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Abstract

Background: Abundant evidence indicates that chicken reproduction is strictly regulated by the hypothalamic-pituitary-
gonad (HPG) axis, and the genes included in the HPG axis have been studied extensively. However, the question remains as
to whether any other genes outside of the HPG system are involved in regulating chicken reproduction. The present study
was aimed to identify, on a genome-wide level, novel genes associated with chicken reproductive traits.

Methodology/Principal Finding: Suppressive subtractive hybridization (SSH), genome-wide association study (GWAS), and
gene-centric GWAS were used to identify novel genes underlying chicken reproduction. Single marker-trait association
analysis with a large population and allelic frequency spectrum analysis were used to confirm the effects of candidate
genes. Using two full-sib Ningdu Sanhuang (NDH) chickens, GARNL1 was identified as a candidate gene involved in chicken
broodiness by SSH analysis. Its expression levels in the hypothalamus and pituitary were significantly higher in brooding
chickens than in non-brooding chickens. GWAS analysis with a NDH two tail sample showed that 2802 SNPs were
significantly associated with egg number at 300 d of age (EN300). Among the 2802 SNPs, 2 SNPs composed a block
overlapping the GARNL1 gene. The gene-centric GWAS analysis with another two tail sample of NDH showed that GARNL1
was strongly associated with EN300 and age at first egg (AFE). Single marker-trait association analysis in 1301 female NDH
chickens confirmed that variation in this gene was related to EN300 and AFE. The allelic frequency spectrum of the SNP
rs15700989 among 5 different populations supported the above associations. Western blotting, RT-PCR, and qPCR were
used to analyze alternative splicing of the GARNL1 gene. RT-PCR detected 5 transcripts and revealed that the transcript,
which has a 141 bp insertion, was expressed in a tissue-specific manner.

Conclusions/Significance: Our findings demonstrate that the GARNL1 gene contributes to chicken reproductive traits.
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Introduction

Egg number at 300 d of age (EN300), age at the first egg (AFE),

and brooding behavior are valuable indices of chicken reproduc-

tive ability. In female chickens, sexual maturity is usually expressed

as AFE. The AFE trait has been under artificial selection to

enhance egg production efficiency [1]. EN300 is another

reproductive trait of economic importance, while incubation

behavior also affects egg production, as it results in the cessation of

egg laying [2]. Chicken reproduction is controlled by photoperiod

[3]. Generally, the process of chicken egg production is strictly

regulated by the hypothalamic-pituitary-gonad (HPG) axis [4].

Gonadotrophin releasing hormone (GnRH) and its receptor

(GnRHR) start the cascade, and neuropeptide Y (NPY) is known

to inhibit GnRH secretion via its receptor (Y1R) and to control

ovulation [5]. Under photo-stimulation, GnRH is synthesized,

secreted by the hypothalamus and binds to its receptor, which

stimulates the pituitary gland to secret gonadotrophins that evoke

steroid synthesis in the gonad, regulating ovarian follicle growth

and ovulation in hens [6,7]. The hypothalamic vasoactive

intestinal peptide (VIP) - pituitary prolactin (PRL) neuroendocrine

pathway also controls reproductive cycles via dopaminergic

neurotransmission in avian HPG system [8–10]. PRL is a key

hormone that is absolutely necessary for egg laying and incubation

behavior in poultry [11,12]. After stimulation by VIP, PRL

inhibits the release of gonadotropins and thereby induces and

maintains chicken incubation behavior [13–15].

The genetic mechanism behind incubation behavior has been

widely studied because of its potential effect on egg production.

This mechanism is a polygenic trait that is controlled by a set of

autosomal genes [16]. Genes in the HPG axis showed high

association with reproductive traits such as broodiness and egg

production [9,17–30], however, this association depends on the
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population used [22,30]. Aside from the genes distributed in HPG

axis, other novel genes have been discovered to affect chicken

reproduction traits [31–33].

Several approaches have been applied to identify the novel

genes involved in chicken reproduction. A genome-wide scan is a

powerful approach to understanding this complex trait. Quanti-

tative trait loci (QTLs) for egg number, egg production rate, AFE

and broodiness were identified through genome-wide scans [34–

42]. Genome-wide association studies based on high density SNPs

can be performed to detect QTLs that could not be detected by

previous studies based on microsatellite genotyping [43–47]. A

genome-wide association study attempts to obtain information on

all variants, but a gene-centric SNP approach would be efficient

enough to capture SNPs associated with particular traits [48,49].

Transcriptome profiling can be also used to identify new genes

associated with chicken reproductive traits. Although many studies

on the genetic effects of candidate chicken reproduction genes

have been reported, few studies have reported transcriptomic and

proteomic changes. In previous studies, transcripts related to high-

egg production were identified by suppressive subtractive hybrid-

ization analysis (SSH), and several of the identified transcripts were

further confirmed to be significantly increased in hens with higher

egg production, though they were not part of the HPG axis [50–

52]. Therefore, it is valuable to identify novel genes related to

chicken reproduction.

