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Abstract

Fire has become an increasingly important disturbance event in south-western Amazonia. We conducted the first
assessment of the ecological impacts of these wildfires in 2008, sampling forest structure and biodiversity along twelve
500 m transects in the Chico Mendes Extractive Reserve, Acre, Brazil. Six transects were placed in unburned forests and six
were in forests that burned during a series of forest fires that occurred from August to October 2005. Normalized Burn Ratio
(NBR) calculations, based on Landsat reflectance data, indicate that all transects were similar prior to the fires. We sampled
understorey and canopy vegetation, birds using both mist nets and point counts, coprophagous dung beetles and the leaf-
litter ant fauna. Fire had limited influence upon either faunal or floral species richness or community structure responses,
and stems ,10 cm DBH were the only group to show highly significant (p = 0.001) community turnover in burned forests.
Mean aboveground live biomass was statistically indistinguishable in the unburned and burned plots, although there was a
significant increase in the total abundance of dead stems in burned plots. Comparisons with previous studies suggest that
wildfires had much less effect upon forest structure and biodiversity in these south-western Amazonian forests than in
central and eastern Amazonia, where most fire research has been undertaken to date. We discuss potential reasons for the
apparent greater resilience of our study plots to wildfire, examining the role of fire intensity, bamboo dominance,
background rates of disturbance, landscape and soil conditions.
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(CNPq 574008/2008-0). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: josbarlow@gmail.com

Introduction

Understorey wildfires in humid tropical forests have increased in

frequency and prevalence over the last three decades, mainly due

to their interaction between fire-dependent agricultural practices

and extreme drought events [1,2,3,4]. The ecological impacts of

these fires have been described in several different tropical forests

[5], reporting high rates of tree mortality of up to 50% [6,7] and

strong negative impacts on forest biodiversity; most notably on

understorey birds [8,9,10], large vertebrates [11] and leaf litter

arthropods [12]. Within South America, most of these studies have

been conducted in forests in the central and eastern Brazilian

Amazon, following fires associated with El Niño-related drought

events [3,6], or in Bolivian forests that were logged as well as

burned [13].

Much less is known about the responses of south western

Amazonian forests to fire disturbance, although a large extent of

forest was recently affected by severe drought events that occurred

in 2005 [14] and 2010 [15]. These droughts are related to higher

North Atlantic sea-surface temperatures [14], and are distinct

from the El Niño associated droughts affecting the northern and

eastern Amazon [16]. Conservative estimates suggest that

c. 2,800 km2 of forest burned in the state of Acre in 2005 [17].

There are good reasons to believe that forests in western

Amazonia may respond differently to fire disturbance than forests

in the east. The Amazon spans a variety of different gradients,

including rainfall and geological history [18,19], and forests in

western Amazonia are typically the most species rich [18], have a

high turnover of stems [20], high above-ground coarse wood

productivity [21], and one of the lowest average wood densities

[22]. Importantly, there are suggestions that western Amazonian

forests could be more resilient to disturbance than central and

eastern Amazon forests. First, while trees suffer very high edge-

related mortality rates in central Amazonian forests [23], a similar

loss of aboveground biomass was not observed near forest edges in

south-western Amazonian forests [24]. Second, eastern Amazo-

nian forests may contain more senescent large trees than western

Amazon forest [25], and these individuals could be more

vulnerable to the physiological stresses associated with any

additional disturbance such as fire (e.g. [26]).

In addition, some areas of south-western Amazonia may have a

long historical association with fire disturbance. Around
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165,000 km2 of forests shared by Brazil, Peru and Bolivia are

dominated by Guadua bamboos [27]. Although these forests cover

only a small fraction of the total areal extent of the Amazon

(c. 2%), they cover twice as much land as the remaining forest

cover in Brazil’s Atlantic Forest [28]. There are three reasons why

these bamboo-dominated forests could respond differently to fire

disturbance. First, the presence of bamboo suggests that fire may

have played an important role in shaping these forests [27].

Second, Guadua bamboos appear to have a limited ability to

withstand drought, and may increase forest flammability as they

shed leaves after only a few days without rain [27]. Third, the

synchronous dieback of semelparous Guadua could increase forest

flammability [29].

