory machine NADH oxidoreductase complex. Upregulated proteins are colored in green,
downregulated proteins are colored in red and transcription factors are colored in blue. Directed edge denotes gene regulation and undirected edge
is a protein functional linkage.
doi:10.1371/journal.pone.0033893.g006

Network Perspective of Mycobacterial Latency
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An interesting outcome of the network analysis pertains to the

dormany signal detected by the 50 upregulated genes, and its

transmission to the 34 downregulated genes. DosR interacts with

two-component sensory kinases DosS (Rv3132c), DosT (Rv2027c)

and Rv0845. It has been reported previously that DosR acts as a

cognate response regulator of both DosS and DosT, which sense

hypoxia and NO [41]. Interestingly, a classification based on the

region around phosphorylated sensor kinases of M. tuberculosis

assigns DosS, DosT and Rv0845 to the same class [42]. Whereas

Rv0845 is a possible nitrate/nitrite sensor protein, DosS and DosT

function as redox and hypoxia sensors respectively [43]. It is

therefore likely that DosS, DosT and Rv0845 sense the dormancy

signal and trigger a regulatory cascade controlled by DosR.

The gene regulatory network also suggests that a hypothetical

oxidoreductase, Rv0082, is regulated by DosR with increase in its

expression level under dormancy conditions. The functional

interaction network further suggests that Rv0082 might associate

with three of the subunits of NADH-ubiquinone oxidoreductase

complex (NDH-1). The subunits of NDH-1 complex are involved

in respiration and not surprisingly form a clique in the functional

interaction network. Moreover, these are downregulated during

latency. The expression correlation between NDH-1 genes

spanning from Rv3145–Rv3158 and ATP synthase genes spanning

from Rv1304–Rv1311 are correlated in their expression (Figure

S3). This suggests a succeeding downregulation of ATP synthesis

upon downregulation of NDH-1 genes. Interestingly, NDH-1

proteins interact with ribosomal proteins RpsC and RpsQ, and

DNA polymerase DnaE in the subnetwork of functional

interactions. The succession of protein connectivity in the

subnetwork therefore suggests that DosR possibly communicates

latency signals to the respiratory chain through Rv0082, resulting

in the shutdown of respiration mediated by NDH-1 followed by

growth suppression. Since NAD+ pool is essential for TCA cycle

and other biosynthetic pathways, it appears that the downregu-

lation of NDH-1 respiration is critical in the early stages of latency,

which might lead to the arrest of cell growth and division

subsequently. Interestingly, the mutants of NADH dehydrogenase

I of Escherichia coli show competitive disadvantage in the mixed

stationary phase cultures [44]. The inability of these mutants to

adapt to the stationary phase might arise due to their inefficiency

in transmitting signals downstream to slowdown cellular growth

processes. Thus, protein interactions and gene regulatory

information support the complex regulatory hierarchy of the

genes involved in latency.

In order to further address the complexity of the cross-talk

between the up and the downregulated genes in the network, we

expanded the network of the 84 genes to construct a ‘‘Dormancy

Core’’ comprised of directly interacting proteins of the up and the

downregulated genes (Table S8). The ‘‘Dormancy Core’’ was

divided into up or downregulated modules depending on the

association of the proteins with the up or the downregulated genes.

The number of nodes in the upregulated and downregulated

modules was 172 and 632 respectively. There are 29 proteins

which are common to both these modules (Figure 7). These 29

proteins might participate in direct signalling between the up and

the down regulated modules.

Examination of the topological properties of this subnetwork

interestingly showed that the nodes in the downregulated module

possess higher degree compared to the up-regulated module (Figure

S4(A)). As the downregulated module is enriched by proteins of cell

growth and division, it is not surprising that these nodes possess

higher degree since high degree nodes are more likely to perform

essential growth functions [45]. Also, the downregulated module

nodes are closer to other proteins in the network as revealed by their

closeness centrality compared to the up-regulated module (Figure

S4(B)). This suggests their important role in mediating the

information flow in the network (Figure S4(C)). However, there is

no apparent difference in the clustering coefficients of these two

modules (Figure S4(D)). Thus, the known centrality characteristics

are able to distinguish between the upregulated and downregulated

modules in the network.