The aim of the present study is to identify novel genes involved

in chicken reproductive traits using SSH analysis, an Illumina 60K

chicken Beadchip GWAS, and a gene-centric GWAS, with

confirmation via analysis of single marker-traits, allelic frequency

spectra, and alternative splicing.

Results

GARNL1 identified as a candidate gene underlying
chicken broodiness by suppression subtractive
hybridization

A subtraction library was made by subtracting cDNA from the

pituitary at the egg-laying stage. As shown in Figure 1,

construction of the pituitary-subtracted cDNA libraries was

successful. Genes differentially expressed between brooding and

non-brooding chicken pituitary glands were enriched for and

sequenced, and 57 annotation transcripts and 20 unknown

transcripts were characterized (Table S1). Gene ontology (GO)

analysis was performed to investigate the functions of the

putatively differentially expressed transcripts. Biological process

accounted for the major portion of GO annotations, compared

with cellular component and molecular function. Among the

category of biological process, genes were involved in processes

such as eye photoreceptor cell development, ovarian follicle

development, epinephrine biosynthesis, regulation of small

GTPase mediated signal transduction, G-protein coupled receptor

protein signaling pathways, and so forth (Table S2). On the basis

of biological process annotations, 10 transcripts were selected to be

validated by qPCR. Among the 10 transcripts, one was identified

as belonging to the chicken GARNL1 gene (Figure S1). The

GARNL1 gene was differentially expressed between tissues

(Figure 2). Low levels of mRNA expression were detected in the

ovary, oviduct, liver, spleen, lung, kidney, muscular stomach,

sebum, abdomen fat, and duodenum; however, higher expression

levels were observed in the cerebrum, cerebellum, hypothalamus,

pituitary, heart, and glandular stomach. Gene expression levels in

the cerebrum, cerebellum, hypothalamus, pituitary, ovary, oviduct

and spleen were significantly higher in broody chickens than in

non-broody chickens (P,0.05), with the levels in tissues from

broody chickens 1.6 times to 4.3 times higher than those of non-

broody chickens. In contrast, GARNL1 expression in leg muscle

was 2-fold higher in non-broody chickens.

GWAS indicates that SNPs associated with chicken
reproductive traits are located in the GARNL1 gene

Before GWAS analysis was carried out, stratification analysis

was conducted in the two-tail sample. The IBS was not

significantly different between two tails sample (Ppermu,0.05). In

all, 2802 SNPs were associated with EN300 in the NDH two tail

sample at the 5% genome-wide level (validated by 10000

permutation tests), and of this total, 470 SNPs were at significant

at the 1% level (Table S3). On chicken chromosome 5, 118 SNPs

were associated with EN300 (Table S3). Among the 118 EN300-

associated SNPs, rs14533299 and GgaluGA282818 composed a

haplotype block. The linkage distance in this block is 1691 kb, and

the GARNL1 gene was observed to be located within this block

(Figure S2).

Gene-centric GWAS reveals an association of several
SNPs in the GARNL1 gene with chicken EN300 and AFE

Six SNPs were highly significantly associated with both EN300

and AFE (Ppermu,0.05 and Ppermu,0.01) (Table 1). A SNP cluster

located on chromosome 5 was associated with both AFE and

EN300 in another NDH two tail sample. Among the SNP cluster,

5 SNPs were located in the GARNL1 gene.

The association of GARNL1 SNPs with chicken EN300 and AFE

was further analyzed in a NDH population comprising 1301

individuals. As showed in Table 2, corrected by SLIDE,

rs15700989 was significantly associated with EN300 (P,0.01)

and rs15701085 was associated with AFE (P,0.05).The block

composed of rs14532787 and rs14532779 was also significantly

associated with EN300 (P = 0.0088) (Table 3). In this block, there

are 4 haplotypes, including H1 (TG, 70.1%), H2 (TC, 5.5%), H3

(CG, 23.3%), and H4 (CC, 1.1%). H2H2 and H2H4 had higher

EN300 than the other diplotypes.

Allelic frequency spectrum of the chicken GARNL1 gene
Allelic frequencies of rs15700989 were different among the 5

populations. The frequency of rs15700989 was 1.0 in Leghorn

layers (Table 4), with a highly significant difference between

Leghorn layer and the other 4 native Chinese chickens. The chi-

square test values for the genotype distribution of rs15700989

showed significant difference between Leghorn layer and the other

4 Chinese native chickens (P,0.01) (Table 5), in accordance with

their egg-production performance.

Figure 1. Determination of subtraction efficiency. The chicken
housekeeping gene G3PDH was amplified from the subtracted sample
(showed in lane 1–4) and the unsubtracted sample (showed in lane 5–
8). The number above the lane represents the PCR cycle.
doi:10.1371/journal.pone.0033851.g001

GARNL1 Gene Is Related to Chicken Reproduction
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Alternative splicing of the chicken GARNL1 gene
The chicken GARNL1 gene is predicted to be located on

chromosome 5 and to span positions 38,617,769–38,729,036 on

the reverse strand, with a total gene size of 111,268 bp. Four, six,

and seven isoforms from the pituitary, ovary, and oviduct,

respectively, could be detected by Western blotting. The molecular

weights of these isoforms ranged from 150 KDa to 250 KDa

(Figure 3).