We conducted the first assessment of the ecological impacts of

the 2005 wildfires in bamboo-dominated forests in the Brazilian

Amazon. We compared biodiversity and forest structure in plots in

burned and unburned forests that were sampled three years after

the fires took place, and compared change in forest structure with

data from burned forests in the central Brazilian Amazon.

Specifically, we examined the following research questions: 1)

what was the impact of fire on forest structure and the richness and

composition of forest biodiversity? 2) How do these changes

compare with those recorded in the central and eastern Brazilian

Amazon? We also assessed to what extent potential factors (such as

drought-related mortality, [30], disturbance history, and fire

intensity) could explain these differences.

Methods

Study area
This study was conducted in the ‘‘RESEX Chico Mendes’’ (10u

to 11u S, 68u to 70u W), in the Brazilian state of Acre in

southwestern Amazonia, which receives around 2200 mm a year

[31]. The RESEX covers approximately 1 million hectares of terra

firme forests on mostly clay-dominated soils. These forests contain a

high density of two species of semi-scandent woody bamboos,

Guadua sarcocarpa Londoño & P.M. Peterson and G. weberbaueri Pilg.

[27]. These results were compared with data published in studies

from the central Brazilian Amazon in the state of Pará [6,9].

Sampling methods
We sampled forest structure and biodiversity along twelve

500 m transects between September and November 2008

(Figure 1). Six transects were placed in unburned forests and six

were in forests burned during a series of forest fires that occurred

within the RESEX from August to October 2005. All transects

were located at least 1 km from each other, and were positioned

without a priori information on the severity of the fires or forest

composition. An analysis of Normalized Burn Ratio (NBR) values

[32] derived from annual Landsat imagery for five years prior to

(2000–2004) and three years after the fires (2006–2008) revealed

similar spectral reflectance patterns in burned and unburned plots

before the fires (Figure 2).

Figure 1. Landsat imagery of the study area (26/062006), showing fire scars (blotchy red areas) from the 2005 fires and the location
of the 6 burned and 6 unburned study plots in the RESEX Chico Mendes (red and white bars, respectively).
doi:10.1371/journal.pone.0033373.g001
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We sampled all trees $10 cm DBH and all lianas $5 cm DBH

in 106500 m (0.5ha) vegetation plots laid out to the side of each

transect. Stems were classified as dead if none of the bark at breast

height was living (implying the entire above-ground biomass

associated with that stem was dead). However, some of these same

individuals exhibited basal resprouting, which we also recorded.

For smaller stems ,10 cm DBH, we sampled two 565 m subplots

at four points, located at 50 m, 200 m, 350 m and 500 m, along

each transect, with plots located on either side and one metre from

the transect (avoiding any disturbance that may have occurred

when the transects were opened). The diameter of smaller stems

was measured with dial calipers. We also sampled canopy

openness at each point using hemispherical photographs (analysed

with Gap Light Analyzer http://www.ecostudies.org/gla/), and

measured leaf litter volume by placing 0.25 m2 quadrats of leaf

litter into a 26 cm628 cm cylinder (the Winkler extractor used for

the ants). To measure leaf litter (and collect ants) we used four

quadrats per point, each spaced 3 meters from the central point.

For comparative purposes, we contrasted data on trees $10 cm

DBH in Acre with data collected in or around the RESEX

Tapajos-Arapiuns in Pará in the central Brazilian Amazon

(2u44uS, 55u41uW), located c. 1600 km east of the Acre study

sites. Sixteen 0.25ha plots in unburned forest and 22 0.25ha plots

in burned forest were sampled in 2000–2001, three years after

wildfires associated with the 1998–1999 El Niño event (See [6] for

more details). We also reanalysed data on the community turnover

of birds captured in mist nets in 12 burned and ten unburned plots

in Pará [9], to provide a comparative basis for the bird data in

Acre (see SOM).

Faunal sampling in Acre occurred at the same four sample

points along each transect. Ants were sampled using the Winkler

methodology, using the same quadrats used to collect leaf litter

volume data. After registering the leaf litter volume, each one of

the four quadrats per point was sieved (mesh = 1 cm2) to remove

larger debris and leaves, and combined into a single sample. The

fine material was then placed into Winkler extraction funnels that

were suspended in the shade for 72 hours. Ants were sorted in a

laboratory and identified by an expert ant taxonomist (S. Lacau).

