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Abstract

This study presents and validates a Time-Frequency technique for measuring 2-dimensional multijoint arm stiffness
throughout a single planar movement as well as during static posture. It is proposed as an alternative to current regressive
methods which require numerous repetitions to obtain average stiffness on a small segment of the hand trajectory. The
method is based on the analysis of the reassigned spectrogram of the arm’s response to impulsive perturbations and can
estimate arm stiffness on a trial-by-trial basis. Analytic and empirical methods are first derived and tested through modal
analysis on synthetic data. The technique’s accuracy and robustness are assessed by modeling the estimation of stiffness
time profiles changing at different rates and affected by different noise levels. Our method obtains results comparable with
two well-known regressive techniques. We also test how the technique can identify the viscoelastic component of non-
linear and higher than second order systems with a non-parametrical approach. The technique proposed here is very
impervious to noise and can be used easily for both postural and movement tasks. Estimations of stiffness profiles are
possible with only one perturbation, making our method a useful tool for estimating limb stiffness during motor learning
and adaptation tasks, and for understanding the modulation of stiffness in individuals with neurodegenerative diseases.
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Introduction

The motor system uses stiffness modulation to maintain stability

of the arm during interactions with the environment. It has been

experimentally investigated in both postural (i.e. static) and

dynamic paradigms. In limb postural experiments, system

identification is accomplished using either stochastic perturbations

[1,2,3,4,5] or regressive techniques [6,7,8,9,10]. Studies that

quantify stiffness as a function of hand position along a reaching

trajectory typically use regressive procedures [11,12,13,14,15,

16,17,18,19]. Stochastic methods are based on ensemble tech-

niques [20,21,22,23] and even though they identify the system

non-parametrically they require hundreds of perturbed repetitions

of the same movement to obtain a reliable estimate of stiffness.

These repetitions can induce muscle co-contraction that leads to

stiffening of the arm joints [24], and can strongly reduce stretch

reflexes [25]. Regressive techniques allow for more natural (not

continuously perturbed) movements, but still require many trials to

produce reasonable stiffness time-profiles using a parametric

approach. A method that could estimate dynamic changes in

arm stiffness on a trial-by-trial basis would constitute an ideal tool

to monitor changes in stiffness over time.

At present, the majority of regressive techniques to estimate

stiffness rely on the calculation of a baseline trajectory followed by

the application of a set of mechanical perturbations to the arm.

After several repeatable unperturbed trials, a prediction of the

unperturbed hand trajectory can be obtained with a time average

[14,15], a look-up table [11] or an auto-regressive (AR) model

[17,18,19]. Investigators have employed mechanical perturbations

of different types, such as force pulses [14,15], servo-displacements

[11,17], and virtual walls [16], that are generally applied by a

robotic manipulandum during randomly selected trials. When a

sufficient number of perturbations is delivered in multiple

directions at the same point along the arm kinematic profile,

stiffness is calculated by means of a regression between the

variation of hand kinematics and the forces generated by the

perturbation.

Regressive techniques rely on the assumption that unperturbed

arm movements are repeatable and that the mechanical

characteristics of the arm do not change over a small set of

repetitions (ergodicity), To obtain the estimation of the baseline

trajectory and a set of perturbation responses with such

techniques, a series of measures needs to be taken using the same

reproducible kinematic configuration; consequently, the data

collection burden can be substantial. If a servo-commanded

displacement is used, estimates of stiffness can be done

independently of the values of damping and inertia when the

perturbation reaches steady state [10,11,12,13,17,18,19,26]. As a

consequence, the required characteristics of the robotic devices

can be very demanding. In general, when using displacement
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perturbations, a very stiff environment must be rendered by the

robot to keep the actual displacement of the hand as close as

possible to the perturbation imposed and to break the feedback

loop between joint torques and joint positions, effectively creating

an open-loop system that it is possible to identify [27].

The purpose of the present study is to present a technique for

measuring time-varying limb stiffness on a trial-by trial basis. The

technique is based on time-frequency domain and modal analysis.

It requires neither the assumption of stationarity nor the

repeatability of the motor task (ergodicity). To show the utility of

the proposed method we compare it with two well known

regressive techniques, one using force perturbations [15] and the

other displacement perturbations [7,8,11]. We demonstrate with

synthetic data that our proposed technique produces accurate

estimates of time-variant stiffness on a single trial basis, under both

static and dynamic conditions.

Time-frequency techniques are relatively new to the field of

motor control despite having been widely used in fields such as

structural engineering [28,29,30], radar, sonar, and medical

imaging [31]. They depend on evaluating the location of the

maximal energy density of a signal in the time-frequency domain.

We applied this approach to measure the response of a mechanical

system to a transient perturbation to identify the system features.

The versatility of this technique allows for several types of

perturbations to be used, including force impulses, hold and

release [32], and force steps. Classical regressive methods are

limited to estimating an average value of stiffness across several

trials; by contrast, our time-frequency technique can estimate the

variation of stiffness and damping across trials, thereby providing a

tool to study the relationship between stiffness modulation and

adaptive learning. The proposed method is non-parametric and

we tested it on higher-than-second-order and non-linear systems.

Modal analysis was used as a parameter identification method for

second-order systems to allow a direct comparison with regressive

techniques. Linearity, repeatability of the trajectory, and steady

state were not necessary assumptions, and a stiff robot was not

required because a free response was measured.

In the following sections, we outline how our method was

implemented and tested. First we describe the variational

approach we apply to the identification of a non-stationary

vibrating mechanical system. Then we explain how the system

identification is carried out in the time-frequency analysis by

means of a reassigned spectrogram, and how this tool allows a

parametric identification of time-varying second order mechanical

systems as well as a non-parametric identification of non-linear

and higher than second order systems (see ‘‘The spectrogram’’).

We provide a description of the models we used to simulate the

behavior of human arm movements, as well as a discussion of the

characteristics and limitation of each model (see ‘‘Assumptions and

possible relaxations’’). We then introduce and discuss the

assumptions under which our method operates, namely that the

system exhibits an oscillatory behavior, the instantaneous resonant

frequencies are separable, and the system’s stiffness and damping

matrices are symmetric, though no assumptions on the relation-

ship between stiffness and damping (e.g. proportional or classical

damping) are required.

We then show how the systems’ equations are normalized with

respect to the inertial matrix (see ‘‘Equation normalization’’), and

how the eigenvectors (see ‘‘identification of eigenvectors’’) and the

stiffness and damping parameters (see ‘‘system decoupling and

modal analysis’’) of a second order, two degree-of-freedom (DOF)

system are computed through the implementation of our modal

analysis.

We provide all the model parameters used in our simulations

(see ‘‘Description of the simulation’’), including the inertial

characteristics, the trajectory followed by the simulated arm, the

imposed stiffness and damping profiles that we identified, and the

parameters specific to each type of mechanical model. We also

provide the characteristics of the perturbations used in our

identification method, as well as the parameters used in our

implementation of previously proposed regressive techniques, to

which our method is compared.

Results of the simulations are then presented. The stiffness and

damping parameters identified with our method are shown to be

statistically comparable to those identified with regressive

techniques. Results of the non-parametrical system identification,

that our method allows, are also presented.

Methods

In this section, we provide a variational description of the

mechanical system response that is then used in our time-

frequency analysis. When studying the motion of a mechanical

system,~xx tð Þ is a vector of generalized position coordinates (angles,

Cartesian coordinates, etc.). We can define Dnx as the set

representing the position coordinates and their derivatives with

respect to time up to the nth order so that

Dnx~
Lnx

Ltn
,:::,

L2x

Lt2
,
L1x

Lt1
,x

 !
, in general n[Q [33].

A mechanical system must comply with the Lagrange–

d’Alembert principle so that

M x,tð Þ d2

dt2
~xx tð Þð Þz~ss Dnx,tð Þ~~gg Dnx,tð Þ ð1Þ

where M x,tð Þ is the inertial matrix of the system in the chosen

coordinate frame, ~gg Dnx,tð Þ is the external force field, and

~ss Dnx,tð Þ is the internal force field generated by the mechanical

network [33]. The goal is to identify the features of the unknown

internal force field ~ss Dnx,tð Þ.
Since ~ss Dnx,tð Þ is generally a non-linear function of the

coordinates ~xx tð Þ and their derivatives, system identification is

difficult due to a lack of coherent and well defined theory for

appraising such computations. When the upper limb dynamics is

described, we expect the solution of equation (1) to be limited,

non-chaotic and quasi-periodic. With these premises, the non-

linear system (1) can be approximated with a time-varying locally

linear system and can be recast in the following polynomial form

[34]:

M x,tð Þ d2

dt2
~xx tð Þð ÞzR Dn,tð Þx tð Þ~~gg Dnx,tð Þ ð2Þ

where:

R Dn,tð Þ~an tð Þ Ln

Ltn
z:::za2 tð Þ L2

Lt2
za1 tð Þ L1

Lt1
za0 tð Þ, n[Q ð3Þ

is a polynomial operator[35].

Equation (2) is a model for a time-variant linear system whose

oscillating solutions can be found both in the time and frequency

domains by means of classical control theory. Assuming the system

is stationary (i.e. R Dnð Þ does not depend upon time and its

coefficients ak are constant), and under-damped, the measured

angular frequencies vj tð Þ in response to a perturbation of the

mechanical system (called resonant angular frequencies) are

Time-Frequency Approach to Measure Limb Stiffness
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constant. Thus, classical Laplace transform techniques can be used

to approach the problem in the frequency domain where equation

(2) is recast in the form:

Ms2~XX sð Þz~SS sð Þ~~GG sð Þ ð4Þ

The resonant frequencies are represented by the peaks on the

absolute value of the complex spectrum of the solution of (4). If the

system is second order, modal analysis of vibrating systems offers a

variety of techniques to identify the characteristics of~ss Dnxð Þ from

the values of the constant resonant frequencies vj . Specifically,

coefficients ak of R Dnð Þx tð Þ can be identified. When the system is

linear but not stationary (i.e. the coefficients ak tð Þ are a function of

time), the frequency response following an impulsive perturbation

will vary as a function of time. In this condition, equation (4)

cannot track the time varying resonant frequencies and a new

approach must be taken to identify R Dn,tð Þx tð Þ. We achieved this

by adopting the variation of the joint angle dh
?

tð Þ as the

independent coordinate for our analysis. The solutions of equation

(2) for the ith degree of freedom can then be expressed in terms of

instantaneous amplitude and phase [29]:

dhi tð Þ~
Xn

j~1

Aji tð Þ:cos(Qj tð Þ): ð5Þ

where, Aji tð Þ is the instantaneous amplitude for the jth resonant

frequency associated with the ith degree of freedom and Qj is the

instantaneous phase. The jth instantaneous resonant (or damped)

angular frequency of the system is defined as the derivative with

respect to time of the jth instantaneous phase:

vj tð Þ~ _QQj tð Þð6Þ

We present a technique to measure vectors of instantaneous

resonant angular frequencies v! tð Þ and instantaneous amplitude

A
!

i tð Þ, for the time-varying dynamics of a two degree-of-freedom

double-pendulum system during the free response to an impulsive

perturbation. The system models the human upper limb, during

either postural or reaching tasks. When v! tð Þ and A
!

i tð Þ are

known, and the system is second order and locally linear, modal

analysis can be applied at each instant to reconstruct the

characteristics of the internal force field ~ss d Dnhð Þ,tð Þ
~R Dn,tð Þx tð Þ.