Five alternatively spliced transcripts, GARNL1-w (NCBI acces-

sion number: JF330255), GARNL1-v1 (NCBI accession number:

JF330256), GARNL1-v2 (NCBI accession number: JF330257),

GARNL1-v3 (NCBI accession number: JF330258, and GARNL1-

v4 (NCBI accession number: JF330259) were detected in the

cDNA pool prepared from cerebrum, cerebellum, hypothalamus,

pituitary, ovary, and oviduct tissues. Five transcripts were

generated as a result of exon skipping and intron inclusion

(Table 6 and Figure S3). The wild-type transcript, GARNL1-w,

which is composed of 41 exons and 40 introns, was successfully

cloned. The complete coding sequence of GARNL1-w is 6,108 bp

long and encodes 2,035 amino acids. Chicken GARNL1 shares a

high amino acid sequence identity with those of human (89.3%

with AY596971, 89.4% with AY596970), mouse (87.4% with

AY596972, 87.6% with AY596972), and zebrafish (73.2% with

AB476643, 74.3% with AB476644), and it is predicted to be a

nuclear protein (with 63% probability). Similar to the human

GARNL1 gene and the mouse GARNL1 gene, all 5 transcripts

contain a Rap/Ran-GAP domain (AA 1825–AA 2004), two

transmembrane helices (AA 1203–AA 1225, AA 1385–AA 1407),

and a leucine zipper motif (AA 1068–AA 1089), but have lost the

N-terminal coiled coil domain (shown in figure S4).

The variant GANRL1-v2 (deduced to encode a 2134 AA peptide)

skips exon 40 and includes a 141 bp intron sequence between the

exon 16 and exon 17. RT-PCR showed that the 141 bp intron

inclusion was tissue specific, being observed only in the cerebrum,

cerebellum, hypothalamus, heart, pectoral muscle, and leg muscle.

Its mRNA expression level was higher than the other isoforms

without 141 bp intron inclusion (Figure 4). Similarly, the GARNL1-

v4 transcript contained a 201 bp fragment of intron 19, and a

single amino acid change, N (Asn) to D (Asp), occurs at the new

exon-exon junction. GARNL1-v4 mRNA with the 201 bp intron

fragment was present at very low levels (data not shown). The

mRNA expression levels of transcripts with the 141 bp intron

inclusion sequence (Figure 5) in the cerebrum, cerebellum, and

hypothalamus were almost the same between brooding and non-

brooding chickens. However, its expression levels in heart and

pectoral muscles of the brooding chickens were 1.5 and 2 times

greater than those of the non-brooding chickens, respectively. In

leg muscle, the expression was 8-fold higher in the non-brooding

chickens than in brooding chickens.

Discussion

In this study, data from a SSH analyses, a GWAS, and a gene-

centric GWAS indicate that the GARNL1 gene is involved in

reproduction and that some GARNL1 variants are associated with

chicken reproductive traits.

The SSH analysis indicated that the GARNL1 gene was involved

in chicken brooding behavior. Comparing to the digital gene

expression methods, such as RNA-seq, SSH is not a prevailing

experimental method for detecting differentially expressed genes.

Figure 2. Comparison of GARNL1 mRNA expression level between brooding and non-brooding chickens. qPCR was performed to
validate the mRNA level of the GARNL1 gene between the brooding and egg-laying stages in NDH chickens. The horizontal axis indicates the tissues
used for detection, and the vertical axis indicates the 22DCt value (shown as average 6 SEM).
doi:10.1371/journal.pone.0033851.g002

Table 1. The 6 SNPs significantly associated with both EN300
and AFE in a two-tail sample.

Chr1 SNP ID Gene Chr: bp Type EN300 AFE

Ppermu

Value
Ppermu

Value

5 rs16492011 GARNL1 38621623 intron_39 0.02699* 0.01099*

5 rs15701085 GARNL1 38674045 exon_26 0.02849* 0.004998**

5 rs16492034 GARNL1 38680830 intron_20 0.008496** 0.04598*

5 rs13585983 GARNL1 38681662 exon_20 0.009495** 0.03998*

5 rs14532787 GARNL1 38699909 exon_15 0.002999** 0.02899*

24 rs16199186 NCAM1 5972092 exon_5 0.0009995** 0.02399*

1The chromosome where the associated SNPs located.
* and ** indicate Ppermu,0.05, and Ppermu,0.01, respectively.
doi:10.1371/journal.pone.0033851.t001
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SSH have several limitations, relatively low throughput, highly