Voucher specimens are stored at the Universidade Estadual do

Sudoeste da Bahia-UESB, Itapetinga, Bahia, Brazil.

Dung beetles were sampled using pitfall traps baited with

human feces [33,34]. Each pitfall consisted of a cylindrical plastic

container (15 cm wide, 9.5 cm deep) buried at ground level and

quarter-filled with salted water and a drop of detergent. A small

bag made of cotton gauze containing c. 25 g of human feces was

suspended above the pitfall. The lid of the plastic container was

placed 10 cm above the trap with three wooden sticks, helping

protect both the bait and the pitfall from rain. All traps were

collected after 48 hours, rebaited and collected again after a

further 48 hours. All specimens were processed at the Universi-

dade Federal de Lavras with identifications confirmed at

Universidade Federal de Mato Grosso. Voucher specimens are

deposited in both institutions.

Birds were sampled using both mist-nets and point counts.

Twenty eight mist nets (1262.5 m; mesh size 36 mm) were erected

in four groups of seven nets. Each group created a netline of

7612 m extending for 90–100 m. Groups were separated by an

open space of 50 m. During two days, we opened the 28 nets from

0630h (sunrise) to 1330 h, totaling 4704 mist-net hours. We

checked nets hourly and closed them during periods of heavy rain.

All captures were identified to species, weighed, measured

(standard measurements included wing, tail, bill, and total length)

Figure 2. Mean ± SD of the Normalized Burn Ratio (NBR) across the six unburned and six transects that burned in 2005 (arrow). The
NBR is widely used to detect burned forests from Landsat reflectance data. The lower NBR values in unburned forests in 2005 likely reflect smoke from
ongoing fires (the image was taken on the 11th of September during the peak of the fire season) and possibly some impact of the drought. The NBR
values prior to 2005 provide evidence suggesting the transects were similar before the fires; the NBR values after 2005 show the stability of the
unburned plots, and the recovery of canopy cover in the burned plots, up to the time of the field sampling in 2008.
doi:10.1371/journal.pone.0033373.g002
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and, whenever possible, were aged, sexed and photographed.

They were also banded with a numbered metal ring obtained from

Centro Nacional de Pesquisa para Conservação de Aves Silvestres

(CEMAVE) - Instituto Chico Mendes de Conservação e

Biodiversidade (ICMBio). All recaptures from the same sampling

period and from the same net line were excluded from the analysis.

Ten minute point counts were carried out twice at each sampling

point, on two different days and avoiding transects where mist-

netting was taking place. The repeat visits included an early

sample (0600–0730 h) and a later sample (0730–0900 h). We used

a digital recorder and a directional microphone to record all

acoustic registrations, and unknown vocalizations were subse-

quently checked against known calls. Distance from the observer

and height were also noted. To ensure independence between

point-counts, we excluded birds flying over the canopy and any

registrations .50 m from each point count. To avoid double

counting during the second visit, we excluded any observations of

species that had already been recorded at that point. We analyzed

mist net and point count data separately, as the two provide

complementary information about forest bird communities [35].

Ethics statement
We are very thankful to the Instituto Chico Mendes para a

Conservação da Biodiversidade- ICMBio and the communities of

RESEX Chico Mendes for their permission and help with the field

work. All necessary permits were obtained for the described field

studies, including permission to collect ants and dung beetles

within the Chico Mendes Extractive Reserve (Sisbio permit

no. 178811-1) and authorization for ringing birds (project

no. 3012/4 from CEMAVE/Ibama). Plants were identified in

situ by an expert parataxonomist.

Statistical analysis
Patterns of species richness between different unburned and

burned forests were compared using an individual-based rarefac-

tion procedure within EstimateS (v.7) [36], where individuals are

set as samples and the curves are then calculated using the Mao

Tao estimator. Significant differences between habitats were

assessed by visual inspection of 95% confidence intervals.

Significance at p,0.05 may be assessed by observing whether

the burned forest curve lies within the 95% confidence interval of

the curve of the unburned forest [37].