The Spectrogram
The convolution of window function h(t) sliding along the non-

stationary time-variant signal dhi tð Þ as a function of time shift t is

called a ‘‘Short Term Fourier Transform’’ (STFT) and can be

expressed as:

STFT(v,t)~

ðz?

{?

dhi tð Þ:h(t{t)exp({jvt)dt ð7Þ

A spectrogram is the representation of a STFT calculated on

the signal dhi tð Þ for multiple time shifts t and is the tool used in

the implementation of our time-frequency analysis. The value of

the spectrogram at each instant is calculated as the average of all

STFTs enclosing that instant in their respective window

functions. Therefore, the peaks of the STFT spectrum at each

instant represent the solution of the eigen-problem represented by

equation (4) in the frequency domain at each time lag t. The

spectrogram can be seen as a ‘‘complex energy density’’

distributed in time and frequency. This representation of energy

density is ‘‘smeared’’ across all the windows encompassing a

certain instant due to the averaging operation. To overcome this

limitation, a representation of the STFT known as reassigned

spectrogram (RS) can be used [36]. Since the STFT spectrum is a

complex function of two variables (i.e. time and frequency) its

maxima can be computed either by locating the points at which

the Hessian (i.e. the matrix of second order partial derivatives

with respect to time and frequency) of the function magnitude is

zero, or by identifying the stationary points of the phase. The

Hessian-based technique is unreliable since the smearing in

frequency produces a wide plateau in the neighborhood of the

maximal energy, limiting the resolution of the instantaneous

frequency estimate. However, calculating the partial derivatives

of the phase with respect to time and frequency identifies points

of stationarity, and the associated time delay and a frequency shift

that can be used to ‘‘reassign’’ the position of maximum energy

[37]. RS methods, based on this re-mapping algorithm, can then

provide a ‘‘super-resolution’’ in both time and frequency

compared to traditional STFT [36]. However, the super-

resolution cannot be constant throughout the frequency and

time domain (locality) because of its dependency on the amount

of smearing of the energy caused by the convolving windows

[38,39].

The RS transformation is always possible even when the system

is in the form of equation (1) rather than equation (2). Standard

modal analysis can be applied only if the system is locally linear

and second order. However, if the system is higher than second

order or weakly non-linear (without bifurcations, jumps, and

chaotic behavior) we can still characterize ‘‘non-parametrically’’

the characteristics of the internal force field ~ss Dnx,tð Þ through the

RS. The result represents a generalized force curve as a function of

the positional modal coordinates [40].

Assumptions and possible relaxations
In this section we describe the mechanical models we used to

simulate the reaching movement of a human arm, and discuss the

characteristics of each model. The assumptions under which our

method operates are also discussed.

System characteristics
When we consider the rigid motion of a double pendulum as

represented in Figure 1, the torques at the joints can be

represented by the dynamic equation:

M hð Þ€hhzH h, _hh
� �

_hhzG hð Þ~tin Dnhð Þztext tð Þ ð8Þ

where h is the vector of joint angles, and tin Dnhð Þ is the vector of

muscle generated torques, which is a function of the joint angles

and their derivatives. If along the movement trajectory, the

subject is required to apply a force while still maintaining the

desired trajectory, (e.g. pushing-pulling in a specific direction) the

muscles will generate the additional torques text, which are

equivalent in magnitude to the torques generated by the external

force acting on the limb. The vector G hð Þ is the contribution of

gravity to joint torque which is null when the gravity field acts

orthogonally to the trajectory as in a horizontal, planar

movement.

Time-Frequency Approach to Measure Limb Stiffness
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The inertial and Coriolis matrices M(h,t) and H h, _hh
� �

are in

the form [41]:

M(h,t)~
kz2bc2 xzbc2

xzbc2 x

" #
;

H h, _hh
� �

~
{bs2

_hh2 {bs2
_hh1z _hh2

� �
bs2

_hh1 0

2
4

3
5 ð9Þ

where

k~Iz1zIz2zm1r2
1zm2 l2

1zr2
2

� �
b~m2l1r2

x~Iz2zm2r2
2

ð10Þ

Subscript ‘‘i = 1’’ refers to variables of the upper-arm link and

shoulder joint, and subscript ‘‘i = 2’’ identifies forearm-hand link

and elbow joint variables. li is the length of the ith link; mi is its

mass, ri is the distance between the ith link center of mass and the

ith joint, and Izi are the moments of inertia about the z-axis

orthogonal to the plane of movement calculated at the ith link’s

center of mass. We use simplified notation for trigonometric

functions with s2~sin h2ð Þ and c2~cos h2ð Þ.
A variational analysis of the torque generated as a variation of

the trajectory is used to find the internal force fields exerted in

response to a mechanical perturbation dtext. This is obtained by

calculating the total derivative of equation (8) after moving

tin Dnhð Þ to the first member of the equation:

LM hð Þ€hh
Lh

dhzM hð Þd€hhz
LH h, _hh
� �

_hh

L _hh
d _hhz

H h, _hh
� �

d _hhz
LH h, _hh
� �

_hh

Lh
dh{dtin~dtext

ð11Þ

It is convenient to define the system’s internal force field so that:

~ss d Dnhð Þ,tð Þ~~yy d D1h
� �

,t
� �

z~ff d Dnhð Þ,tð Þ ð12Þ

where ~yy d D1h
� �

,t
� �

is the internal force field generated by the

mechanism’s dynamics, which includes the contributions of the

derivatives of the Coriolis and centripetal forces with respect to the

coordinates dh [15,17], and~ff d Dnhð Þ,tð Þ is the internal viscoelastic

force field generated by the mechanical network, excluding the

mass:

~ff d Dnhð Þ,tð Þ~{dtin

~yy d D1h
� �

,t
� �

~
LH h, _hh
� �
L _hh

zH h, _hh
� �0

@
1
Ad _hhz

LM hð Þ€hh
Lh

z
LH h, _hh
� �

_hh

Lh

0
@

1
Adh

ð13Þ

When the inertial parameters in (10) are known, ~yy d D1h
� �

,t
� �

can be immediately calculated, independently of the viscoelastic

characteristics of the system ~ff d Dnhð Þ,tð Þ.
Equation (11) can be recast in the form of equation (1) by

substitution of equations (12) and (13). Defining dtext~g tð Þ and

the generalized coordinate as the variation of joint angle dh we

obtain:

M hð Þd€hhz~yy d D1h
� �

,t
� �

z~ff d Dnhð Þ,tð Þ~g(t) ð14Þ

We will now analyze the time-frequency responses of three

viscoelastic mechanical networks with oscillating behaviors. The

schematic of each model is presented in Figure 2 as a single

degree-of freedom (DOF) representation. It is also important to

notice that exact tracking of the arm’s unperturbed trajectory is

not strictly necessary because the parameters are estimated in the

frequency domain.

The system depicted in Figure 2a is commonly known as the

Kelvin-Voigt (KV) model and is widely use to represent the

mechanical behavior of the upper limb. A KV mechanical model

is linear and second order, which allows us to use instantaneous

modal analysis for the identification of system parameters under

several combinations of stiffness and damping time profiles. The

system internal viscoelastic force field f d Dnhð Þ,tð Þ is represented

by the differential equation:

f d D1h
� �

,t
� �

~{Ch(t):d _hh tð Þ{Kh(t):dh tð Þ ð15Þ

Most identification techniques proposed in the literature assume

the damping Ch and stiffness Kh to be time-invariant. Our work

Figure 1. Representation of the double-pendulum model of the
arm. The centers of the inertial ellipsoids represented in the figure are
located at the centers of mass of the body segments. The length of the
upper arm is l1 , and the center of mass is at r1 from the shoulder center
of rotation. Hand and forearm are considered as a unit of length l2 with
no joint at the wrist. The resulting center of mass for the segment is
obtained by the combination of those of the hand and forearm and is
located at r2 from the elbow. The size of each ellipsoid depends on
both mass and inertial tensor of the segment. The dimensions of each

ellipsoid along the major and minor axes (eigenvectors) are computed

as ek~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 tr Ið Þ{2Ik½ �

2m

r
, where Ik are the principal moments of inertia of

the tensor I , and m is the mass of the segment. During simulated
movements, the hand’s center of mass follows the trajectory shown as
the dashed brown line. In the figure the hand center of mass is at
position (0.4,0)m, which is the configuration used for the postural tests.
doi:10.1371/journal.pone.0033086.g001

Time-Frequency Approach to Measure Limb Stiffness
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relaxes this assumption by considering the coefficients as time-

varying.

Figure 2b represents a linear, time-invariant, third-order system

known as the Poynting-Thomson (PT) model. This mechanical

network is an extension of the KV model commonly used in

muscle models and includes tendon elasticity (Hill-type passive

model). The PT model includes two separate elastic elements. The

element KS
h , in series with the muscle fibers, represents the stiffness

of the tendon. The parallel between KP
h and CP

h represents the

stiffness and viscosity of the muscle fibers. The internal viscoelatic

field complies with the following differential equation:

f d D3h
� �

,t
� �

~{
KS

h
:CP

h

KS
h zKP

h

:d _hh tð Þ{ KS
h
:KP

h

KS
h zKP

h

:dh{

CP
h

KS
h zKP

h

: _ff D3dh,t
� � ð16Þ

Figure 2c represents a non-linear system known in the

engineering literature as the Duffing model. It provides an

approximation of a tendon’s slack behavior. Here, the stiffness

depends on position, and is low for small displacements (slacking of

the tendon) and increases abruptly after a fixed threshold. As a first

approximation the stiffness of the model is considered to increase

cubically (hardening system) which is compatible with experimen-

tal evidence found in human triceps surae muscle [42]. In general,

Duffing type models can generate chaotic responses; however, we

will restrict our study to a system with known stable behavior. In

the time domain, Duffing viscoelastic force can be expressed using

the differential equation [43,44]:

f d D1h
� �

,t
� �

~{Ch
:d _hh tð Þ{Kh

:dh tð Þ{Bh
: dh tð Þð Þ3 ð17Þ

The generalization to multiple DOFs is easily accomplished, and

results in the parameters KS
h ,KP

h ,CP
h ,M,Kh,Ch,B which can be

expressed as matrices.

Since modal analysis cannot be used to identify parameters of

PT and Duffing systems, we used the RS technique to identify

non-parametrically the force characteristics of these systems.