The pathway mapping of up and downregulated modules (Figure

S5) indicates that the genes from Information pathways are down-

regulated during the dormant phase of M. tuberculosis. The examples

are replication proteins such as DnaA, DnaB, DnaN and GyrA,

translation initiation factors such InfA and InfB, proteins of the

ribosomal complex, repair and recombination proteins. Interest-

ingly, the subunits of ATP synthase belong to the downregulated

module, suggesting an important role of electron transport during

dormancy. The down-regulated module also contains Fad proteins

which are involved in the degradation of fatty acids, NADH

dehydrogenase subunits, proteins involved in polyketides and non-

ribosomal peptide synthesis, and cell envelop proteins from the

families Lpr and Mur. The up-regulated module, on the other hand,

includes the master regulator of dormancy DosR, DosS which

functions coordinately with DosR, nitrate reductases NarG, NarJ

and NarX, chaperones such as HspX and HtpG, polyketide

synthetases such as MbtB and MbtC. Thus, the analysis of the

module composition suggests possible pathways that are activated

and repressed during the dormant phase of M. tuberculosis.

Shortest Paths Analysis in the Dormancy Module
An interesting aspect of dormancy is the communication

between differentially regulated pathways [46,47]. We sought to

identify the possible communication route between the up and

downregulated nodes in the dormancy module. All the possible

shortest paths were traced from the 50 upregulated nodes to the 34

Figure 7. Schematic representation of the up and down-
regulated modules. Node color represents the class as follows:
Green – Upregulated proteins; Red – Downregulated proteins; Purple –
First neighbors of the upregulated proteins; Yellow – First neighbors of
the downregulated proteins; Blue – Proteins interacting with both
upregulated and downregulated proteins.
doi:10.1371/journal.pone.0033893.g007

Network Perspective of Mycobacterial Latency
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downregulated nodes and the most probable shortest paths were

derived (Methods). The intermediates in the most probable paths

were then ranked based on their frequency of occurrence and the

top 25% of the intermediates were selected (Table S9). These

proteins, we propose, might be involved in transmitting dormancy

signals from the upregulated core proteins involved in dormancy,

to the downregulated growth module. Below are the few examples

we discuss for their possible role in modulating dormancy.

Some of the well known dormancy related proteins such as

DosR, DosS and HspX occur frequently in the most probable

paths calculated. DosR and DosS are the two-component

regulatory proteins that have been shown previously to activate

a number of proteins in response to the onset of dormancy [32].

HspX, a chaperone, is one such protein from the dosR regulon that

shows significant induction during dormancy [48]. Another

protein coded by Rv2621c is a hypothetical transcriptional

regulatory protein which interacts with six of the 50 up-regulated

nodes. It connects the down-regulated module through SseC2

which is a conserved hypothetical protein thought to be involved

in sulphur metabolism. Both these proteins fall frequently in the

most probable paths calculated. Figure 8 is a graphical

presentation of the interactions of these two proteins. Intriguingly,

the interacting partners of SseC2 include WhiB1 and WhiB2,

which are transcription factors known to be involved in septation

and cell division [49]. They require (4Fe-4S) for the catalytic

activity and can function as protein disulfide reductases. The whiB

homologue of C. glutamicum is critical for survival after oxidative

stress [50]. Another interacting partner of SseC2 is Rv2175c,

which is a transcription factor and a substrate of the PknL Ser/

Thr kinase. The vicinity of Rv2175c to the dcw (division cell wall)

cluster to which pknL belongs [51] suggests its possible role in

regulating cell growth and division. SseC2 also associates with

antigen 85B (FbpB) which is a mycolyl transferase involved in cell

wall biosynthesis [52]. The cutinase precursor Cfp21, which

promotes mycobacterial survival and virulence [53], is another

interactor of SseC2. Other secreted proteins such as Cfp21, Cfp2,

Rv3194c and Rv2672 also show interaction with SseC2. Thus, the

cascade laid by Rv2621c and SseC2 in connecting essential

proteins of dormancy to the cell division and growth proteins of

the downregulated module appears to be important during switch

from/to dormancy.