false positives, and generally not statistical significance. But the

following qPCR validation would help to get some good results

with the following experiment validation [53–55]. This result was

consistent with previous findings. Chicken GARNL1 was identified

as being potentially related to high egg production in Taiwan

Country chickens [50], and higher GARNL1 expression levels have

been observed in high egg producing strains [51]. Furthermore,

the mRNA level of the GARNL1 gene was specifically associated

with total egg number at 500 d of age or egg rate after the first egg

[52]. The cerebellum was found to have the highest expression

level of human GARNL1 gene among the brain tissues,

corresponding to its influence on 14q13-linked neurological

phenotypes [56]. In zebrafish, GARNL1 was a strong candidate

gene for brain developmental delay [57]. In our study, the

expression of chicken GARNL1 gene varied at different stages. We

found GARNL1 to be predominantly expressed in the brain, and

the levels of the GARNL1 gene were consistently higher in the

hypothalamus, pituitary, ovary, and oviduct of broody hens. The

expression level of transcripts that included the 141 bp intron

sequence suggested that the cerebellum may be an important

action region in chickens and the variants of GARNL1 do not

impair their function on chicken reproductive traits. In conclusion,

the expression levels of the GARNL1 gene could reflect its functions

in chicken reproduction.

Two tail samples were used to detect SNPs associated with

broodiness and EN300 in this study. The first QTLs for broodiness

were recently detected in a region within 95 cM of GGA5 [42],

where the GARNL1 gene is located. In the present study, the

haplotype block between rs14533299 and GgaluGA282818 was

also shown to be related to EN300 (data not showed). The

GARNL1 gene is located in this region. Among all 25 protein-

coding genes located on this region, the GARNL1 gene was the

only one that has been reported to be related to reproductive traits

in mRNA level in chickens [50–52]. Therefore, the GARNL1 gene

may be associated with reproduction in chickens.

Table 2. Association of 17 SNPs with chicken reproductive traits in population.

SNP Information EN300 trait AFE trait

Position1 Location2 Allele Pointwise-P Corrected-P Pointwise-P Corrected-P

rs15700949 38617982 39flanking A/G 0.5737 1.0000 0.2336 0.9854

rs16492011 38621623 intron 39 G/C 0.3796 0.9994 0.1031 0.8171

rs14532750 38624284 intron39 T/C 0.0191 0.2667 0.4148 0.9998

rs15700989 38648067 intron 37 A/G 0.0001 0.0023** 0.09498 0.7912

rs16492027 38654577 intron 36 T/C 0.3907 0.9996 0.05072 0.5644

rs16492031 38660349 intron 32 A/G 0.6481 1.0000 0.2189 0.9793

rs15701085 38674045 exon 26 G/A 0.0621 0.6365 0.002894 0.0496*

rs13585983 38681662 exon 20 A/G 0.5698 1.0000 0.1158 0.8505

rs16492034 38680830 intron 20 T/C 0.1092 0.8347 0.03888 0.4716

rs14532779 38697653 intron 15 T/C 0.0876 0.7614 0.1711 0.9461

rs14532787 38699909 exon 15 T/C 0.0316 0.4002 0.02979 0.3819

rs16492056 38708121 intron 8 T/C 0.0190 0.2656 0.1233 0.8695

rs15701119 38711935 intron7 TTAAA/- 0.4808 0.9999 0.3975 0.9996

rs14532824 38730001 59flanking T/C 0.4837 0.9999 0.7553 1

rs14532808 38724344 intron1 A/G 0.9870 1.0000 0.3928 0.9996

rs14532819 38726759 intron1 T/A 0.2698 0.9928 0.6031 1

rs14532831 38731847 59flanking T/C 0.1901 0.9626 0.03088 0.3935

1The position of the site on chromosome 5 in coordinates from the chicken genome database at UCSC (http://genome.ucsc.edu/cgi-bin/hgBlat?command = start).
2the location of the variants found inside the GARNL1 gene.
Pointwise P indicated the P value gained by PLINK and Corrected-P means the P value corrected by SLIDE, * and ** indicate P,0.05, and P,0.01, respectively.
doi:10.1371/journal.pone.0033851.t002

Table 3. The association of haplotypes composed of rs14532787 and rs14532779 with EN300 traits.

Trait P value
H1H11
(647)

H1H21
(102)

H1H31
(408)

H2H21
(5)

H2H31
(53)

H2H41
(2)

H3H31
(76)

H3H41
(1)