Oscillatory behavior. We simulated the mechanics of a

human arm with two coupled degrees of freedom (Figure 2) and

estimated its response to a perturbation using the mechanical

models in equations (15–17). The technique proposed here

requires eliciting an oscillatory response by delivering a

mechanical disturbance to the system. Measurable post-

perturbation oscillations in free space indicate that the arm is an

under-damped mechanical system. Postural measurements and

single joint movement measurements [8,45] also show the

damping to be under-critical. The PT model is physiologically

consistent with muscle-tendon systems and is often used as a linear,

time-invariant approximation. A PT system exhibits one

oscillatory mode, independently of the value of the muscle

damping CP
h , if KS

h v8KP
h where KS

h is the stiffness of the

tendon and KP
h is the stiffness of the muscle fibers. An analytical

proof is presented in Supplement S3. The under-damped PT

model is third-order [46] and has one zero, one real pole, and one

complex pole pair (see Supplement S4). When approximating PT

as a second-order system (i.e. KS
h w8KP

h ), oscillating behavior is

still assumed because the complex pole pair must be dominant (if

the real pole were dominant the approximation would be a first-

order system). The approximation to a second-order oscillating

system is accurate when the zero and the single pole have similar

values and their effects cancel out. The double pole dominancy

with respect to both the zero and single pole is supported by

stochastic non-parametric identification [5,47,48]. Given the

ability to approximate the arm as a second-order mechanical

system, the majority of the analysis described here will concentrate

on parameter estimation for KV-type models. We did then

generalize the findings to the more complex PT and Duffing

models.

Separability. We assumed the two instantaneous resonant

frequencies of the system (i.e. the peaks of the spectrogram as a

function of time) to be distinct within the resolution limit of each

transfer function spectrum. The representation of an unperturbed

Figure 2. Mechanical models used in the simulations. A) Time-variant second-order viscoelastic linear system (Kelvin-Voigt). B) third-order
viscoelastic linear system (Poynting-Thomson). C) Time-invariant second-order cubic viscoelastic system (Duffing). The schematics highlight the
different force fields of the D’Alembert equation (2) when the internal forces generated by the dynamics are negligible. In the figure, each force field
is dependent to the mechanical elements that generate it.
doi:10.1371/journal.pone.0033086.g002

Time-Frequency Approach to Measure Limb Stiffness
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movement in the time-frequency domain resembles a function

with a constant value at a frequency the inverse of movement

duration. Impulse perturbations in the time domain appear in the

frequency domain as instantaneous excitations of the entire

frequency spectrum. The characteristic frequency of the

movement is present in the spectrum before and after the

impulse, while the frequencies proper of the oscillatory system

are evident only at time instances following the perturbation. In

practical terms, if a two degree-of-freedom system, such as the

human arm in our model, is analyzed, the spectrogram shows one

constant frequency before and after the impulsive perturbation

and two additional frequencies after the impulse, making it

possible to distinguish which frequencies are intrinsic oscillations of

the system and which is a property of the movement. If the

baseline movement has a long duration, the frequency of the

movement will be lower than both the oscillatory frequencies of

the system, and a high pass filter can be used to eliminate the

movement frequency from the spectrum. When the lower

vibrational frequency coincides with the frequency of the

movement, the spectrum of the two oscillatory modes can be

isolated from that of the movement by subtracting the time-

frequency signal recorded prior to the perturbation from the signal

after the perturbation. Signatures of the oscillatory properties of

the robotic manipulandum, if present, can be similarly eliminated

by frequency segregation.

Symmetry. When estimating the parameters of a KV system

during posture, the assumption of symmetry of the stiffness matrix

has been a controversial issue in the literature. Most studies of

human arm stiffness indicate that the system is mostly

conservative, or symmetric [4,8,10,49,50]. Asymmetry can be

quantified by using the curl of the elastic field, which is directly

related to the amount of energy that is dissipated by the system to

make the hand follow a close trajectory in a non-conservative field

[7]. Mussa-Ivaldi et.al. [7] demonstrated that for most subjects, the

curl was present but not statistically significant, and when

significant, it accounted for a restoring force that was much

smaller than the spring-like behavior. Dolan et al. [6] obtained

asymmetric stiffness matrices where the curl was on average 25%

or smaller in most of their subjects. However, no statistical

analyses were performed on the curl statistical significance. Given

the estimation uncertainty of each stiffness coefficient, it cannot be

ruled out that the off-diagonal terms would represent the same

values within the uncertainty interval. The assumption of

symmetry might not apply to all double joint sets. Lacquaniti

and colleagues [51], obtained a highly asymmetric joint stiffness

estimation for the elbow-wrist joint couple. However, the

estimation was carried out around a configuration representing a

singularity for the Jacobian matrix (hand outstretched). The

singularity of the Jacobian can induce singularities in the stiffness

matrix, thus compromising the assumption of a conservative elastic

field [52].

During movements, statistically significant asymmetries of the

stiffness matrix were also reported by Franklin et al. [12,13] using

the estimation method proposed by Burdet et al. [11]. This

method did not require a calculation of inertial parameters.

Instead, stiffness was estimated independently from other me-

chanical components by applying a ‘‘ramp and hold’’ perturbation

on a predicted endpoint trajectory through the use of a stiff robotic

manipulandum. A steady state displacement was reached at the

end of the perturbation, where the variation with respect to the

unperturbed trajectory of both velocity and acceleration was

negligible. To understand why such dynamic stiffness measures

can exhibit asymmetries, recall equations (11–14), and consider

the internal viscoelastic field f d Dnhð Þ,tð Þ of a KV model such as in

equation (15):

M hð Þ d€hh
?

z
LH h, _hh
� �
L _hh

zH h, _hh
� �

{Ch tð Þ

0
@

1
A d _hh

?

z

LM h, _hh
� �

€hh

Lh
z

LH h, _hh
� �

_hh

Lh
{Kh tð Þ

0
@

1
A dh

?
~dtext

M hð Þ d€hh
?

zĈCh h, _hh,t
� �

d _hh
?

zK̂Kh h, _hh,€hh,t
� �

dh
?

~dtext

ð18Þ

To transform the stiffness from the Cartesian space to the joint

space, the following kinetostatic equation applies :

~ttext~JT ~hh
� �

~FF ð19Þ

Where ~ttext is the torque at the joints necessary to generate the

force ~FF at the hand, and JT hð Þ is the transposed Jacobian matrix,

which is a function of the joint angles ~hh. Knowing that the

Cartesian stiffness is K̂KX ~
L~FF
Lx

, the Jacobian matrix is J~
Lx

Lh
, and

from equation (18) that K̂Kh%
L~ttext

Lh
, we can write the derivative of

the kinetostatic equation with respect to the Cartesian coordinates

~xx so that:

L~ttext

Lh

Lh

Lx
~JT L~FF

Lx
z

LJT

Lx
~FF [ K̂Kh~JT K̂Kx

Lx

Lh
z

LJT

Lx
~FF

Lx

Lh
ð20Þ

It follows that :

K̂Kh~JT K̂KX Jz
LJT

Lh
~FF [ K̂Kh~JT K̂KX JzV ð21Þ

and finally

K̂KX ~J{T K̂Kh{V
� �

J{1[

KX ~J{T
LM h, _hh

� �
€hh

Lh
z

LH h, _hh
� �

_hh

Lh
{Kh tð Þ{V

0
@

1
AJ{1

ð22Þ

When the unperturbed reaching trajectory can be provided as a

baseline, the displacement that results from applying a displace-

ment perturbation ~FF is small, and the matrix V is negligible.

Furthermore, in all experiments based on the same technique

presented by Burdet et al. [11], the effect of
LM h, _hh
� �

€hh

Lh
was small

because the stiffness estimation was usually performed at the

middle point of a reaching movement, where the angular

acceleration €hh was close to zero. However, the term
LH h, _hh
� �

_hh

Lh
could be non-negligible because the joint angular velocity _hh would

be maximal in the middle of the movement. The matrix

LH h, _hh
� �

_hh

Lh
is non-symmetric (Supplement S1), and might be
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responsible for some of the asymmetry reported using the

technique of Burdet and colleagues [11].

Complex modes. The estimation of a system’s stiffness and

damping parameters by analysis of its oscillatory modes requires

the solution of an eigenproblem: the eigenvalues and the

eigenvectors of the viscoelastic force field ~ff d Dnhð Þ,tð Þ must be

estimated. Either proportional or classical damping is often

assumed [53] and these two conditions impose a constraint on

the viscous component of the viscoelastic field ~ff d Dnhð Þ,tð Þ.
Proportional damping assumes the viscous field component to

have a magnitude that scales linearly with the elastic field

component. Classical damping considers the viscous field to be

aligned with the elastic field, but does not impose constraints on its

magnitude. A necessary and sufficient condition for a system to be

classically damped is that the eigenvector of the internal viscous

field must be aligned to the eigenvectors of the elastic field [54]. In

a second-order system, eigenvectors identify the axis of the stiffness

and damping ellipses. Although Frolov and collegues [14] found

the stiffness and damping ellipses to be similarly oriented,

considerable variability existed.

Our approach requires no a priori assumptions about damping

parameters besides symmetry and as we will show, it can identify

the system parameters even in the presence of a misalignment

between the damping and stiffness eigenvectors by allowing for

‘‘complex modes’’ [55] when solving the eigenproblem. Moreover,

we will demonstrate that the estimation of stiffness with our

technique is minimally influenced by the value of damping

parameters within the ranges commonly reported in the literature.

Equation normalization
Using a planar two degree-of-freedom model of the arm, inertial

and anthropometrical parameters in equation (10) were calculated

from a single averagely built ‘‘subject’’ (see Table 1). Nine

commonly used sets of regressive equations were implemented:

Hanavan (HV) [56], Dempster (DE) [57], Chandler (CH) [58],

Clauser (CL) [59],McConville (MC) [60], Zatsiorsky and Seluya-

nov (Z1) [61], Piovesan (PI) [41], Zatsiorsky and Seluyanov (Z2)

[62] and de Leva (DL) [63]. Inertial parameters were computed

with each of these nine inertial models to allow a sensitivity

analysis (see ‘‘Results’’). We used the method described by

Zatsiorsky [62] as a reference standard because we had found

earlier [41] that this method best approximates the true inertial

parameters across the aforementioned set of inertial models.

The inertial matrix in equation (9) is real and positive definite

and admits 2n real square roots. Without loss of theoretical rigor,

we can consider only its positive square root and define a new

positive definite matrix M
1
2 that is invertible [64]. The matrix

M{ 1
2ð Þ therefore exists and is symmetric and real. For a free

response, the external field defined in equation (14) is g! tð Þ~ 0f g
and we can normalize (14) by multiplying its first member by

M{1
2, thus:

M(h,t)
{1

2 M(h,t) d€hh
�!

tð Þz~ss d Dnhð Þ,tð Þ
� 	

~0[

M(h,t)
{1

2 M(h,t):M(h,t)
{1

2:M(h,t)
1
2: d€hh
�!

tð Þz~ss d Dnhð Þ,tð Þ
� 	

~0[

In
: €qq
!

tð ÞzM(h,t)
{1

2:~ss d Dnhð Þ,tð Þ~0[

~€qq€qq tð Þz~ss(Dnq,t)~0

ð23Þ

where In is the identity matrix for n DOFs and q
!

is a new set of

normalized modal coordinates

In~M
{ 1

2

� �
:M:M{ 1

2

� �
q
!