Changes in community structure were assessed using ordination

analyses implemented in R 2.14.0 and Primer v. 6, using non-

metric multi-dimensional scaling (MDS) based on the Raup-Crick

disimilarity metric. The Raup-Crick metric calculates the

probability that the compared sampling units have non-identical

species composition, and is considered the most appropriate metric

for sparse datasets with many absences, which are typical of

species rich tropical communities [38,39]. It was calculated in the

‘‘vegan’’ package in R 2.14.0 using the ‘‘raupcrick’’ command.

The influence of fire on community structure and community

dispersal were examined using Permanova and Permadisp,

respectively, conducted in Primer v.6. A randomization test

(Indicator Species Analysis [40]) was used to examine which plant

species were significantly more abundant and frequent in

unburned or burned forest. IndVal analysis was undertaken in

PCORD [41]. Comparisons of forest structure used a One-Way

Permutation Test (with 9999 Monte-Carlo resamplings) conducted

in the Coin package in R 2.12.2. [42].

Considering the large number of statistical tests conducted in

this manuscript, we consider p,0.05 as providing marginal

support, and p,0.01 as providing strong support. We did not

adopt a more stringent correction (such as a Bonferroni correction)

as this would merely increase the chance of Type II errors,

especially given our relatively small sample size.

Results

In total, we measured 2685 stems $10 cm DBH and 3672

stems ,10 cm DBH in our plots in the south-western Amazon.

We also captured 3492 dung beetles, recorded 603 ant

occurrences, and sampled 868 birds in mist-nets and 1586 in

point counts (excluding those .50 m from the observer or flying

over). We examine changes in forest structure, compare the data

with burned forests in Pará, and then assess how fire altered the

species richness and community structure of the studied taxa.

Changes in forest structure
The number of live trees $10 cm DBH and mean aboveground

live biomass were statistically similar in the unburned and burned

plots (Figure 3). There was a significant increase in the number of

standing dead trees overall, and in the 20–20.9 cm DBH size class

(p,0.01). Total aboveground dead and live biomass was not

significantly different in unburned and burned plots, but there

were marginally significant increases in standing dead biomass in

the 10–19.9 and 20–29.9 cm DBH size classes (p,0.05, Figure 3).

We measured 122 lianas $5 cm DBH across the twelve 0.5 ha

plots, of which only 25% were $10 cm DBH. The data indicate a

high mortality rate of lianas in these forests, with mean (6 SE)

density falling from 32.063.2 ha21 in unburned forest to 8.762.6

ha21 in burned forests (Table 1). Dead lianas did not appear to

persist in the burned forests, and we only recorded one dead liana

stem in the unburned control plots. Burned plots also had a

marginally significant higher proportion of resprouting trees

$10 cm DBH and a more open canopy than the control plots

(Table 1). Other forest structure variables were non-significant

(Table 1).

Comparing fire severity in Acre and Pará
Our comparisons of the percentage change in the number of

live and dead trees three years after wildfires suggest that fire

severity (measured as its impact on trees $10 cm DBH) was lower

in the south-western Amazon plots than those in the central

Amazon (Figure 4). In every DBH size class, the difference

between the numbers of live stems in burned and unburned forests

were numerically smaller in Acre than they were in Pará. These

numerical differences were supported by statistical comparisons of

dead stems $10 cm DBH, which were 288% more abundant in

burned forests in Pará, but only 83% more abundant in burned

forests in Acre (p,0.001, Figure 4).

Impacts of fire on biodiversity
Species richess. Our surveys demonstrate the very high

species richness of bamboo-dominated forests in the south-western

Amazon (Figure 5). Species acumulation curves suggest many

species or genera remain unsampled, especially for the ants and

birds. Fire had a mostly insignificant influence on faunal species

richness, either when data was pooled (Figure 5) or when

comparing species richness at the transect scale (Figure S1).

There is a suggestion that fire disturbance reduced the richness of

plant genera across the 0.5ha plots, and stems ,10 cm DBH

appear to be significantly more species rich in the burned forests.

Neither of these patterns were observed at the transect scale

(Figure S1).