Another interesting protein of a two-component system is Rv1626,

the crystal structure of which suggests its possible role in

transcriptional antitermination [54]. In our functional linkage

network it interacts with PknA, a Ser/Thr protein kinase and

NarK2, a nitrate/nitrite reductase. Both these proteins are members

of the up-regulated module. Interestingly, Rv1626 interacts with

several down-regulated module proteins, some of which are adenylate

kinase Adk, tryptophan synthase TrpA, ribosomal proteins RpsA and

RplT, and a two-component transcriptional regulator MtrA.

Another example of an important protein in the most probable

paths is EsxR, a secreted ESAT-6 like protein. Interestingly, one of

the proteins it connects in the down-regulated module is RpfA,

which is a resuscitation promoting factor required for resuscitation

from dormant state [55]. Notably, Rpfs have been shown to

promote growth in Micrococcus luteus and are important for

virulence [56]. Thus, the connectivity mediated by EsxR and

RfpA between up and downregulated modules appears to be

Figure 8. A sub-network depicting the connectivity mediated by proteins Rv2621c and SseC2. Both these proteins occur most frequently
in the paths between up and downregulated genes. The upregulated proteins associating with Rv2621c are colored in green and the downregulated
proteins associating with SseC2 are colored in red.
doi:10.1371/journal.pone.0033893.g008

Network Perspective of Mycobacterial Latency
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important. The subunits of ATP synthase AtpH, AtpG and AtpC

also appear in the most frequent paths. Notably, an inhibitor

diarylquinoline targets the proton pump of ATP synthase in M.

tuberculosis [57]. We may therefore hypothesize that an alteration in

the mode of respiration possibly serves as a signal for growth and it

is logical to assume that the proteins of ATP synthase

communicate such signals.

Boolean model simulation
In order to determine the main controllers of the dormancy

network, a Boolean model simulation was performed using

dormancy module. The transcription factors in the dormancy

module were sequentially made active at input, individually as well

as in various combinations, and the model simulated.

In Boolean terms, a biologically viable steady state of the

dormancy model would have the identified upregulated genes in

the ON or active state. Likewise, state of the genes identified as

down-regulated during dormancy would be OFF or inactive. As

mentioned in the methods section, the model included 26 (out of the

50) identified up-regulated genes and 13 (out of 34) down regulated

genes. We then set out to determine which of the transcription

factors that are known to play important roles in the dormancy

network, give rise to a steady state with the required set of genes

being active/inactive.

Setting individual transcription factors ON at input resulted in the

system having a steady state with all the genes in the inactive or OFF

state. However, when three regulatory elements, namely, Rv0081,

Rv3132c (DosS) and Rv3133c (DosR), were all set to ON at input, we

arrive at a logical steady state, with a number of genes in the active or

ON state. Out of these genes, 19 are found to belong to the set of 26

dormancy genes. The simulations therefore confirm that DosR and

DosS, along with Rv0081 are important regulators in the model.

The cAMP receptor protein (CRP) Rv3676 is known to regulate

the expression of a few down-regulated genes. In order to

determine its effect on the dormancy system, we added CRP along

with the earlier input set (Rv3132c, Rv3133c and Rv0081). The

simulation gave rise to a logical attractor cycle, with two states. An

attractor cycle with two states implies that the system switches

between the two states in an alternate manner. In the first state,

while 24 out of the 26 up-regulated genes are active, all 13 down-

regulated genes are inactive. However, the second attractor state

had only 11 of the down-regulated genes inactive, with Rv2986c

(hupB) and Rv1158c being active. In this state only 19 of the up-

regulated genes were active. Hence when the CRP transcription

regulator (Rv3676) is active at input, two of the downregulated

genes, namely, Rv1158c and Rv2986c, toggle between active and

inactive states (Table S10).

In the dormancy module, sigma factor C (Rv2069) regulates the

genes hspX, pfkB, Rv2030 and Rv2028c, which are upregulated

during dormancy. In order to test the regulatory effect of SigC in

achieving steady state during latency, we included SigC in the set

of active input genes along with Rv3132c, Rv3133c, Rv0081 and

Rv3676. The simulation with such an input state results in a two-

state attractor cycle similar what is observed by activating Rv3132c,

Rv3133c, Rv0081 and Rv367. Therefore, it appears that SigC may

not be a key regulator of M. tuberculosis latency. Our Boolean

modeling with dormancy module hence reveals key regulators

namely Rv3132c, Rv3133c, Rv0081 and Rv3676 for activating

and maintaining M. tuberculosis latency.