~M
1
2: dh
�! ð24Þ

The free response of a second-order KV system, as in equation

(18b) can be described as:

~ss(Dnq,t)~M(h,t)
{1

2:

ĈCh
:M(h,t)

{1
2:M(h,t)

1
2: d _hh

?

tð ÞzK̂Kh
:M(h,t)

{1
2:M(h,t)

1
2: dh

?
tð Þ

� 	

~ss(Dnq,t)~~CC: _qq
!

tð Þz ~KK : q
!

tð Þ

ð25Þ

where

~CC(t)~M(h,t)
{1

2:ĈCh
:M(h,t)

{1
2

~KK(t)~M(h,t)
{1

2:K̂Kh
:M(h,t){

1
2

ð26Þ

Substituting (25) in (23), equation (14) can be normalized using

the inertial matrix to obtain a monic system, where spectral

algebraic theory applies [65,66,67]:

€qq
!

tð Þz~CC: _qq
!

tð Þz ~KK : q
!

tð Þ~0 ð27Þ

~KK is the normalized stiffness also called the ‘‘system matrix’’ or the

‘‘modal matrix’’, ~CC is the normalized damping matrix. The

dependency of the normalized matrices on time and kinematics of

the system has been omitted to simplify the notation. The normalized

monic system (27) has the same eigenvalues as the original system (14)

and eigenvectors dependent on the normalization. Note that, because

of the properties of M{ 1
2ð Þ, when ~yy d D1h

� �
,t

� �
is negligible, the

matrices ~CC and ~KK are symmetric and real [68].

Identification of eigenvectors
We assume the system (2) to be underdamped, hence having 2n

eigenvalues occurring in n complex conjugate pairs, n is the

Table 1. Inertial and geometrical parameters used in the
simulations.

Symbol Denomination Value

l1 Upper arm length 0.29 [m]

r1 Upper arm center of mass 0.132[m]

m1 Upper arm mass 1.99 [kg]

Iz1 Upper arm moment of inertia about
the center of mass

0.0161 [kg m2]

l2 Forearm+hand length 0.4 [m]

r2 Forearm+hand center of mass 0.17 [m]

m2 Forearm+hand mass 1.10 [kg]

Iz2 Forearm+hand moment of inertia
about the center of mass

0.0146 [kg m2]

Parameters were obtained from one subject using a regression equation
proposed in [55].
doi:10.1371/journal.pone.0033086.t001
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number of DOFs:

lj~ajzivj

�llj~aj{ivj

ð28Þ

where j = [1,2] for a two DOF system. In the general case of non-

classically damped system, if ~vvj is the eigenvector associated with

lj , the corresponding eigenvector of �llj will simply be the complex

conjugate �~vv~vvj [55]. A linear combination of the eigen-solutions

represents a general solution to (2):

~ssj~aj~vvje
lj t

zbj
�~vv~vvje

�llj t ð29Þ

If the system is classically damped, all the eigenvectors of the

system will be real [55,69], so that:

~ppj~~vvj~�~vv~vvj ð30Þ

and the matrix of the system eigenvectors can be written as:

P~

p11
� � � pj1

� � � pn1

p12

..

.

� � �

P

pj2

..

.

� � �

P

pn2

..

.

p1n � � � pjn � � � pnn

2
666664

3
777775!

P1~

1

p12

.
p11

� � �

� � �

1

pj2

.
pj1

� � �

� � �

1

pn2

.
pn1

..

.
P

..

.
P

..

.

p1n

.
p11

� � � pjn

.
pj1

� � � pnn

.
pn1

2
66666664

3
77777775

ð31Þ

In P the magnitude of each vector is normalized to 1, and in P1

the first component of the vector is normalized to 1.

To be a physically possible solution, each sj in equation (29)

must be real, hence bj~�aaj [55], therefore:

~ssj~Re 2aj p
I

je
lj t

� �
~2 Re aj p

I
je

ajzivj

� �
t

� 	
~

2 Re aje
ajzivj

� �
t

� 	
p
I

j

ð32Þ

In general aj is a complex number and it can be written in the

exponential form 2aj~Cje
{iwj , with Cj and wj real [55].

After substitution, (32) can be written as:

~ssj~Cje
aj tRe ei vj t{wj

� �� 	
p
I

j~

~Cje
aj t Re cos vj t{wj

� �
zi sin vj t{wj

� �� �
~Cje

aj t cos vj t{wj

� �
p
I

j

ð33Þ

The general solution of (2), or the linear combination of all the

solutions of the eigenproblem, can be interpreted as the super-

position of each damped mode of vibration [55], and in general

can be written in the form:

dh
�!

~
Xn

j~1

aj~vvje
lj t

zbj
�~vv~vvje

�llj t
� �

~
Xn

j~1

~ssj ð34Þ

Since (2) is not decoupled, the free time response of each degree

of freedom will be of the form (34). If the instantaneous reassigned

frequencies are sufficiently far apart from each other (separable in

the frequency domain), then each independent damped mode can

be isolated at each instant using a filtering process. Each dhi is

high-pass and low-pass filtered within a sliding window h(t{t), at

a cutoff frequency located at the average between adjacent

instantaneous frequencies derived from the RS within the same

window. In our case (a two DOF system), using (33) and (34) we

obtain: vc(t{t)~
v1zv2

2
. For convenience the window and the

hop size are the same as those used for computing the

spectrogram.

dh1

dh2

( )
~~ss1z~ss2~

s11

s12

( )
z

s21

s22

( )
~

C1ea1t cos v1t{w1ð Þ
p11

p12

( )
zC2ea2t cos v2t{w2ð Þ

p21

p22

( ) ð35Þ

Recalling (5) we can see that

dh1

dh2


 �
~

A11 tð Þ:cos(Q1 tð Þ)zA21 tð Þ: cos (Q2 tð Þ)
A21 tð Þ: cos (Q1 tð Þ)zA22 tð Þ: cos (Q2 tð Þ)


 �
ð36Þ

and from (35) and (36) that

p11

p12

~
A11

A12
and

p21

p22

~
A21

A22
ð37Þ

Each time-varying eigenvector in P1 can be calculated as the

ratio between the instantaneous amplitude of each modal

coordinate’s mode.

If the system has complex modes, the eigenvectors of the system

will be complex and can be represented in the form:

~vvj~ pj1
e
{icj1 pj2

e
{icj2 . . . pjn e{icjn

h iT

ð38Þ

Substituting (38) in (33), each mode can assume the following

general form:

~ssj~Cje
aj t cos vj t{wj

� �
pj1

e
{icj1 pj2

e
{icj2 . . . pjn e{icjn

h iT

ð39Þ

A physical interpretation of this formulation is that the jth mode

oscillates with frequency vj and decays with a damping ratio aj ,

and each of its kth components presents a phase shift of cjk
.

In the case of a two DOF system, equation (39) can be written

as:
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dh1

dh2

( )
~

s11

s12

( )
z

s21

s22

( )
~C1ea1t cos v1t{w1ð Þ

p11
e
{ic11

p12
e
{ic12

8<
:

9=
;zC2ea2t cos v2t{w2ð Þ

p21
e
{ic21

p22
e
{ic22

8<
:

9=
;

ð40Þ

It follows from (40) that:

v11

v12

~
p11

e
{ic11

p12
e
{ic12

~
A11

A12
cos(c12

{c11
)

and
v21

v22

~
p21

e
{ic21

p22
e
{ic22

~
A21

A22
cos(c22

{c21
)

ð41Þ

The difference in phase between sj1 and sj2 is then rj~cj2
{cj1

[40]. Because sj1 and sj2 are time signals with the same frequency,

the time lag between the two is equal to:

Dj~
rj

vj

ð42Þ

Dj can be found using a cross-correlation function between the

components of each mode characterized by the same frequency.

For a 2 DOF system, when ~KK and ~CC are symmetric, r1~{r2,

we will show that rj is equal to half the rotation of the damping

matrix eigenvectors with respect to the stiffness matrix eigenvec-

tors. If the system is assumed to be non-symmetric, each ri should

be identified independently.

System Decoupling and Modal Analysis
The signals ~vv tð Þ and ~AAj tð Þ are related to the coefficients that

decouple equation (2). Assuming the system linear and second

order, the values of the matrices Kh and Ch, representing stiffness

and damping respectively, can be estimated from the decoupled

system (eigenproblem solution) under the hypothesis of an under-

damped mechanism with known inertial parameters (‘‘inverse

problem’’). The solution of the inverse problem requires that the

eigenvectors and eigenvalues of the system be known. While the

eigenvalues can easily be obtained from a spectrogram since they

uniquely represent the resonant frequencies of the system, the

eigenvector (i.e. the modes of vibration) must be reconstructed

from the measured data in a convenient modal reference frame. In

a symmetric classically damped system, the eigenvectors for both

the normalized stiffness and normalized damping in (27) are the

same, and can be reconstructed from the instantaneous amplitude

of the spectrogram. In a non-classically damped system, a further

step is necessary to estimate the phase difference r between the

modes. Once the matrix of eigenvectors P is estimated we can use

its properties to decouple the normalized system (27) so that:

PT :P~In

PT :~KK :P~LK~diag½g2
j �

PT :~CC:P~LC~diag½2Cj �

ð43Þ

where g2
j tð Þ is the eigenvalue of ~KK which corresponds to the jth

squared ‘‘natural’’ or ‘‘undamped’’ angular frequency, and Cj(t) is

the eigenvalue of ~CC corresponding to the jth universal damping

ratio. Therefore, equation (27) can be rewritten as follows:

€qq
!

tð ÞzLC
: _qq
!

tð ÞzLK
: q
!

tð Þ~0 ð44Þ

If the instantaneous ‘‘resonant’’ angular frequencies vj tð Þ are

not constant, then the normalized squared ‘‘natural’’ angular

frequency g2
j tð Þ and the universal damping ratio Cj(t) associated to

each of the jth vibrational modes are time-varying and can be

estimated as follows [40,70]:

Cj(t)~{aj{
_vvj

2vj

ð45Þ

g2
j tð Þ~v2

j za2
j z

aj _vvj

vj

{ _aaj ð46Þ

where

aj tð Þ~ d

dt
ln Aj(t)
� �

~
_AAj(t)

Aj(t)
: ð47Þ

If the system is second-order, by knowing the matrix P we can

reconstruct (27) from (44), and by having defined M
{ 1

2

� �
we can

compute (2) from (27), obtaining an estimation of the stiffness K̂K

and damping ĈC in the time domain, namely:

K̂K~M
1
2:P:diag½g2

j �:PT :M
1
2

ĈC~M
1
2:P:diag½2C j �:PT :M

1
2

ð48Þ

Furthermore, by knowing ~yy(D1dh,t), Kh and Ch can be readily

estimated from (18).