Species composition and community structure. There

were mixed community responses to fire disturbance across the

taxa we sampled (Figure 6). Within the vegetation, there was no

Wildfires in Bamboo-Dominated Amazonian Forests
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significant difference in the species composition of stems $10 cm

DBH, but the species composition of stems ,10 cm DBH was

significantly different between burned and control forests

(Figure 6). Only a few genera of stems ,10 cm DBH showed

significant responses in their abundance, with a marginally

significant loss of the genera Tachigalia and Eugenia from the

burned sites (Figure S2). Five genera were significantly (Urera and

Actinostemom; p,0.01) or marginally significantly (Zanthoxilon,

Sapium, Apeiba; p.0.05) more abundant after fire. Guadua

bamboos almost doubled in abundance in burned forests, but

these differences were not significant.

Within the fauna, only leaf-litter ants showed a difference in

community structure, which was marginally significant for

community turnover and community dispersal (p,0.05;

Figure 3. Mean (±SE) number of trees and mean (±SE) aboveground biomass per hectare, measured three years after fire.
Significant differences between unburned and burned plots are shown by *,0.05, **,0.01.
doi:10.1371/journal.pone.0033373.g003

Table 1. Average values for forest structure variables measured in burned (BF) and unburned (UF) forests in Acre.

Units Mean UF SE Mean BF SE Z P

Data from 0.5 ha plots

Lianas Per 0.5ha plot 16.0 1.6 4.3 1.2 22.88 0.002**

Palms 10–19.9 Per 0.5ha plot 31.3 6.9 37.7 19.0 20.80 0.49

Palms 20+ Per 0.5ha plot 22.0 7.5 20.3 5.4 20.16 0.94

Dead palms Per 0.5ha plot 4.7 1.2 7.8 3.8 22.41 0.82

Canopy intact (%) 90.4 3.9 88.0 2.6 21.12 0.31

Stems resprouting (%) 0.4 0.1 2.2 0.6 22.01 0.04*

Data from subplots

Stems ,2.5 cm DBH Per transect (200 m2) 22.7 2.3 17.8 1.8 20.70 0.65

Stems 2.5–4.9 cm DBH Per transect (200 m2) 168.8 36.4 144.2 9.0 0.68 0.54

Stems 5.0–9.9 cm DBH Per transect (200 m2) 112.8 24.0 95.5 8.3 21.52 0.15

All live stems ,10 cm DBH Per transect (200 m2) 279.7 28.8 282.2 30.7 0.06 0.95

Structure data

Leaf litter volume Volume (m3 per m2) 0.023 0.001 0.018 0.007 22.0 0.04*

Canopy openness (%) 20.0 1.48 24.5 1.25 2.1 0.03*

Significance was tested using one-way permutation tests.
P values are *,0.05, **,0.01, ***,0.001.
doi:10.1371/journal.pone.0033373.t001
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Figure 6). Their were no significant difference for the dung beetles

or the bird communities sampled by mist nets or point counts

(Figure 6).

Checking the validity of our analyses. We undertook a

series of analyses to ensure our space-for-time assessments of the

consequences of wildfires were valid in Acre. The 10 year

comparative assessment of Normalized Burn Ratio (NBR) values

across the six unburned and six transects that burned in 2005 did

not suggest that the transects were consistently different before the

fires (Figure 2). As fire is a highly spatially auto-correlated

disturbance event [43], we also examined whether our results

could be explained by the spatial layout of the sampling transects.

Again, we found no evidence to suggest this was the case, and all

RELATE correlations between community structure and the

geographic distance between sites were insignificant (Stems

$10 cm DBH, Rho = 20.31, p = 0.97; Stems ,10 cm DBH,

Rho = 20.08, p = 0.73; Birds (point counts) Rho = 20.25,

p = 0.96; Birds (mist nets) Rho = 20.07, p = 0.73; Ants,

Rho = 0.03, p = 0.38; Dung Beetles Rho = 20.55, p = 1.0).

We also investigated potential confounding factors that could

explain the different effects of fires in Pará and Acre. First, we

evaluated fire intensity by comparing our measurements of char

height from both regions. These suggest that fires were more

intense (had higher average flame heights) in Acre. Out of 1214

stems measured in burned forest in Acre, 544 showed scars or

charring that could be related to fires, and 303 (25%) showed some

kind of charring $1 m in height. This compares with just 7% of

stems that showed scars or charring $1.3 m three years after the

fires in Pará [44]. Second, we examined factors that could

influence fire intensity in unburned plots in Acre and Pará. Again,

these suggest that fires were likely to be more intense in Acre,

where the unburned forests had a significantly more open canopy,

and a greater volume of leaf litter on the forest floor (Figure S3).