Discussion

One of the enigmatic features of tuberculosis is that only about 5–

10% of the infected individuals develop active tuberculosis [58]. In

rest of the cases, M. tuberculosis persists in a dormant or a non-

replicative state in human tissues for a prolonged time with a

potential to resume growth when conditions favor [59]. Under-

standing the persistent stage of M. tuberculosis has proved challenging

and has profound implications in containing the disease as the

current anti-tuberculosis drugs target only the cells that are actively

growing [59]. Moreover, the micro-environment of the granulomas,

where latent M. tuberculosis resides, is impermeable to the drugs.

Inevitably, the systems level understanding of persistence to describe

key players in this process, and their association with other proteins

is not understood in great detail.

There are 84 differentially regulated genes which are common

among many gene expression studies of various dormancy models

of M. tuberculosis. Our analysis interestingly reveals that these 84

genes are coordinately regulated not only under dormancy-like

conditions, but rather form a regulon-like structure. Among these,

the 34 downregulated genes show high evolutionary conservation.

We argue that the evolutionary conservation of these genes is due

to their participation in basic cellular processes. In contrast, the

dormancy signal in M. tuberculosis appears to be unique, as

evidenced by far less conservation of the upregulated genes. It

might therefore appear that different bacteria have adopted

different mechanisms of entering dormancy, leading eventually to

shutting down of the highly conserved basic metabolic processes.

Having identified two distinct clusters of genes, 50 upregulated

and 34 downregulated, it is important to understand how these

might be coordinately regulated. We used Boolean modeling to

examine such transition to dormant phase in M. tuberculosis through

the 84 differentially regulated genes. In Boolean modeling, an

attractor state is the terminal vertex of the state transition graph, i.e.

the state to which the system will converge given a certain input

state. The attractor state can either be a single steady state, or a set

of states through which the system cycles [60]. The latency model

developed in this study attempts to understand the key regulators,

which when turned on, results in an attractor state that mimics the

latent phase of the pathogen. The latent state which is derived upon

the activation of certain transcription factors is determined by

comparing the states of the genes in the model with prior knowledge

of their upregulation or repression during latency. Boolean

modeling is therefore an attractive approach to address coordinated

regulation among the 84 genes.

We observe that the model converges to an attractor cycle in

which about 92% of the upregulated genes remain active when four

of the transcription factors in the model namely, DosS (Rv3132c),

DosR (Rv3133c), Rv0081 and CRP (Rv3676) are activated at the

input. This suggests that these transcription factors are required to

be expressed in order to maintain other members of the dormancy

network in an active state. Several experimental studies have

indicated involvement of a number of transcription factors in the

regulation of initiation of the dormancy state [59,61]. Therefore, the

above mentioned transcription factors are not necessarily the only

regulators of these processes. However, what the model indicates is

that they are the minimum set of transcription factors required to

obtain a system that exists in a dormancy-like state. While other

factors are most likely involved in establishing the latent condition

and adapting to external disturbances from the host macrophage,

these four regulatory proteins appear to be the core set of regulators

for initiating and maintaining signals for latency.

Two of the regulators predicted to be important for M.

tuberculosis latency by Boolean modeling are DosR and DosS.

Together they form a two-component regulatory system in which

DosS is the sensory kinase and DosR is the corresponding response

regulator [41]. These regulators have earlier been implicated as

key mediators of latency in several experimental studies [59]. For
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example, rapid induction of dosR and dosS is observed upon

reduced oxygen tension [31]. Similarly, targeted disruption of dosR

revealed that most of the genes that are induced by hypoxia are

regulated by DosR [32]. In addition, DosR and DosS are the

members of the ‘dormancy regulon’ identified upon NO treatment

[36]. Furthermore, significant load of bacilli and hypervirulence

was observed in a SCID mouse model which was infected with M.

tuberculosis with dosR deletion [62]. Activation of DosR is mediated

by DosS, which has been established as a redox sensor with O2,

NO and CO as modulatory ligands [43]. Hence, the two-

component system DosR-DosS appears to play a major role in

initiating and maintaining latency. Our results using Boolean

modeling and network analysis reinforce the importance of these

two proteins in establishing latency in M. tuberculosis.