The parametric modal analysis here described cannot be

applied to Duffing or PT models. However, spectral decomposi-

tion is still possible given the oscillatory behavior of the system.

Hence it is still possible to identify the instantaneous resonant

frequency vj tð Þ and amplitude ~AAj tð Þ for each degree of freedom.

Equations (45–47) still apply, therefore we can estimate the

features of the internal force [71].

~ss1(Dnq,t)~g1
:A1z2C1

: _AA1 ~ss2(Dnq,t)~g2
:A2z2C2

: _AA2 qw0

~ss1(Dnq,t)~{g1
:A1{2C1

: _AA1 ~ss2(Dnq,t)~{g2
:A2{2C2

: _AA2 qv0
ð49Þ

Description of the Simulation
A planar two degree-of-freedom model of the arm was used to

analyze both static postural and reaching movement conditions

(Figure 1). The model was implemented using SimulinkH (The

MathworksH, Natick, MA). During simulations of arm movement,

the center of mass of the hand followed an imposed straight

trajectory on the horizontal plane, parallel to the sagittal plane.

The origin of the reference system was placed at the center of

rotation of the shoulder with x axis parallel to the direction of

movement and positive distally and the y axis positive medially.

The starting position at t = 0 was at a point (0.25,0)m in front of
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the shoulder, and the target was located at point (0.55,0)m

(Figure 1).

The hand trajectory varied sigmoidally in time described by the

equation:

x tð Þ~ G

(1zQ:e{B:(t{E))
zD

y(t)~0

ð50Þ

where

G~x(T){x(0); B~4; Q~1; D~x(0); E~T=2 ð51Þ

We used T~5s of simulated time, with sampling at 4 kHz, to

allow the sigmoid to start with zero curvature. Effective movement

duration was Teff ~1s, defined as the time between 10 and 90% of

the total amplitude G (Figure 3a). Dynamic stiffness was tested

between (0.4,0)m and (0.55,0)m in the second half of the

trajectory, between time T = 2.5 s and T = 5 s during the

movement. Postural time-varying stiffness was tested in the same

time interval with the hand at point (0.4,0)m which corresponded

to the center of the simulated reach.

Time-variant Kelvin-Voigt System. For both the postural

and the movement simulated paradigms, the reference joint

stiffness and damping were set at

Figure 3. Representation of the imposed reaching trajectory
and the multipliers for the stiffness time profiles. In the left
panel, the reaching profile for the x (solid) and y (dashed dotted)
components of movement are represented using the convention of
Figure 1. The co-ordinates shown in light blue refer to the position of
the hand’s center of mass used in the static (postural) condition. For the
first part of the trajectory, a constant stiffness and damping are
imposed at the beginning of the movement (right panel). Subsequent-
ly, after the application of a force impulse perturbation, the joint
stiffness is modulated by means of the gain profiles depicted on the
right panel. We imposed a constant (green), slow sigmoidal (red), a
combination of linear and sinusoidal (blue), and sharp sigmoidal gain
(black), respectively. The same time-varying profiles are also imposed to
stiffness and damping during the simulated static condition.
doi:10.1371/journal.pone.0033086.g003

Figure 4. Orthogonal projection of the reassigned spectrogram for each separate joint. Orthogonal projection of the reassigned
spectrogram for the variables Lh1 (A,B) and Lh2 (C,D) calculated with the maximum noise level (SNR = 10 dB). Due to the different orientation of the
eigenvector matrix P, the second frequency of Lh1 (A,B) has a lower power compared to that calculated for Lh2 (C,D); hence, the oscillation is still
present but it is just above the noise level. The estimation of instantaneous frequency fi and instantaneous amplitude Ai are however very clear when
analyzing the spectrogram of Lh2 (C,D).
doi:10.1371/journal.pone.0033086.g004
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K0~
k11 k12

k21 k22

" #
~

35 5

5 20

" #
Nm=rad

C0~0:01:K0 Nms=rad

ð52Þ

where k11 is the stiffness of the shoulder joint, k22 is the stiffness of

the elbow joint variables, and k12~k21 is the intra-joint stiffness.

The values chosen for the simulation match published values for

stiffness during multijoint movements [11,15], and for damping

during postural and single joint movements [6,8,45]. We tested

three separate time-varying stiffness and damping profiles for the

movement and postural cases by modulating the reference values

of the parameters. Different profiles were implemented by

multiplying all coefficients of either the stiffness or damping

matrix by one of the following time-profiles u(t): a ‘‘constant’’, a

slow varying ‘‘sigmoid’’, the sum of a ramp and a sinusoid

(‘‘sinlin’’), and a ‘‘sharp’’ varying sigmoid (Figure 3b):

Kh(t)~K0
:ur(t) ½Nm=rad� 2:5ƒtƒT

Ch(t)~C0
:us(t) ½Nms=rad� r,s~1,::,4

ð53Þ

where

u1 tð Þ~1 constant

u2 tð Þ~ 4

(1ze
{4:(t{3T

4
)
)
z1 sigmoid

u3 tð Þ~sin(
4

5
pt)z

8

5
t{4 sinlin

u4 tð Þ~ 4

(1ze
{30:(t{3T

4
)
)
z1 sharp

ð54Þ

Finding the stiffness at the beginning of a movement is an

important goal in motor-control and might help in shedding some

Figure 5. Example of Spectrograms. Short Time Fourier Transform (STFT) Spectrogram on the left and Reassigned Spectrogram (RS) on the right
for a simulated arm reaching movement with sigmoidal joint stiffness. Based on the classical spectrogram, the partial derivatives of the STFT phase
with respect to time and frequency were calculated. This process identifies the location of the stationary phase with respect to the location of the
window in the time and frequency domain. The time delay and frequency shift obtained with this process are then used to ‘‘reassign’ the position of
maximum energy. Savitzky-Golay polynomial filtering allows for easy calculation of the RS peaks envelope. The envelope is depicted in both the
classical and reassigned spectrogram in black. Note that it would be difficult to estimate accurately the peaks’ envelope in the classical spectrogram
due to the lower frequency accuracy.
doi:10.1371/journal.pone.0033086.g005

Figure 6. Frequency separation. A) Reassigned spectrogram of a perturbed movement. This panel illustrates the effect of an impulsive
perturbation on the spectrogram of the elbow angular rotation, the frequency of the oscillations excited by the impulse are clearly identifiable. B)
Time signal of the elbow rotation corresponding to the reassigned spectrogram in A).
doi:10.1371/journal.pone.0033086.g006
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Figure 7. Stiffness estimation comparisons. A) Each graph represents the temporal variation of a specific component of the stiffness matrix as
depicted in Figure 3. The hand is in a static posture at position (0.4,0) as represented in Figure 1. A ‘‘sinlin’’ damping profile is imposed and four
profiles of stiffness are presented: constant (green), sigmoidal (red), sinlin (blue), sharp (black). Dashed stiffness profiles are those imposed in the
simulation, while the solid-line profiles are the estimations obtained with the proposed spectrographic method. ‘‘X’’ represents the estimations of
stiffness using a ‘‘full regression’’ from an imposed displacement. Each point represents the average stiffness within a 200 ms window.’’e’’ refers to
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light on how a forward model may evolve as adaptation occurs

[72]. However, the velocity of the hand at the beginning of a

movement is low, so that the arm kinematics might not clearly

differ from the postural task. Hence, to maximize the differences in

joint velocity between the postural and the movement cases, we

simulated variations of the stiffness profiles starting at the mid-

point of the movement where the reaching speed is maximal. This

allowed us to test the sensitivity of the measure at the same position

but at two very different speeds, hence obtaining a wider interval

of validation. The analysis during movement presented here has

been validated from the middle of the movement to well after the

movement’s end. The same estimates can be made 50 ms after the

onset of a movement (where velocity is also low), by applying a

brief impulse (20 ms) about 30 ms after movement onset. This

procedure can be applied throughout the workspace because the

technique is largely insensitive to the configuration of the arm.

The stiffness was constant at the start of each condition, and

began to change at time 2.5 s. At the same instant, a brief force

perturbation (5 N for 20 ms) was applied to the hand in a direction

chosen randomly among the eight octants of the horizontal plane.

The perturbation characteristics were based on the bandwidth that

such an impulse excites (the shorter the impulse, the wider the band)

and the amount of momentum that can be injected to introduce an

oscillation big enough to be detected but small enough to not disturb

the intended trajectory. Ideally, such a perturbation might go

unnoticed if it induces a deviation from the planned trajectory that is

near the level of motor-noise, thus allowing the subject to complete

the intended movement without voluntary corrections [73]. The

system will resonate with the same frequency and modes

independently of the direction chosen if the impulse excites a

bandwidth containing all resonant frequencies [74]. The estimation

of stiffness of a real arm might depend upon impulse direction if

reflexes of different muscles are excited depending on the

perturbation direction. In that case more than one perturbation

might be necessary to assess the average behavior.

The STFT spectrogram was calculated using a 0.75 s Kaiser

window, with b= 3. Convolving the window every 2.5 ms (hop

size), provided a base resolution of 1.33 Hz and 0.0025 s in

frequency and time, respectively. A higher resolution in frequency

was achieved by calculating the RS with the same parameters. A

third order Savitzky-Golay polynomial filter [75] with a 0.25 s

window was used to obtain a continuous function of instantaneous

angular frequencies vj(t) and amplitudes ~AAj(t) (see Figures 4–6),

To test the accuracy of the estimation techniques and the

robustness to external disturbances and to non-repeatability of the

subject’s performance, the simulated hand position was corrupted

with four levels of zero-mean Gaussian noise. Three levels of

constant noise, with signal-to noise ratios (SNR) expressed in terms

of the root mean square (RMS) of the signal, of ? (i.e. no noise),

20 dB, and 10 dB, respectively. A fourth level of noise was signal

dependent noise (SDN), proportional to the time-profile u(t) of the

stiffness, scaling from no noise to a maximum of 10 dB. The SDN

condition was used to simulate the assumption of proportionality

of motor noise to muscle activation: the increase in joint stiffness

can be attributed to an increased level of muscle co-activation

[76], neglecting in first approximation the effects of reflexes and

intrinsic stiffness. It follows that the higher the stiffness (and

therefore the co-activation), the higher the level of noise disturbing

the estimation u(t) [77].

Non-Proportional Damping. In addition to the classically

damped conditions presented in the previous section, we simulated

non-classically damped systems. Taking K0 as a reference, we

simulated a non-classically damped system by rotating C0 a

specific angle u, which resulted in a misalignment of the stiffness

and damping eigenvectors, namely:

R~
cos(u) {sin(u)

sin(u) cos(u)

� 
?Cu~R:C0

:RT ð55Þ

As an example we chose u~
p

6
. The components of the resulting

modes presented a phase difference r equal to half the rotation

angle between the stiffness and damping matrices. The re-

synchronization procedure described above produced a real

eigenvector matrix P aligned with the eigenvector matrix of the

normalized stiffness ~KK .