The impact of fires on tree mortality in the smaller size classes

could be masked by the rapid regeneration of stems three years

after fire in Acre. As it was difficult to make accurate in situ

assessments of whether a stem had regenerated before or after the

fire, we used a statistical approach examining community turnover

in stems in the 10–19.9 cm DBH range, with the expectation that

high community turnover between burned and unburned forest in

this size class would provide evidence of a significant recruitment

of pioneers. The test was not significant (Permanova Pseudo-

F = 1.37, p = 0.33), and the lack of regenerating pioneers in this

10–19.9 cm DBH size class is further demonstrated by comparing

the abundance of fast-growing pioneers such as Cecropia spp., as we

recorded 9 stems in unburned forests and 14 in burned forest.

To examine the potential impact of drought related mortality,

we compared the overall number of standing dead stems per

hectare in our unburned forest controls in Acre and Pará. These

numbers were identical (Figure S4). We also compared the genus

richness of stems $10 cm DBH in the unburned forests of Acre

and Pará, which was not significant (Figure S3). Finally, as

differences in selective logging could have had a big influence on

both the likelihood and intensity of fires [3,4,45], it is important to

clarify that neither region had undergone commercial timber

extraction.

Discussion

We provide a first assessment of the impacts of forest wildfires in

south-western Amazonia. Some of our findings are consistent with

those from other regions of the Amazon: the overall pattern of tree

mortality across size classes was visually similar to that found in

burned forests elsewhere in the Amazon and stems in the 40–

40.9 cm size class were least affected by fire disturbance (Figure 4),

mortality of large diameter woody vines was very high [7,46,47],

and palm trees are apparently able to survive fires [11].

However, our data also suggest that wildfires had much less

effect upon forest structure and biodiversity in these study plots

than in central and eastern Amazonia, where most fire research

has been undertaken to date. Tree mortality was higher across all

stem size classes in plots in the central Amazon than in south-

western Amazonia, and these differences were highly significant in

the 10–19.9 cm size class (Figure 3). Furthermore, the fires in Acre

had a relatively minor influence on the turnover of birds captured

in mist nets in Acre (Figure 6), when compared to the highly

significant turnover in bird species composition observed in the

understorey bird community in the central Amazon [9] where

there was no overlap between the composition of burned and

unburned plots (Figure S5), or dung beetles in the southern

Amazon [34]. We considered several complementary lines of

evidence that could indicate why the impacts of fire were less

severe in south-western Amazonian forests than in central and

eastern Amazonia. As we have no direct evidence for these, we

phrase them as hypotheses that can be tested and considered in

future work.

1. Fire impacts are related to fire intensity
The most obvious explanation for differences in the impact of

fires relates to the behaviour of the fires themselves. However, our

results are counter-intuitive, as many lines of evidence suggest that

the fires in the forests we studied in Acre were more intense than

those in Pará. First conditions in unburned forests in the region

should indicate more intense fires, as these forests had more open

canopies (reducing understorey humidity [48]), deeper leaf litter

Figure 4. The percentage change in the number of live and
dead trees recorded three years after wildfires in the RESEX
Arapiuns-Tapajos (Pará) and the RESEX Chico Mendes (Acre).
Horizontal dashed lines represent the average values recorded in
control plots in each region. Significant differences were tested with
chi-square, using the % change in Para to calculate the expected
change in Acre. Significance is shown as *,0.05, **,0.01, ***,0.001.
doi:10.1371/journal.pone.0033373.g004
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(increasing the fine-fuel loading; Figure S3), and a high abundance

of pyrophytic bamboos that are absent from primary forests in

Pará. Second, local residents of the RESEX Chico Mendes

reported intense fires that occasionally reached into the canopy

(J.Silveira pers. obs.), while wildfires reported and observed in

forests in central and eastern Pará were mostly slow-moving

understorey fires with flame heights that rarely exceeded 30 cm

[3,6]. Third, these qualitative observations were also confirmed by

our measurements of char height on stems (see Results). As flame

height is a significant predictor of tree mortality [49,50], this

cannot explain the lower tree mortality in Acre. However, we are

unable to rule out flame residence times, which may have been

lower in Acre if fires were fast moving, and this would be an

important area of study in the future.