Another regulatory protein predicted by Boolean modeling to

be important for latency is Rv3676, a cAMP receptor family

protein (CRP), which is a global regulator of number of pathways.

Computational identification of possible regulatory sites for CRP

has earlier revealed a number of genes, some of which are

implicated in starvation and hypoxic conditions [63]. Therefore,

the association of Rv3676 in latency appears significant. Although

there are no reports on the direct involvement of this protein in

latency, it will be interesting to study the regulatory role of Rv3676

in this context. Thus, we hypothesize that Rv3676, by virtue of

being a global regulator, might influence cross talk among the

genes involved in latency.

The fourth important transcriptional regulator suggested by

Boolean modeling in M. tuberculosis latency is Rv0081, which is a

regulatory protein from the ArsR/SmtB family [64]. Rv0081 is the first

gene in the operonic locus Rv0081–Rv0088, which codes for the

components of formate dehydrogenase complex. Rv0081 has been

observed to be upregulated in multiple latency models, and is also

shown to be regulated by DosR in the transcription regulatory

network of M. tuberculosis [12]. Interestingly, the functional interaction

network predicted by us in this study places Rv0082 at the intersection

of upregulated and downregulated gene clusters. By being on an

operon it might be assumed that Rv0081 controls the transcription of

Rv0082. Thus, the predicted functional interaction network and

Boolean modeling together suggest important roles of Rv0081 and

Rv0082 in communicating latency signals between modules of

upregulated and downregulated genes in M. tuberculosis latency.

The network based approach supplemented with Boolean

modeling in elucidating crosstalk between the upregulated and

downregulated genes leads us to propose a fascinating hypothesis of

the latency process. We observe that DosR plays an important

regulatory role in the dormancy switch. The role of DosR in

dormancy is well documented in literature [31,42]. The dormancy

signals sensed by two-component sensor kinases, DosS, DosT and

possibly by Rv0845 are transmitted to DosR which is a cognate

response regulator. In the downstream, the signal is relayed through

Rv0081 to the respiratory chain mediated by the Rv0082. The

information flow from Rv0082 then triggers slowing down of ATP

synthesis, leading eventually to significant slowing down of

replication, transcription and translation processes. Thus, through

an intricate communication signal, the basic cellular processes such

as cell division and growth are shut down. Some of the hypotheses

proposed in our work will obviously need to be tested experimentally.

Methods

Positive and Negative Interaction Pairs
The known interacting protein pairs were obtained by a

combination of text mining methods and bi-directional blast

against high confident protein interactions for E. coli listed in

EcoCyc database [65]. Those obtained by text mining were

retrieved from literature by the use of natural language processing

methods (Goyal and Mande, unpublished results). Bi-directional

BLAST was carried out for each pair listed in the EcoCyc

database against the M. tuberculosis H37Rv genome sequence. Only

those pairs were further considered which showed a score better

than e210 for both the proteins.

The hypothesized non-interacting data set was obtained by the

method described in [25]. Briefly, the protein pairs which are not

colocalised in the same subcellular compartment were considered

to be non-interacting. The protein localization was predicted using

the SIGCLEAVE tool available at http://mobyle.pasteur.fr/cgi-

bin/Mobyle Portal. The top scoring 809 proteins with predicted

secretary signal sequence within the first 50 residues of the N-

terminus were considered to be extracellular. There are 161

proteins which do not possess any known signal sequence along

their entire length and were considered to be cytoplasmic. Such

negative interacting protein pairs were generated by randomly

pairing the predicted cytoplasmic and extracellular proteins.

Selection of the Genomes
The sequences of 763 bacterial genomes were downloaded from

NCBI ftp site (ftp://ncbi.nih.gov/genomes/Bacteria). In the initial

filter, bacteria with linear or multiple genomes were removed. This

resulted in a set of 669 genomes for further analysis. Homologous

genes of all the known open reading frames of M. tuberculosis were

searched against these 669 genomes using BLASTp with e-value

cutoff of e204. For the species with complete genome sequences of

more than one strain, the one which shared maximum number of

ORFs with M. tuberculosis was chosen. This resulted in a list of 481

genomes for further consideration (Table S11).

Prediction Features
Phylogenetic Profile. BLAST with e-value cutoff of e204 was

used to obtain bit scores for the ORFs of M. tuberculosis against 481

selected genomes. The resulting profile was doubly normalized as in

[25]. Pearson Correlation Coefficient (PCC) was calculated for each

gene pair and used as a feature for training the SVM.