EN300 0.0086** 92.79
6

1.09bB

93.07
6

2.64b

94.06
6

1.32bB

132.31
6

11.63aA

96.84
6

3.72a

131.73
6

18.44a

98.49
6

3.05Ab

106.06
6

25.87a

Values were expressed as least-square means 6 standard errors (SE).
The number in brackets was the number of chickens tested for each diplotype.
**indicate P,0.01.
The a, b or A, B values with no common superscripts within a column for each site that differed significantly (P,0.05) or highly significantly (P,0.01).
doi:10.1371/journal.pone.0033851.t003
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As the GARNL1 gene might be involved in chicken reproduc-

tion, its polymorphisms could be related to chicken reproductive

traits. However, no studies on the association between the

mutations of GARNL1 gene and chicken reproductive traits were

carried out. In humans, the GARNL1 gene was an important

candidate gene for human 14q13 deletion phenotypes, and two

mutations in GARNL1 were identified in a family with idiopathic

basal ganglia calcification [56]. Polymorphisms of the GARNL1

gene were associated with both EN300 and AFE in a two tail

sample in our gene-centric association analysis. This result

confirmed our previous SSH findings and was validated in a large

population. An analysis of the allelic frequency spectra of GARNL1

SNPs further supported the association. The frequencies of the

rs15700989 were associated with EN300 associated with divergent

egg production performance, and the frequency of predominant

alleles of rs15700989 was 1.0 in Leghorn layer and was descending

in Leghorn, BEH, NDH, XH, and RJF. The predominant allele of

rs15700989 was related to higher EN300 trait in NDH population.

Thus, the allelic frequency data supports the conclusion that the

chicken GARNL1 gene contributes to chicken reproduction. The

block composed of rs14532787 and rs14532779 was significantly

associated with EN300 traits. Although both of them were not

showed significantly relationship with EN300 after corrected by

SLIDE in single marker association, the CC genotype of

rs14532787 resulted in a higher EN300 and an earlier AFE than

did the other two genotypes (Table S4). However, the genotype

CC can be only observed in the NDH population. Compared to

the variance of total egg number at 40 week between early sexual

mature group and later sexual mature group in Leghorn layer

[58], rs14532787 might undergo artificial selection in NDH

population, aiming at the increase of egg production by early

sexual mature and shortening the interval of oviposition. These

two SNP may contribute to EN300 by interacting each other.

Further analysis of the organization, tissue expression, and

alternative splicing of the chicken GARNL1 gene was conducted.

Using Western blotting, 5 alternatively spliced transcripts of the

GARNL1 gene were isolated from chickens in this study. Note that

none of the alternative splicing isoforms had impaired protein

domains. Chicken GARNL1 is conserved with mammals, but it

has some unique features. A variant of the human GARNL1

lacking exon 40, has been found and corresponded to GARNL1-

v1 in chicken [56]. Chicken GARNL1 has lost the N-terminal

coiled coil domain and subsequently the ability to bind to other

proteins. In mice, GARNL1 plays a crucial role during brain

formation and maintenance. A partial murine GARNL1 product

identified as GRIPE (GAP-related interacting protein to E12)

binds to the helix-loop-helix domain of transcription factor E12

and regulates E12-dependent target gene transcription [59].

Similar to the murine GRIPE, the region responsible for binding

to HLH domains was present in all isoforms of chicken GARNL1.

The Rap/Ran-GAP domain is widely distributed in signaling

proteins [60–62], and two arginine residues in Rap/Ran-GAP

domain are important for the GAP activity of GRIPE in mice

[59]. Two arginine residues were found in the Rap/Ran-GAP

domain of chicken GARNL1.

In conclusion, we reveal that the chicken GARNL1 gene has an

important effect on chicken reproductive traits, as determined

from the data from SSH analyses, GWAS, and gene-centric

GWAS. This effect was validated by analysis of allele frequency

spectra, and further characterization of several aspects of the gene

and its expression.

Materials and Methods

Ethics Statement
The study was approved by the Animal Care Committee of

South China Agricultural University (Guangzhou, People’s

Republic of China) with approval number SCAU#0011. Animals

involved in this study were humanely sacrificed as necessary to

ameliorate their suffering.

Table 4. Allelic frequencies of rs15700989 in the GARNL1 gene in the 5 chicken populations.

Site Allele
LH
(n = 60)

BEH
(n = 41)

NDH
(n = 82)

XH
(n = 50)

RJF
(n = 33)

rs15700989 G 1 0.352 0.31 0.09 0.22

LH = Leghorn layers, BEH = Baier Huang chickens, NDH = Ningdu Huang chicken, XH = Xinghua chicken, RJF = Red Jungle Fowl.
The number in brackets was the number of chickens used.
Hardy-Weinberg equilibrium was set at the 0.01 level.
doi:10.1371/journal.pone.0033851.t004

Table 5. Chi-square test of genotype frequency for rs15700989 in the 5 populations.

Site Populations x2 Value1

RJF XH LH NDH

rs15700989 BEH 0.14 27.35** 101.00** 5.27

RJF 21.22** 93.00** 3.29

XH 119.00** 20.64**

LH 120.79**

1x2
0.05(df = 1) = 3.841; x2

0.01(df = 1) = 6.635; x2
0.05(df = 2) = 5.991; x2

0.01(df = 2) = 9.21;
*P,0.05;
**P,0.01.
doi:10.1371/journal.pone.0033851.t005

GARNL1 Gene Is Related to Chicken Reproduction
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Identifying candidate genes underlying chicken
broodiness by SSH analysis

A pair of full-sib female NDH chickens was used for the

suppression subtractive hybridization (SSH) experiment. One

individual was broody, and its brooding lasted for more than

7 d, and the other one was continuously laying. The pituitary

gland and 17 other tissues were collected after the brooding

individual had been incubating for 10 d. At that time, the

chicken’s incubation behavior was quite typical, and both ovary

and oviducts were atrophied. The laying chickens’ tissues were also

collected at the same time.