2. Fire impacts are related to recent disturbance history
or drought sensitivity

Variation in fire-induced tree mortality could relate to the

number of times a forest has burned [3], the history of timber

extraction [4,45], time since the last fire event, or possibly

interactions with simultaneous drought-induced mortality [30].

However, we believe that these can be discounted in our

comparison of plots in central and south-western Amazonia: both

sites were examined three years after the fires, neither site appears

to have been burned before or undergone mechanised timber

extraction, Landsat images did not reveal any consistent

differences in forest reflectance before the fires (Figure 2), and

there was no apparent difference in drought sensitivity in the

unburned plots (Figure S4).

Figure 5. MDS ordination and Analysis of Similarity results comparing community structure in unburned control plots (clear
symbols) and burned forest plots (grey symbols).
doi:10.1371/journal.pone.0033373.g005
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3. The lower impact of fires in Acre is a result of
landscape scale effects

The size and spatial extent of fire has consequences for fire

impacts and subsequent regeneration [51]. Although we placed

our transects randomly in the landscape, and without a priori

knowledge of burn extent, by chance many of the transects were

close to the adjacent unburned areas in Acre (Figure 1). As this did

not seem to reduce burn intensity (see hypothesis 1), it seems

unlikely we measured transects that were affected by the onset of

the rains that finally extinguished the fires, and the spatial

positioning of our transects does not explain the low rates of tree

mortality. However, the close proximity and favourable landscape

context may have provided ample source populations for

recolononising burned areas, and could go some way to explaining

Figure 6. Individual-based species accumulation curves comparing species richness in burned forest plots with the unburned
control plots. The dotted lines represent the 95% confidence interval for the unburned forests.
doi:10.1371/journal.pone.0033373.g006
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the minimal impact on faunal populations. However, previous

assessments of edge related effects suggest the fireline acts as an

abrupt barrier, at least to understorey birds one year after fires in

the central Brazilian Amazon [52]. More work on post-fire forest

recovery and the importance of source populations is required .

4. A prolonged history of disturbance in bamboo-
dominated tropical forests has acted as an extinction
filter or a selective force, extirpating species that are
most sensitive to fire and encouraging local adaptations
to disturbance among the remaining species

Bamboo-dominated tropical forests are affected by large-scale

disturbance events, both during the synchronous flowering and

dieback of bamboos, and because the pyrophytic vegetation can

encourage wildfires [27]. This latter argument is supported by

evidence from charcoal records, which suggests that some of the

more seasonal locations of the Amazon have a long fire history

from 8000 to 4000 years B.P [53]. However, the comparable

richness of tree and liana genera along transects in Acre and Pará

(See Figure S3) does not suggest that these disturbance events have

imposed a strong extinction filter on the flora of Acre. Overall, the

influence of past-fires on large-scale patterns of plant species

diversity and composition found in the Amazon basin is poorly

known, but certainly requires further consideration [54].

5. The faster growth and turnover of trees in south-
western Amazonian forests engenders greater resilience
to fire-disturbance

Trees in south-western Amazonian forests grow and die faster than

those in the central and eastern Amazon [20,21], meaning

disturbance events (in the form of tree falls) are inherently more

frequent. This is in part reflected by the more open canopy in south-

western Amazonian forests (20% in unburned forests in Acre

compared to 12.5% in Pará; Figure S3). The relatively more open

canopy and denser understorey of these forests could make the flora

and fauna more resilient to the structural changes that take place after

fires, and would explain the relative resilience of the understorey birds

in south-western Amazonian forest (Figure 6) when compare to the

more drastic turnover in species composition that occurred after

wildfires in Pará [9]. While we do not have any data to test this, it

makes intuitive sense that species inhabiting forests that are disturbed

more frequently will become adapted to those disturbance events if

they take place over a long enough period of time.