Intergenic Distance. For using minimum gene distance as a

training feature, top 100 organisms sharing maximum number of

ORFs with M. tuberculosis were considered. For each genome,

distances (in base pairs) of transcriptional start sites between all the

gene pairs were calculated in both clockwise and anticlockwise

directions and the minimum of these was normalized by the total

genome length. A similar profile was constructed for M. tuberculosis

genome as well. For each gene pair of M. tuberculosis, the minimum

distance in its genome and its orthologs in other genomes was

considered as a feature vector.

Frequency of co-occurrence in the predicted operons. Operon

predictions for 267 organisms were obtained from [25]. The frequency of

co-occurrence of protein pairs as operonic across all the genomes was

calculated.

Expression Correlations. Gene expression data for M.

tuberculosis was downloaded from NCBI-Geo [6]. The expression

values for the multiple trails were normalized. The conditions

which had expression variance of more than 5 were not considered

for the analysis. The expression ratio in 154 growth conditions for

each gene was compiled and Pearson Correlation Coefficient was

derived for each gene pair. The list of selected conditions is

detailed in Table S12.

Protein Interactions Prediction
Support Vector Machine (SVM) tool LibSVM [66] was used for

the prediction of genome-wide functional linkages. All possible
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gene pairs in M. tuberculosis carried the feature vector labels,

namely correlation coefficient of the phylogenetic profile,

minimum intergenic distance, frequency of co-occurrence in

predicted operons and expression correlations. The machine was

trained on positive and negative data sets using these data features.

Since the number of expected interacting pairs was likely to be

much lower than the non-interacting pairs, the ratio of negative

interacting pairs and the positive interacting pairs was increased

for each trial. Each test included five fold cross validation followed

by calculations of sensitivity and specificity. The interactions were

predicted with each of the model files obtained and the final

network was selected based on sensitivity, specificity and the

accuracy of prediction. The final predictions are available on our

web server (http://www.nccs.res.in/MtbPPI/).

Network Analysis
Different topological parameters of the network that included

degree exponent, clustering coefficient and diameter were

calculated according to [67]. Centrality measures were calculated

as in [28]. Clusters in the network were detected using the

Infomap tool [68]. Functional annotations of M. tuberculosis

proteins were derived from KEGG [69], TubercuList (http://

genolist.pasteur.fr/TubercuList/) and Sanger (http://www.

sanger.ac.uk/) databases. Clustering coefficient or degree for a

pathway is considered to be high if the average clustering

coefficient or the average degree for the proteins in the pathway

was more than the average of all the proteins. The shortest paths

were calculated using Dijkstra’s algorithm [70]. Since there can be

more than one shortest path for a pair of nodes, most probable

paths were derived by considering most frequently occurring

proteins in the shortest paths at each position.

Combined subnetwork was constructed by merging protein

functional linkages and gene regulatory interactions [12]. If the

interaction for two proteins is represented as both protein

functional linkage as well as gene regulatory interaction, the latter

was considered for the analysis.

Boolean modeling
Boolean models consist of components or nodes with logical

rules or transfer functions governing their interactions. The state of

each node in a typical boolean network is usually only a logical

value, namely ‘ON’/‘1’ or ‘OFF’/‘0’. In the case of a gene

regulatory network, the ‘ON’ state can be considered to represent

a gene being activated or expressed and the ‘OFF’ state as a gene

being inactivated or unexpressed. The state of a node at time t+1 is

derived from states of all the nodes which interact with it at time t,

by means of a logical function or rule [71]. The states are updated

by means various updating schemes, the simplest one being

synchronous updating where all the nodes are updated simulta-

neously at a given time point. This is in contrast to asynchronous

updating, where a random node is selected at each time step and

updated. The model dynamics comprise of various states the

different components pass through to converge at an attractor

state (fixed point or cycle). The attractor states of a model

correspond to various biological states of the system under study.

Model of Mycobacterium tuberculosis dormancy network
A large-scale boolean network model was constructed based on

a subset of genes identified as being differentially regulated and

involved during the early dormancy state in M. tuberculosis. A

number of criteria were considered when selecting components for

the Boolean model. To begin with, genes annotated as

transcription factors or regulatory elements which were found to

be expressed in a minimum of 5 experimental latency conditions

were identified. The expression correlation values for these

transcription factors and their corresponding interactions were

also obtained. To this list, the regulatory interactions determined

in [12] were also added.