We simulated the non-classically damped condition by imple-

menting the sigmoidal time-profile u2 tð Þ as a multiplier for the

stiffness, and the ‘‘sinlin’’ profile u3 tð Þ for the damping. SDN was

added to the system.

Duffing System. Non-linear approximations to characterize

limb mechanics often include a cubic stiffness term in addition to

linear stiffness and damping terms [78,79,80,81]. Maintaining

constant stiffness and damping parameters K0 and C0 as in (52),

we included a cubic stiffness term so that in the matrix version of

(17) B~2:105K0.

Poynting-Thomson System. We chose parameters for the

simulated PT model that were compatible with reported

experimental measures [46]

KP
h ~2:K0~

70 10

10 40

" #
Nm=rad½ �

KS
h ~5:KP

h Nm=rad½ �

CP
h ~ K0j j Nms=rad½ �

ð56Þ

All parameters in (56) were assumed to be constant during the

simulated movements.

Regressive Techniques. We compared the results of our

parameter estimations with those obtained by three well-known

regressive techniques. Comparisons were carried out across all the

conditions implemented on KV systems, including one regressive

method based on force perturbations [14,15] and two based on

displacement perturbations [7,8,11,17]. Displacement based

techniques can be divided into those that estimate inertia,

damping and stiffness (full regression) [7,8], and ones estimating

only the stiffness components (steady state regression) [11,17]. For

the force-based technique only, a full regression approach is

applicable.

Following the methods of the respective papers, the force

perturbation consisted of a 200 ms pulse with a 5 N magnitude,

the ‘‘steady state’’ estimations, notice that since the estimation is done at the end of the perturbation plateau, there is a time shift between ‘‘X’’ and
‘‘e’’ of 75 ms. ‘‘O’’ represents the estimations using a full regression with an imposed force. Eight perturbations were applied to obtain each point of
the stiffness with a regression. Only one impulsive perturbation was applied to obtain each full stiffness profile with the spectrogram technique. The
different subpanels represent estimations of each element of the stiffness matrix with four different levels of noise. B) Equivalent estimations to those
presented in A) but obtained during the movement condition, during which the hand’s center of mass moves along the trajectory represented in
Figure 3. Same nomenclature.
doi:10.1371/journal.pone.0033086.g007
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Figure 8. Damping estimations comparisons. Estimations equivalent to those in Figure 7 for the damping parameters, when a ‘‘sigmoidal’’
stiffness profile is imposed. The nomenclature is the same as in Figure 7.
doi:10.1371/journal.pone.0033086.g008
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while the displacement perturbations were a deviation from the

unperturbed trajectory with a maximum amplitude of 8 mm,

lasting 300 ms (100 ms ramp-up, 100 ms plateau, 100 ms ramp-

down about the unperturbed trajectory). To have the same

number of points per estimate for both the force-based and

displacement–based full regressions, only the first 200 ms of the

displacement perturbations was used to compute the regression

with the reaction force.

When full regression methods are used to estimate stiffness and

damping during movements, even though inertial properties can be

directly measured, they are usually evaluated in a separate static

session to reduce the number of parameters to estimate at once

[6,15]. This approach is possible because inertial parameters are

invariant with respect to the segments’ centers of mass as seen in (10).

Methods that consider regressions at steady state [11] provide

estimates of stiffness that are independent of the inertial

parameters once particular conditions are met. As previously

mentioned, estimating stiffness independently from the other

mechanical components is possible toward the end of the

perturbation plateau. In such a condition, if the robot is quite

stiff, the variation with respect to the unperturbed trajectory of

both velocity and acceleration is negligible, and the displacement

reaches steady state. However, as seen in equation (18), this

approximation might not be applicable at each point of the

trajectory, especially if the stiffness is measured in positions with

maximal acceleration. When we implemented this procedure in

our simulations the last 50 ms of the plateau region was

considered.

We estimated stiffness and damping at five different instants

along the trajectory, starting at 2.5 s and then every 0.5 s. The

actual location of each point of stiffness estimation depended on

the methods specific to each technique. For each time-point

estimation, one perturbation in eight different directions was used,

resulting in a total of forty trials per method, for each of the four

noise levels. We assumed the unperturbed trajectory to be known

exactly. To compare directly the time discrete stiffness and

damping profiles provided by each regressive method with the

continuous estimation of the spectrogram method, we interpolated

the punctual stiffness using a cubic Hermite spline. This method

guaranteed a unique representation of each time-profile.

Results

The parameter estimation of multiple stiffness and damping

profiles carried out with our time-frequency technique described in

the ‘‘Methods’’ section is compared to the identification of the

same parameters with previously proposed regressive techniques.

A non-parametric identification of higher than second order and

non-linear systems is also provided.

Identification of instantaneous frequencies and
amplitudes

As implicit in equations (35) and (40), the time-frequency

representation of the elicited vibrations Lh1 at the shoulder, and

dh2 at the elbow, exhibit the same instantaneous frequencies

fj(t)~2pvj(t), and amplitude decay Aj(t) depending on the

orientation of eigenvector matrix P, since the general free response

to a perturbation is a superimposition of the two modes. This is

evident in Figure 4 where the spectrograms of dh1 and dh2 are

depicted. The higher vibrational frequency is better defined in the

spectrogram of dh2. Since in the proposed simulated paradigm,

the eigenvector component p21
is small, so too is the energy

Table 2. Repeated measures ANOVA among estimation methods with stiffness and damping time-profiles as random factors
along the interval 2.5–5 s.

%Ek11 %Ek12 %Ek22 %Ec11 %Ec12 %Ec22

Source F p F p F p F p F p F p

method 0.57 0.64 0.65 0.60 0.94 0.46 6.92 *0.013 8.86 *0.007 9.2 *0.004

K Profile 5.05 *0.025 7.99 *0.0046 3.91 *0.044 3.9 *0.04 1.77 0.23 2.29 0.14

C Profile 0.71 0.58 0.62 0.62 3.61 *0.033 2.76 0.08 1.93 0.23 1.69 0.23

noise 1.33 0.67 6.22 0.16 0.85 0.5 31.72 *0.0002 14.73 *0.003 27.49 *0.02

condition 16.53 *0.04 25.91 *0.014 3.98 0.13 9.91 *0.025 21.06 *0.008 18.13 *0.01

*Statistically significant parameters. Notice that the estimation method is not a statistically significant factor for the stiffness error.
doi:10.1371/journal.pone.0033086.t002

Table 3. Repeated measures ANOVA among estimation methods with stiffness and damping time-profiles as random factors
along the interval 2.6–3.175 s.

%Ek11 %Ek12 %Ek22 %Ec11 %Ec12 %Ec22

Source F p F p F p F p F p F p

method 6.35 *0.012 13.84 *0.0005 0.26 0.85 7.13 *0.018 4.9 *0.042 5.84 *0.03

K Profile 0.12 0.94 1.43 0.28 2.01 0.15 1.56 0.29 0.56 0.65 1.92 0.2

C Profile 0.26 0.85 0.22 0.88 3.74 *0.03 3.69 0.06 1.8 0.31 0.91 0.47

noise 5.27 *0.028 1.24 0.37 0.93 0.46 29.06 *0.03 6.66 *0.027 22.79 0.051

condition 1.06 0.38 97.3 *0.015 19.97 *0.046 26.46 *0.025 24.58 *0.01 18.29 *0.009

*Statistically significant parameters.
doi:10.1371/journal.pone.0033086.t003
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content transferred from the perturbation to s21
(the component of

the 2nd mode along the 1st DOF).

Figure 5a, represents an example of a three dimensional view of

the union between the spectrograms of dh1 and dh2. The regular

STFT spectrogram representation and its reassignment can be

compared. The RS enhances the resolution of the spectrogram

and allows for a better identification of the instantaneous

frequencies fj(t), and amplitude decay Aj(t), despite the presence

of some easily identifiable computational artifacts. The figure also

shows fj(t) and Aj(t) as functions of time, obtained with the

polynomial filtering of the RS.

An example of an unfiltered reassigned spectrogram (RS) of a

movement perturbed by an impulsive force is presented in

Figure 6. In the time-frequency domain, an impulsive perturbation

appears as a constant in the frequency domain (Figure 6a). This

means that when an impulse is applied to a mechanical system, all

the frequencies will be excited with approximately the same

power. The instantaneous frequencies of the vibrational modes

arise immediately after the impulse response. Figure 6b presents

the time profile of elbow rotation h2 with the impulsive

perturbation occurring at the movement middle point.

Estimation of the Stiffness and Damping Matrices
To quantify the sensitivity of our method with respect to

parameters of the mechanical model and to compare our results

with those of published regressive techniques, we analyzed the

performance of each method across a range of different parameter

configurations. Stiffness and damping profiles were estimated in

both static (postural) and dynamic conditions. As an example of the

estimation, Figure 7 depicts the estimated stiffness profiles using the

spectrogram and regressive methods when a ‘‘sinlin’’ damping

profile is considered. Figure 8 presents all of the damping profiles

when the stiffness changes sigmoidally. The estimation of stiffness

matrix Kh obtained with the modal analysis technique we propose is

comparable to the result of regressive techniques, thanks to the small

error in the estimation of instantaneous variables vj(t),Aj(t),P(t)
� �

and the overall low susceptibility of our technique to noise.

Model performance is quantified by the percentage RMS error

[82] of the fit compared to the stiffness or damping profile imposed

during the simulation. As shown in previous work [82], using the

percentage RMS error parameter provides a quantification of

model performance under noisy conditions that is independent of

the specific noise profile but is still dependent on the SNR.

Interpolated stiffness and damping profiles (see ‘Regressive

Techniques’) were used for calculating percentage RMS errors

in the estimations based on regression.

One advantage of the method we propose, compared to

regression based methods, is the ability to estimate continuous

stiffness and damping profiles as a result of a single impulse

perturbation. As explained in more detail in the discussion, the

presence of damping in the mechanical system implies that the

quality of the stiffness estimation is expected to degrade as the

estimation instant becomes farther from the perturbation.

However, it is possible to maximize the quality of the continuous

estimation of stiffness and damping by utilizing perturbations with

energy just high enough not to elicit voluntary corrections of the

originally planned trajectory. A limitation of regressive techniques

is that they can only provide punctuate estimations of stiffness and

damping. The interpolation of the different punctual estimations

along a time profile is theoretically unaffected by decay due to

damping, and the percentage RMS error of the fit is expected to

be low. However, multiple trials per estimation point, and multiple

estimation points per time profile are required.

Obtaining comparable punctuate estimations of stiffness and

damping using our method would be possible, provided that

multiple runs of the simulations are executed under the same

conditions, while imposing an impulse perturbation at a different

position each time. However, such use of our method would defeat

one of its inherent strengths, which is the ability to estimate

stiffness and damping profiles during single movements.

So, to characterize our method locally, we chose also to quantify

and compare different models’ performance in terms of the

percentage RMS error (E%) between 2.6 s and 3.175 s, which

represents the interval between the first two instants following the

perturbation at which estimations with regressive techniques are

available. Even though the comparison window is limited, the

interpolation on data obtained with regressive techniques requires

Table 4. Pairwise repeated measures ANOVA between estimation methods with stiffness and damping time-profiles as random
factors along the interval 2.6–3.175 s.