Total RNA was extracted from the tissues using Trizol reagent

(Invitrogen, California, USA) according to the manufacturer’s

protocol. Total RNA was treated with RNase-free DNaseI

(Takara, Osaka, Japan) for 45 min at 37uC to ensure that it was

free of DNA contamination. RNA quantity and quality were

assessed using a Thermo Scientific Nanodrop1000 spectropho-

tometer (Nanodrop Technologies, Wilmington, Delaware, USA)

and by formaldehyde denaturation agarose gel electrophoresis.

Suppression subtractive hybridization was performed with an

equal amount of tester mRNA (2 mg) from the brooding stage, as

well as the driver mRNA from the egg-laying stage. Following the

manufacturer’s protocol for the PCR-Select cDNA Subtraction

Kit (Clontech, Palo Alto, CA, USA), after two subtraction

hybridizations and two suppression PCRs, the subtraction

efficiency was evaluated by PCR using primers for the chicken

house-keeping gene G3PDH (P#1, Table S5). cDNAs were cloned

and inserted into the pMD20-T vector (Takara, Osaka, Japan) and

were then transferred into chemically competent E. coli (JM109)

cells to generate SSH libraries.

Subtractive products longer than 300 base pairs were picked for

sequencing by Invitrigen Co. Ltd (Shanghai, China). The vector

nucleotide sequences were removed, and the remaining sequences

clustered into contigs using DNAstar software. The basic local

alignment search tool (BLAST) http://blast.ncbi.nlm.nih.gov/

was used for identifying and annotating genes.

Quantitative real-time PCR (qPCR) was performed with the

Agilent Stratagene Mx QPCR Instrumentation (Agilent Technol-

ogies, Wilmington, DE, USA) for follow-up of candidate genes,

using the SsoFast EvaGreen Supermix (Bio Rad Laboratories,

Hercules, CA, USA). The four individual cDNAs were used as

templates for qPCR amplification. The primers used for the qPCR

were designed using Primer Express 2.0 software (Applied

Biosystems, Foster City, CA, USA). A housekeeping gene, the

chicken beta-actin gene (accession: L08165), was used as internal

control. Therefore, two sets of primers (P#2 and P#3, Table S5)

were designed and used for the qPCR amplification. Each reaction

mixture contained 10 mL of Eva Green PCR Master Mix, 1 mL of

each primer (10 mM), 7 mL of RNase-free water and 1 mL of

cDNA in a final volume of 20 mL. Standard amplification

conditions were as follows: 95uC for 30 s, 40 cycles of 95uC for

5 s, 60uC for 30 s. Fluorescent signal was collected after an

extension at 65uC in each cycle. Chicken GARNL1 gene relative

expression was calculated by 22DCt method, and DCt = Cttarget gene

2Ctb-actin.

GWAS for a two tail sample using 60K chips
The age of the first egg (AFE) and the total number of eggs at

300 d of age (EN300) were recorded in a breeding population kept

in Guangdong Wens’ Foodstuff Co. Ltd (Guangdong, China).

Twenty Ningdu Sanhuang (NDH) female chickens from the above

population were divided into 2 groups. Group 1 was composed of

the 10 individuals with the highest EN300 values (an average of

145 eggs) and no observable incubation behavior, and group 2 was

composed of the 10 individuals that had the lowest EN300 values

(an average of 66 eggs) as well as an average duration of

broodiness of 51 d. Twenty Illumina 60K chicken chips were used

for the two-tailed association study.

Stratification analysis was performed to detect the IBS of the

two-tail sample before GWAS studies were carried out. SNP

quality control metrics were analyzed using GenomeStudio

software (version 2009.1). A SNP was removed if its call rate

was less than 100%, or its minor allele frequency (MAF) was less

than 5%, and its Hardy-Weinberg equilibrium (HWE) p-value was

too low (P,0.00001). As a result, 54,424 SNPs were selected for

use in the GWAS. PLINK was used for the single-marker

association analysis. PLINK single marker basic allelic association

(X1
2) tests (the –assoc option) were performed for each of the post-

Figure 3. Western blot analysis of GARNL1. The Western blot
analysis revealed 4 isoforms of chicken GARNL1 within the chicken
pituitary, 6 isoforms within the chicken ovary, and 7 isoforms within the
chicken oviduct. Their molecular weights ranged from 150 KDa to
250 KDa. In human HEK293, 6 isoforms were detected.
doi:10.1371/journal.pone.0033851.g003

Table 6. The alternative splicing types of the chicken GARNL1 gene.