This list of genes was then narrowed down by discarding genes

which were activated or inhibited by only a single transcription

factor, with the interaction being insignificant. An interaction was

considered to be insignificant if the expression correlation between

the two members was between 20.3 and +0.3, and significant

otherwise. Furthermore, if a given gene was regulated by a single

transcription factor and that transcription factor itself had no

regulatory elements acting on it, then that gene was removed as

well.

The resulting subset consisted of genes or nodes, and 543

interactions or arcs, with 46 found to be annotated as regulatory

elements such as transcription factors. Among the 304 genes, 26

belonged to the group of 50 genes identified as being upregulated

during dormancy (Table S7). Similarly, 13 out of the 34 genes

identified as being downregulated were present in the model.

The network was built by obtaining the interactions identified

for each of the 304 genes from the protein functional linkages. As

we had selected only transcription factors and the genes the

regulated, the interactions were all directed, i.e. those originating

from a transcription factor or regulatory element. We then derived

the logical rule for each gene using the calculated expression

correlation values for these interactions, and employing the

following criteria:

For a given gene X,

N If a set of transcription factors were positively correlated with

X, then the correlation between them was detemernied. If the

correlation was significant, then all of them were considered to

be required for the activation or expression of X. A logical

AND was used in this case.

N If a set of transcription factors were positively and signifcantly

correlated with X but insignificantly correlated with each

other, then any one of them was sufficient for the activation of

X. A logical OR was used in this case.

N If a set of transcription factors were negatively correlated with

X and positively correlated with each other, then all of them

were considered to be required for the inhibition or

inactivation of X. A logical NOT AND was used in this case.

N If a set of transcription factors were negatively correlated with

X and insiginificantly correlated with each other, then any one

of them was considered to be sufficient for the inactivation of

X. A logical NOT OR was used in this case.

The detailed list of logical rules is given in Table S13.

In our model, we do not differentiate between the expression

and regulation of a gene but represent them in an equivalent

manner. This biological simplification is necessary given that only

expression correlation values were available to us. Furthermore,

while significant expression correlation between the a gene and

transcription factor might arise due to various forms of activation

or regulation, we feel safe to represent it as direct in this case, given

that the genes were obtained from the set determined to form a

regulon-like structure. The model was simulated by setting as ON

(i.e ‘1’) the individual transcription factors and updating all the

genes in a synchronous manner. The simulations were done with

the transcription factors being set as ON simultaneously, as well as

one by one.

The boolean model was developed and simulated using the

logical modelling, analysis and simulation software GINsim [72].
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Supporting Information

Figure S1 Plot of ROC depicting the performance of SVM.

(TIF)

Figure S2 Plot denoting enrichment of Up and Downregulated

dormancy genes to different conservation bins. Upregulated genes

are less conserved than downregulated genes.

(TIF)

Figure S3 Expression correlation between genes coding for

NDH-1 subunits and the genes coding for ATP synthase subunits.

The plot indicates that NDH-1 genes and ATP synthase genes are

correlated in their expression.

(TIF)

Figure S4 Differential Network Properties of the Modules of up

and downregulated genes. Proteins in the downregulated module

show high degree centrality (Figure S4(A), P,2.2e216), high

closeness centrality (Figure S4(B), P,2.2e216) and high between-

ness centrality (Figure S4(C), P,3.9e209) compared to the proteins

in the upregulated module. However, there is no apparent

difference in their clustering coefficients (Figure S4(D), P,0.44).

(TIF)

Figure S5 TubercuList pathway map of the proteins belonging

to up and down-regulated modules. Genes belonging to Informa-

tion pathway are significantly downregulated during dormancy.

(TIF)

Table S1 Predicted Protein functional linkages of M. tuberculosis.

(TXT)

Table S2 Comparison of predicted interactions with other

available interactions. There is about 30% overlap between

predicted interactions and previous reports.

(DOC)

Table S3 List of high centrality proteins in the network.

(TXT)

Table S4 List of communities identified in the interaction map

using Infomap community detection tool.