%Ek11 %Ek12 %Ek22 %Ec11 %Ec12 %Ec22

Source F p F p F p F p F p F p

Spectr.-vs-full disp. 0.63 0.48 4.77 0.09 0.99 0.39 7.33 *0.04 13.05 *0.018 9.21 *0.025

Spectr.-vs-full force 6.72 0.075 0.41 0.56 1.68 0.27 6.05 0.07 7.07 *0.04 5.5 *0.075

Spectr.-vs-SS disp. 0.09 0.78 0.07 0.81 0.99 0.39 N/A N/A N/A N/A N/A N/A

full disp.-vs-full force 0.32 0.61 22.9 *0.03 0.63 0.48 6.36 0.053 3.81 0.15 10 *0.02

full disp.-vs-SS disp. 0.98 0.4 0.64 0.48 0.96 0.4 N/A N/A N/A N/A N/A N/A

full force.-vs-SS disp. 0.78 0.44 0.02 0.99 0.86 0.42 N/A N/A N/A N/A N/A N/A

*Statistically significant parameters. Only the influence of the methods is shown in the table. Spectrogram (Spectr), Displacement-based full regression (full disp.), Force-
based full regression (full force.), Displacement-based steady-state regression (SS disp.),
doi:10.1371/journal.pone.0033086.t004

Table 5. Effect of neglecting damping on stiffness estimation
with stiffness varying sigmoidally.

C profile %Ek11 %Ek12 %Ek22

const 0.26 0.006 0.56

sigmoid 1.83 0.04 3.92

sinlin 1.79 0.04 3.84

sharp 2.21 0.05 4.74

doi:10.1371/journal.pone.0033086.t005
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more than two estimation points (each obtained regressing across

many trials) to be acceptable, while our method provides the same

data as a result of a single trial.

Percentage RMS errors were computed for simulated model fits

across different estimation methods, imposed stiffness profiles,

imposed damping profiles, noise levels, and static/dynamic

conditions. An analysis of variance with repeated measures was

carried out assuming the stiffness profile and the damping profiles to

be random factors. The rationale for this choice is that during actual

experimental use of the method we propose, the stiffness and

damping profiles would not be known, and no assumptions about

them should be required. The results of the ANOVA are presented

in Table 2 (E% calculated along the whole available estimation

interval) and Table 3 (E% calculated between 2.6–3.175 s). The

data summarized in Table 3 are arranged to allow a pairwise

comparison of all methods in Table 4. When the errors along the

complete estimation interval are analyzed, all methods lead to

statistically comparable results for all stiffness coefficients, across

conditions (p.0.05). The pairwise comparison of the error on the

first portion of the trajectory shows that our method produces

estimates of the stiffness coefficients that are fully compatible with all

three regressive methods (p.0.05 for estimate of all K coefficients).

Interestingly, the same analysis shows that not all regressive methods

produce statistically comparable results when implemented in our

simulated tests. In particular, the estimation of off-diagonal elements

of the stiffness matrix is statistically different between the full-force

and full- displacement methods. In general, different methods do

not produce comparable results in the estimation of damping

coefficients. A complete set of tables that illustrates the error for

each stiffness condition is included in Supplement S2.

To quantify the influence of different damping profiles on the

estimation of stiffness, we performed a sensitivity analysis of the

effect of damping on our method. According to equation (46), the

effect of damping is to shift the natural angular frequency, hence

affecting the estimation of stiffness. However, we found that by

approximating the natural angular frequency gj with the instanta-

neous resonant frequency vj produces little effect in the estimation

of stiffness as shown by the results in Table 5. An example of such an

approximation is shown in Figure 9. The maximum RMS error of

this approximation, when the stiffness varies sigmoidally, is

Ek22
~4.74% for a damping profile varying with a ‘‘sharp’’ profile.

Notice that the approximation accuracy degrades along the

trajectory as the damping increases (Figure 9). The value of

damping coefficients reported in the literature [8,23,45] is generally

small. To simulate a case in which the damping had a significant

effect on the mechanical model, the imposed value of the damping

coefficients necessary had to be about four times the average

reported in [8] (c11 reaches 1.75 Nms/rad).

Table 6. Repeated measures ANOVA for the percentage RMS error using spectrogram technique among different inertial methods
with directions of perturbation, stiffness and damping time-profiles as random factors along the interval 2.5–5 s.

%Ek11 %Ek12 %Ek22 %Ec11 %Ec12 %Ec22

Parameters F p F p F p F p F p F p

# stiffness 2.30 0.13 3.58 0.05 1.42 0.27 1.01 0.55 1.34 0.30 1.85 0.18

# damping 1.94 0.27 1.28 0.42 3.03 0.16 2.26 0.20 1.46 0.37 1.31 0.40

# direction 0.44 0.84 1.68 0.18 2.50 *0.04 2.27 0.11 0.29 0.94 1.83 0.16

inertia 1.12 0.37 0.78 0.57 1.52 0.22 0.21 0.96 0.39 0.85 0.20 0.96

noise 2.01 0.17 0.04 0.99 1.72 0.18 2.99 0.26 0.63 0.60 3.13 0.05

condition 3.67 0.11 2.86 0.14 3.06 0.13 18.39 *0.01 5.81 0.09 15.52 *0.01

*Statistically significant parameters.
doi:10.1371/journal.pone.0033086.t006

Figure 9. Effect of neglecting damping on stiffness estimation. Dashed lines represent the imposed stiffness (red), and damping (black) time-
profiles, in accordance with the color-code of Figure 3. The solid lines represent the estimated values of stiffness coefficients when the natural
frequencies of the system gj are assumed equal to the resonant frequencies vj therefore neglecting the damping contributions aj in equation (46).
doi:10.1371/journal.pone.0033086.g009

Time-Frequency Approach to Measure Limb Stiffness

PLoS ONE | www.plosone.org 17 March 2012 | Volume 7 | Issue 3 | e33086



The spectrogram-based method proposed here requires a

separate estimation of the inertial body segment parameters

(BSP). BSPs can be obtained from models that apply to the

geometry and the morphology of the subject. We investigated the

sensitivity of the time-frequency technique to the nine inertial

models proposed in [41], applied to the set of anthropometric

measures described in Table 1. The same set of inertial parameters

was imposed on the simulated system and used for stiffness and

damping estimation. The inertial models of Hanavan (HV) and

Dempster (DE), which performed poorly in the estimation of torque

via inverse dynamic as discussed in [41], also produced less accurate

estimations of stiffness and damping (see Supplement S2 for details)

and were excluded from the statistical analysis. We also analyzed the

sensitivity of the estimates produced by our method to the direction

of the perturbation using eight perturbation directions, uniformly

distributed in the Cartesian space along the octants. Table 6 shows

the results of an analysis of variance with repeated measures of the

percentage RMS error of the estimations, calculated with our

technique across conditions and across inertial models. Damping

profiles, stiffness profiles, and perturbation directions are assumed to

be random factors in the analysis. The perturbation direction

affected the estimation of k22 (p~0:04), suggesting that some

perturbations could align with one of the eigenvector of the system

thus not properly exciting the resonant frequency of the elbow.

Different inertial models, when tested across conditions, did not

statistically affect the estimation of stiffness and damping coeffi-

cients. Out of the nine inertial models tested, the one proposed by

Zastiorsky [55] provided the best compromise between percentage

RMS errors in the estimations of stiffness and damping (Supplement

S2), and therefore can be considered to be the best candidate for

practical use with our method.

A sensitivity analysis compared how estimations of stiffness and

damping RMS errors obtained by regressive techniques were

affected by variations in system inertia, where again stiffness and

damping were considered as random factors. Full regression

techniques provide an estimation of the inertia matrix along with

the stiffness and damping matrices and do not require a priori

computation of the system inertia. Imposed variations of the

inertia resulted in significant variations in the estimation of all

stiffness and damping RMS errors, with the exclusion of

coefficients k11 and c12 estimated with the displacement-based

full regression, and coefficient k11 estimated with the force-based

full regression, as shown by the results of the ANOVAs in Tables 7,

8, and 9. This result suggests that estimates of stiffness and

damping with regressive techniques are affected by variations of

inertial parameters of the limb even when such variations are

within a physiologically plausible range. In particular, slight

variations of arm configuration should be minimized in order to

maintain consistent inertial parameters across trials.

Estimation of eigenvectors
In general, the matrix of the eigenvectors P of the system in (31)

changes over time during movements and is constant during

posture (Figure 9). In the specific case simulated and presented

here, the eigenvectors of the stiffness matrix Kh do not change in

either the dynamic or the static cases, because each coefficient of

the stiffness matrix kij is multiplied by the same weight function

u(t) and varies proportionally to all the others (53). However, ~KK
depends on the inertial matrix M (26) which depends on arm

configuration; therefore, in the dynamic case, each eigenvector

pair of ~KK varies along the trajectory as a consequence of the

changing arm configuration, The variation in the orientation of

Table 7. Repeated measures ANOVA for the percentage RMS error using force full regression among different inertial methods
with stiffness and damping time-profiles as random factors along the interval 2.5–5 s.

%Ek11 %Ek12 %Ek22 %Ec11 %Ec12 %Ec22

Parameters F p F p F p F p F p F p

# stiffness 363.15 *,0.0001 13.59 *0.03 1375.22 *,0.0001 9.80 *,0.0001 1.91 0.18 6.62 *0.02

# damping 2.64 0.13 0.69 0.67 1.91 0.32 6.08 *,0.0001 1.51 0.31 4.07 0.05

inertia 4.62 *0.01 5.67 *,0.0001 21.56 *,0.0001 27.14 *,0.0001 14.08 *,0.0001 20.53 *,0.0001

noise 7.92 0.88 0.50 0.69 33.85 *,0.0001 10.26 *,0.0001 6.42 *,0.0001 10.85 *,0.0001

condition 0.18 0.70 11.16 *0.04 15.84 *0.03 8.52 *0.03 23.28 *0.01 17.72 *0.01

*Statistically significant parameters.
doi:10.1371/journal.pone.0033086.t007

Table 8. Repeated measures ANOVA for the percentage RMS error using displacement full regression among different inertial
methods with stiffness and damping time-profiles as random factors along the interval 2.5–5 s.