Sequence
ID Length1

Exon
Number

Intron
Number Amino Acid2

Molecular
Weight Types of AS3

GARNL1-w 6108 41 40 2035 230 KD /

GARNL1-v1 6261 40 39 2086 235 KD Exon Skipping (exon 40, 31 bp)

GARNL1-v2 6405 41 40 2135 240 KD Intron inclusion (fragment of intron 16, 141 bp) and
Exon Skipping (exon 40, 31 bp)

GARNL1-v3 5995 40 39 1984 225 KD Exon Skipping (exon 21, 153 bp)

GARNL1-v4 6609 42 41 2203 247 KD Intron inclusion (fragment of intron 16, 141 bp and fragment of
intron 19, 201 bp)

1Length of the open reading frame (ORF).
2The number of the amino acid coded by the chicken GARNL1 gene.
3The type of alternative splicing observed.
doi:10.1371/journal.pone.0033851.t006

GARNL1 Gene Is Related to Chicken Reproduction

PLoS ONE | www.plosone.org 6 April 2012 | Volume 7 | Issue 4 | e33851



QC SNPs. PLINK’s max (T) permutation procedure (the –mperm

option) was set to 10000 for the two-tailed test, in order to get

accurate P values by reducing false positives. The SNPs detected

by PLINK were used to analyze haplotype structure with

Haploview 4.1 software http://www.broad.mit.edu/mpg/

haploview/.

Gene-centric GWAS
Ninety-six NDH chickens were selected on the basis of AFE and

EN300 measurements and genotyped for 384 SNPs using the

Illumina GoldenGateTM iSelect Array genotyping platform (BGI,

Shenzhen, China) via a commercial service. The 384 SNPs were

located in an AFE QTL region or in 20 novel candidate genes

selected according to previous reports [18,22–26,35,36,38,

51,52,63] (Table S6). The DNA sample set included 3 replication

pairs. Twenty-four early sexual mature individuals with an AFE of

91 to 95 d and 24 late sexual mature individuals with an AFE of

160 to 179 d, and 24 low production individuals with an EN300 of

1 to 22 eggs and 24 high production individuals with an EN300 of

140 to 163 eggs were used in the gene-centric genome-wide

association study. The average AFE value in the early group was

92.5 d, whereas in the late group it was 166.4 d. The average

EN300 value in the low group was 28 eggs, and in the high group,

146 eggs. The gene-centric GWAS association analysis was

performed by quantitative trait association analysis using PLINK

with 10000 permutations.

Marker-trait association analysis in NDH female
population

A total of 5 site-specific primers were designed by Assay design

and synthesis by the Sangon Biotech Company (Shanghai, China),

a commercial service. We validated the SNPs for which

associations were found using the Sequenom genotyping platform.

The effects of an additional 12 SNPs on EN300 or AFE were

Figure 4. Tissue-specific analyses of GARNL1 transcripts. (A). Partial cDNA and deduced amino acid sequence of the 141 bp insertion. Lower-
case letter indicated the 141 bp insertion sequence from intron 16. (B). The distribution of transcripts containing the 141 bp insertion, which was only
expressed in six tissues; the cerebrum, cerebellum, hypothalamus, heart, pectoral muscle, and leg muscle.
doi:10.1371/journal.pone.0033851.g004

GARNL1 Gene Is Related to Chicken Reproduction

PLoS ONE | www.plosone.org 7 April 2012 | Volume 7 | Issue 4 | e33851



investigated by an association study using the PCR-RFLP method

in the NDH population (P#5 to P#16, Table S5). PCR was

performed in a 10 mL reaction mixture containing 1 mL of Taq

polymerase (Dongsheng Co., Guangzhou, China), 5 mL of the

26PCR buffer supplied by the manufacturer, 1 mM of each

primer, 50 ng genomic DNA, with ddH2O added to a total

volume of 10 mL. The PCR program used was 3 min at 94uC,

followed by 32 cycles of 30 s at 94uC, 30 s at 59uC, 45 s at 72uC,

and a final extension of 5 min at 72uC in a Bio-Rad Mycycles (Bio-

Rad Laboratories, Hercules, CA, USA). PCR products were

digested in a 37uC or 65uC water bath overnight with MspI,

HindIII (2 sites), DraI (2 sites), SacII, KpnI, StuI, PvuII, TaqI, Csp6I,

and BsuRI. Genotypes were determined by electrophoresis after

restriction digestion.

PLINK (version 1.07) was used to perform analysis for

evaluating genetic effect of 17 sites of GARNL1 gene on EN300

and AFE. Sliding-window method for Locally Inter-correlated

markers with asymptotic Distribution Errors corrected (SLIDE)

program [64] was used to correct the P value, and all the point-

wise P value were corrected based on 10000 sampling. A P value

#0.05 was considered significant in the analyses. Multiple

comparisons were conducted with least squares means using

Fisher’s least significant difference method.