6. Large trees respond differently to disturbance in
eastern and western Amazonian forests

There is some evidence to suggest that the drivers of large-tree

mortality are fundamentally different across the Amazon, as north-

eastern Amazonian forests contain more senescent large trees than

those in the north-western Amazon [25]. Assuming this east-west

difference is consistent, and senescent individuals are more

vulnerable to additional physiological stress associated with distur-

bance (such as fire), then we would expect the large-trees in south-

western Amazonian forests to be more resilient to fire than those in

eastern Amazonian forests. This expectation provides a close match

with our observed results of high rates of large-tree mortality in

eastern Amazonia [26] and much lower rates in south-western

Amazonian forests (Figures 2 and 3). Large trees account for a highly

disproportionate amount of forest biomass relative to their

abundance [55] (Figure 3), and more work is needed to understand

their response to forest disturbance. Given the spatially dispersed

distribution of these large trees, future studies should consider using

much larger plots to achieve a more representative sample of this

important component of forest structure.

7. Soil type and structure can have an important role in
determining faunal and floral mortality and post-fire
regeneration

The soils of our study sites in the RESEX Chico Mendes were

dominated by clay, while those in Pará were mostly located on white

sands. The greater water retention capability of clay soils could affect

responses to fire in two ways. First, they could enhance resilience, as

clay soils are likely to help trees maintain their leaf cover during

drought events. Although this does not appear to have reduced fire

intensity, it may have reduced mortality if drought-stressed trees are

also more susceptible to fire stress. Second, they could aggravate the

impacts of fires as the greater moisture content will enhance soil

heating [56], leading to a higher mortality of the seed bank [57],

higher root mortality, and a greater impact on the soil fauna

(including dung beetle larvae and some ants). Although we are

unaware of any studies comparing tree, root and seed bank survival

across different soil types, these areas deserve further investigation.

Conclusions

These results add to the growing awareness that tropical forests

respond to disturbance in different ways [58], and, in particular,

the potential differences between eastern and western Amazonian

forests [24,25]. They also highlight the hitherto neglected impacts

of fire in south-western Amazonian forests, and in particular those

dominated by bamboos. Bamboo-dominated tropical forests are

found across South America [27,59,60], and provide habitat for

many rare and endemic species of bird [61,62]. Increased

droughts and associated wildfires could place substantial pressure

on these unique systems, especially if surface fires favour increased

density of bamboo culms [27]. Positive feedback dynamics

involving recurrent and more frequent fires have not been studied

in the forests of south-western Amazonia, but these could become

increasingly important given the propensity for severe drought

events in this region [14,15] and the possible interactions with

flammable bamboos [27]).

Finally, in attempting to explain our counter-intuitive results, we

hope that this study raises many relevant questions about the

response of Amazonian forests to disturbance, and serves to

stimulate further research. Importantly, we strongly caution

against applying these results from single fire events in intact

forests to assume longer-term resilience in the face of continuing

human pressure and a changing climate.

Supporting Information

Figure S1 Comparisons of species richness at the transect level

(n = 6 for each treatment) for all six taxa. Statistics are shown for

one-way permutation tests. None of the comparisons were

significant at p,0.05.

(DOC)

Figure S2 Rank abundance of plant genera for stems ,10 cm

DBH recorded in control plots (clear bars) and burned forest plots

(grey circles). Section a) ranks the 30 most abundant genera in

unburned forest, section b) shows other genera that were

significantly more abundant in unburned forest than in burned

forests, and section c) ranks the genera that were most abundant

genera in burned forest and were not already included in sections a

or b. Significance differences for burn treatments are represented

by *,0.05, **,0.01.

(DOC)
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Figure S3 Leaf litter depth and canopy openness and the genera

richness of stems $10 cm DBH along transects placed in

unburned forests in Acre (n = 6) and Pará (n = 4) and measured

in 2008. Statistics are shown for one-way permutation tests.

(DOC)

Figure S4 The mean number of standing dead trees recorded in

unburned forests in Pará and Acre. There was no significant

difference in any size class, and the overall numbers were almost

identical.

(DOC)

Figure S5 Community turnover in birds captured in mist nets in

burned and unburned forests, three years after fire in Pará. Data

are from [9], but are reanalyzed using the Raup-Crick dissimilarity

metric to provide a basis for comparison with the mist net data

shown in Figure 6 (main text).

(DOC)
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