(TXT)

Table S5 List of publications related to dormancy models used

in this study and the number of up and down-regulated genes in

each model.

(DOC)

Table S6 Comparison of different dormancy models in terms of

number of genes up and downregulated in each.

(DOC)

Table S7 List of up and downregulated genes during dormancy

and their functions.

(TXT)

Table S8 List of proteins in the Dormancy Core.

(TXT)

Table S9 List of proteins possibly mediating the dormancy

signals between up and down-regulated modules.

(TXT)

Table S10 Genes which are active at the logical steady state

reached by the system when three regulatory elements are ON at

input (Rv0081, Rv3132c and Rv3133c) and when four regulatory

elements are ON at input (Rv0081, Rv1343c, Rv3132c and

Rv3133c).

(DOC)

Table S11 List of selected genomes for constructing phyloge-

netic profile.

(TXT)

Table S12 List of microarray conditions used for calculating

expression correlations.

(TXT)

Table S13 Logical rules derived from expression data for each of

the nodes in the simulated model.

(DOC)
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30. Banu S, Honoré N, Saint-Joanis B, Philpott D, Prévost MC, et al. (2002) Are the

PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens? Mol
Microbiol 44: 9–19.

31. Sherman DR, Voskuil M, Schnappinger D, Liao R, Harrell MI, et al. (2001)
Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha

-crystallin. Proc Natl Acad Sci U S A 98: 7534–7539.
32. Park HD, Guinn KM, Harrell MI, Liao R, Voskuil MI, et al. (2003) Rv3133c/

dosR is a transcription factor that mediates the hypoxic response of Mycobacterium

tuberculosis. Mol Microbiol 48: 833–843.
33. Bacon J, James BW, Wernisch L, Williams A, Morley KA, et al. (2004) The

influence of reduced oxygen availability on pathogenicity and gene expression in
Mycobacterium tuberculosis. Tuberculosis 84: 205–217.

34. Muttucumaru DG, Roberts G, Hinds J, Stabler RA, Parish T (2004) Gene

expression profile of Mycobacterium tuberculosis in a non-replicating state.
Tuberculosis 84: 239–246.

35. Voskuil MI, Visconti KC, Schoolnik GK (2004) Mycobacterium tuberculosis gene
expression during adaptation to stationary phase and low-oxygen dormancy.

Tuberculosis 84: 218–227.
36. Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, et al.

(2003) Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis

dormancy program. J Exp Med 198: 705–713.
37. Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K (2002) Evaluation of a

nutrient starvation model of Mycobacterium tuberculosis persistence by gene and
protein expression profiling. Mol Microbiol 43: 717–731.

38. Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan, et al. (2003)

Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages:
Insights into the Phagosomal Environment. J Exp Med 198: 693–704.

39. Karakousis PC, Yoshimatsu T, Lamichhane G, Woolwine SC, Nuermberger EL,
et al. (2004) Dormancy phenotype displayed by extracellular Mycobacterium

tuberculosis within artificial granulomas in mice. J Exp Med 200: 647–657.

40. Kumar P, Joshi DC, Akif M, Akhter Y, Hasnain SE, et al. (2010) Mapping
conformational transitions in cyclic AMP receptor protein: crystal structure and

normal-mode analysis of Mycobacterium tuberculosis apo-cAMP receptor protein.
Biophys J 98: 305–314.

41. Roberts DM, Liao RP, Wisedchaisri G, Hol WG, Sherman DR (2004) Two
sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis.

J Biol Chem 279: 23082–23087.

42. Tyagi JS, Sharma D (2004) Signal transduction systems of mycobacteria with
special reference to M. tuberculosis. Current Science 86: 93–102.

43. Kumar A, Toledo JC, Patel RP, Lancaster JR, Jr., Steyn AJ (2007) Mycobacterium

tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc Natl Acad

Sci U S A 104: 11568–11573.

44. Zambrano MM, Kolter R (1993) Escherichia coli mutants lacking NADH

dehydrogenase I have a competitive disadvantage in stationary phase. J Bacteriol
175: 5642–5647.

45. Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in

protein networks. Nature 411: 41–42.
46. Boshoff HI, Barry CE, 3rd (2005) Tuberculosis - metabolism and respiration in

the absence of growth. Nat Rev Microbiol 3: 70–80.
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