The Hardy-Weinberg equilibrium and haplotype structure were

analyzed using Haploview 4.1 software [65]. Haplotypes were

constructed on the basis of genotype data using PHASE 2.0

software (http://en.wikipedia.org/wiki/Phase).The minimum

haplotype frequency was set to 1%. Association analyses of

haplotypes with the EN300 and AFE were carried out using SAS

GLM procedure (SAS Institute Inc., Cary, NC, USA) with the

following model

Y~mzHzSze,

Where Y is a trait observation, m is the overall population mean, H

is the effect of haplotype, S is the fixed effect of sire, and e is the

residual error.

Allelic frequency spectrum of the chicken GARNL1 gene
Five populations, Red Jungle fowl (RJF) (n = 33), Baier Huang

chicken (BEH) (n = 41), White Leghorn (LH) (n = 60), Xinghua

chicken (XH) (n = 50), and Ningdu Sanhuang chicken (NDH)

(n = 82), were genotyped at the reproduction-associated SNPs of

the GARNL1 gene to obtain allele frequency spectra. RJF, XH and

NDH showed low egg-production ability, with 60,130 eggs per

year because of their intractable incubation behavior (100%

incidence of broodiness in RJF, 70,80% incidence of broodiness

in XH and 50,60% incidence of broodiness in NDH). BEH

chickens had a 10,15% incidence of broodiness and an egg-

production of 180 per year. The Leghorn chicken is a famous layer

breed with excellent egg-production ability and no incubation

behavior. The primers used were the same as those used for

genotyping the NDH population.

Chi-square (x2) tests performed on a 263 (or n) contingency

table. A P#0.05 was considered significant in all analyses.

Analysis of GARNL1 alternative splicing isoforms
Total protein was collected using Trizol reagent (Invitrogen,

California, USA) according to the manufacturer’s protocol.

Proteins were separated on an 8% SDS-PAGE gel by electropho-

resis and transferred to PVDF membranes (Millipore, Billerica,

MA, USA). Membranes were blocked using TBST containing 5%

nonfat milk and 0.05% (w/v) Tween 20 overnight at room

temperature. Membranes were then incubated overnight at 4uC
with rabbit polyclonal anti-GARNL1 (TULIP1) in a 1:1000

dilution (Santa Cruz Biotechnology, CA, USA). Membranes were

washed three times in TBST containing 0.05% Tween 20 and

incubated in HRP-conjugated secondary antibody for 1 h at 37uC.

Membranes were washed as before and signals were detected

using Super ECL Detection Reagent (Applygen, Beijing, China)

and Kodak (Kodak Film, USA).

Using cDNA transcribed from RNA pool composed of 6

chicken tissues as a template, the GARNL1 ORF was amplified by

primer pairs (P#4, Table S5) on the basis of the predicted mRNA

sequence (accession number: XM421244). PCR was performed in

a 50 mL reaction mixture containing 1 mL of KOD FX

polymerase (Toyobo, Osaka, Japan), 25 mL of the 26PCR buffer

supplied by the manufacturer, and 10 mL of 2 mM dNTPs. The

PCR conditions were 4 min at 94uC, followed by 30 cycles of 10 s

at 98uC, 7 min at 68uC, and a final extension of 10 min at 68uC in

a Bio-Rad S1000 (Bio-Rad Laboratories, Hercules, CA, USA).

The amplified fragments were cloned into a pGEM-T Easy

plasmid vector (Promega, Madison, USA) and then sequenced by

Invitrogen Co. Ltd (Shanghai, China) via a commercial service.

The obtained sequences were assembled to obtain the full-length

GARNL1 cDNA sequence. After sequencing, some novel alterna-

Figure 5. Expression level of transcripts with the 141 bp insertion. The horizontal axis and vertical axis indicate different tissues and 22DCt

value (mean 6 SEM), respectively.
doi:10.1371/journal.pone.0033851.g005
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tive splice forms of the chicken GANRL1 gene were detected by

Reverse Transcription-PCR.

Sequence databases were accessed and searched using the

BLAST algorithm at the NCBI at http://www.ncbi.nlm.nih.gov/

BLAST and the UCSC Chicken Genome Project Working Draft

at http://genome.ucsc.edu/. Protein domain predictions were

obtained using the SMART program (Simple Modular Architec-

ture Research Tool) from the European Molecular Biology

Laboratory at http://smart.emblheidelberg.de/, and transmem-

brane helics motif and leucine zipper domain predictions were

obtained using the SOSUI algorithm at http://bp.nuap.nagoya-u.

ac.jp/sosui/sosui_submit.html and the PSORT II program at

http://psort.ims.u-tokyo.ac.jp/form2.html. Multiple alignments of

amino acid sequences were performed using ClustalW at http://

www.ebi.ac.uk/clustalw/ and DNAMAN software (Lynnon cor-

poration, Quebec, Canada), with MEGA 4.1 software (http://

www.megasoftware.net/) used for homology analysis.
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