%Ek11 %Ek12 %Ek22 %Ec11 %Ec12 %Ec22

Parameters F p F p F p F p F p F p

# stiffness 26.77 *0.01 3.54 0.16 17.35 *0.01 3.12 0.14 1.20 0.42 4.78 *0.04

# damping 1.49 0.28 0.79 0.53 1.24 0.40 3.92 *0.05 2.39 0.21 4.96 *0.02

inertia 1.68 0.18 19.07 *,0.0001 10.21 *,0.0001 10.68 *,0.0001 2.55 *0.05 3.82 *0.01

noise 3.91 0.14 0.86 0.53 9.80 *,0.0001 48.77 0.90 1.91 0.26 19.86 0.25

condition 2.05 0.25 23.08 *0.02 7.33 0.07 1.72 0.26 11.33 *0.02 0.95 0.39

*Statistically significant parameters.
doi:10.1371/journal.pone.0033086.t008
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the eigenvectors along the movements however is small, and

comparable in magnitude to the intrinsic estimation errors of the

proposed technique. The variation of the eigenvector orientation

along the trajectory is presented in Figure 10b,d which shows that

in both the static and dynamic cases the maximum error on the

eigenvector orientation is below 10u. Indeed, mis-estimating the

orientation of P is equivalent to rotating the stiffness matrix

through an angle equal to the error. It is useful to recall that a

rotation of the stiffness matrix does not change the intrinsic

properties of the elastic field associated with it. The ellipses

associated to the stiffness matrix will retain the same shape but will

simply be rotated, which will have a direct influence on the

estimation of the stiffness parameters. The percentage error

induced in the stiffness matrix coefficients estimations depends on

the initial orientation of P. The maximum error on the diagonal

terms is found for a rotation of +
p

2
with respect to the initial

orientation, where k11 becomes k22 and vice-versa (Figure 10c).

The terms outside of the diagonal can be strongly influenced and

in general present larger percentage errors due to the non-linear

transformations of these coefficients, and to their small magnitude.

Figure 10. Representation of the eigenvectors and relative errors during simulations. A) FIRST ROW: Representation of the time-invariant
coefficients of the eigenvector matrix P (p12~p21) for the static simulations. Dashed lines represent the coefficient of the imposed matrix P and solid
lines represent the estimated P for the different stiffness time profiles: constant (green), sigmoidal (red), sinlin (blue), sharp (black). SECOND ROW: The
coefficients of matrix P and their estimations for the dynamic case, where the variation of hand position makes the coefficients time-varying. B) Effect
of misestimating the orientation of P on the stiffness coefficients. The estimations presented in this work are within the shaded blue area. C) RIGHT:
Representation of the eigenvectors at the beginning of the estimation (time = 2.5 s) for the postural case. Coefficients of the imposed matrix P are in
magenta. LEFT: Error in the eigenvector orientation throughout the estimation time window. The reference eigenvectors are shown in magenta. D)
Same as panel B for the dynamic condition.
doi:10.1371/journal.pone.0033086.g010

Table 9. Repeated measures ANOVA for the percentage RMS error using displacement steady state regression among different
inertial methods with stiffness and damping time-profiles as random factors along the interval 2.5–5 s.

%Ek11 %Ek12 %Ek22

Parameters F p F p F p

# stiffness .10000 *,0.0001 798.91 *,0.0001 .10000 *,0.0001

# damping 1.04 0.41 0.48 0.71 0.89 0.51

inertia 23.15 *,0.0001 13.97 *,0.0001 7.43 *,0.0001

noise 10.54 *,0.0001 2.66 0.11 .10000 *,0.0001

condition 9.18 0.06 10.07 *0.05 11.65 *0.04

*Statistically significant parameters.
doi:10.1371/journal.pone.0033086.t009
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However, mis-estimating the stiffness coefficients outside the

diagonal will only reflect the orientation of the stiffness ellipses

without changing the intrinsic properties of the associated elastic

field.

When the stiffness and damping matrices Kh and Ch are rotated

by the angle r with respect to each other, the matrix P does not

represent the eigenvectors for both ~KK and ~CC. The different modes

oscillating at the same angular frequency vi are out of phase by

the angle ri. If we were to estimate P by applying (35) without

synchronizing the two modes, we would obtain a matrix P rotated

by either z
r

2
or {

r

2
depending on which matrix (i.e. ~KK or ~CC) had

been taken as a reference (Figure 11a). By synchronizing the two

modes we ensure that P is representative of both ~KK and ~CC
(Figure 11b), and can be used to reconstruct Kh and Ch using (48),

(26) and (18). An example of such a reconstruction is shown in

Figure 11c. To simulate the behavior of our proposed reconstruc-

tion in a particularly unfavorable condition, we implemented a

KV system with the stiffness matrix changing sigmoidally, and the

damping matrix initially rotated by
p

6
with respect to the stiffness

matrix changing in a ‘‘sinlin’’ temporal profile. This reproduces

experimental observations that stiffness and damping can present

peaks at different instants along the movement trajectory [23].

The signals were corrupted with signal dependent noise as

described above in the methods section. The percentage RMS

error on the complete estimated stiffness and damping profiles,

shown in Figure 11 for this particular condition were

Ek11
~14.1%, Ek12

~17.7%, Ek22
~4.5%, Ec11

~12.0%, Ec12
~

11.0%, and Ec22
~16.0%.

Normalized force in Non-Linear and Higher order
Systems

We investigated how well our technique identified the nature of

non-linear (Duffing) and higher than second-order (Poynting-

Thomson) systems. The simulations for both cases were carried

out in a dynamic condition, using a perturbation directed along

the y axis. The inertial parameters were computed from

anthropometric data reported in Table 1, using the estimation

method proposed by Zatsiorsky [62]. A constant noise

(SNR = 10 dB) was also added. Extracting the lumped coefficients

of the models would require a numerical optimization, but we

could calculate the viscoelastic force of the system by means of the

instantaneous time-frequency variables vj(t) and Aj(t) as specified

in (49). Errors in the estimation of the lumped parameters would

be affected by the estimation of the viscoelastic force and the

inherent approximation introduced by the numerical optimiza-

tion. We used the former as a quantifier of the fit of our method.

Figure 12 compares the theoretical normalized viscoelastic force

with the time-frequency estimates, to which correspond the

following RMS percentage errors: Duffing: E~ss1
~23.1%,

E~ss2
~19.4%; Poynting-Thomson: E~ss1

~18.4%, E~ss2
~26.9%.

Discussion

We have presented a new technique for estimating arm

viscoelastic characteristics during both static postural and

movement conditions. Estimations are based on spectral decom-

position and modal testing principles and use a brief (5 N-20 ms)

force pulse to estimate the mechanical behavior of the upper limb

during free response. The technique does not require assumptions

of stationarity, ergodicity, or linearity. The estimation of the

viscoelastic components, stiffness and damping, do not require

movements and tasks to be repeated over time but can be carried

out for a single test trial.

For linear second order systems, simulations of postural and

forward reaching tasks were analyzed, imposing non-linearly time-

varying stiffness and damping profiles. The estimation of stiffness

and damping parameters was achieved using modal analysis, thus

solving an inverse vibrational problem instant by instant where

both the eigenvalues and the eigenvectors of the vibrational system

were measured. Eigenvalues (i.e. the natural frequencies of the

mechanical system) were evaluated by analyzing a reassigned

spectrogram in the time-frequency domain, specifically identifying

the instantaneous vibrational frequencies as a function of time.

The eigenvectors (i.e. the vibrational modes) of the system were

evaluated using an approach based on the separability of the

modes’ time series (the frequency of each mode is sufficiently

different from the others to be separately identifiable). The

separation of each mode was obtained by filtering the free

response signals around the resonant frequencies of the system.

The adequacy of our method was evaluated using a noise

sensitivity analysis, also including signal dependent noise which is

common in biological systems. Non-linear and higher order

systems were also analyzed by means of the aforementioned time-

frequency spectral decomposition during forward reaching

movements, corrupted by high level noise. The characteristics of

the system intrinsic viscoelastic fields were identified non-

parametrically. Modeling nonlinear dynamical systems can be

quite challenging and the results can be affected by error growth.

Observational errors in measurements of the underlying system

can also be amplified by the system dynamics [83].

Many different approaches have been employed for estimating

stiffness and damping of moving limbs, spanning from a simple

regression between kinetic and kinematic variables following a set

Figure 11. Mode Synchronization and parameter estimation
with complex modes. A) LEFT: unsynchronized first mode. RIGHT:
imposed (Magenta) vs. estimated (Black) eigenvectors using unsyn-
chronized modes. The error is equal to half the rotation imposed on the
damping matrix to simulate non-classical damping. B) Synchronized
modes and eigenvector respectively. C) Estimation of stiffness and
damping for a sigmoid-sinlin Stiffness-Damping time-profile, when
signals are corrupted with signal dependent noise.
doi:10.1371/journal.pone.0033086.g011
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of force perturbations to the sophisticated use of displacement

servo-perturbations and auto-regressive models. In general, the use

of a servo-displacement perturbation as opposed to a force

perturbation makes it easier to obtain unbiased estimates of system

parameters when performing the linear regression between the

perturbation and the elicited force at the hand. Regressive

techniques reported in the literature employed perturbations that

lasted for at least 200 ms. Several perturbations in different

directions are necessary to obtain one regression estimate on a

single trajectory point, thus repetition of the task is a requirement.

Moreover, when the stiffness estimation is performed at multiple

points along a trajectory, numerous blocks of movement

repetitions are necessary. These features represent a serious

limitation of regressive techniques, especially when the viscoelastic

components need to be estimated during continuously changing

non-repeatable processes.

A fundamental difference between regressive techniques and

our time-frequency approach resides in the number of perturba-

tions required to obtain a complete estimation of stiffness and

damping. Even for a simple stationary system, the reliance of

regressive techniques on multiple perturbations is essential because

the force (or displacement) generated by the displacement (or

force) perturbation is being measured. This theoretically requires a

minimum of 4 perturbed trials (3 if the system is symmetric) to

estimate stiffness and damping at a single point in the whole

trajectory. Furthermore, several trials are required to estimate the

unperturbed movement trajectory that is used as a reference for

the application of the perturbations. By contrast, our modal

analysis is able to extract from a single impulsive response the

information necessary to estimate stiffness and damping along a

whole trajectory (as opposed to a single point) by analyzing the

frequency and decay of the oscillation. This capability holds true

also for a non-stationary system where frequency and amplitude

changes can be tracked as a function of time. The length of the

estimation time window is also an important factor. Using a

vibrational approach, in non-conservative systems, the energy

injected by the perturbation will be dissipated within a specific

amount of time. The response signal components with higher

frequency tend to have lower amplitude, and thus lower power

content, and are more rapidly attenuated by the damping.

The sensitivity of the time-frequency technique can diminish

when the estimation of the viscoelastic characteristics is performed

long after the onset of the perturbation. To predict accurately the

system characteristics, the energy injected into the system cannot

be completely dissipated within the analysis time window. For

longer estimation windows, perturbations with higher energy

should be used, but not so high that subjects can become aware of

the perturbations and voluntarily modify the system characteris-

tics, thereby compromising the identification process. The analysis

presented here demonstrates that considering ranges of stiffness

and damping reported in the literature, our technique can

accurately estimate the viscoelastic characteristics of a time

Figure 12. Estimation of normalized force for non-linear and higher-order systems. A) Estimation of normalized force for the Duffing
model for 2 DOF. Solid line represents estimation, while dashed line depicts the imposed value. B) Estimation of normalized force for the Poynting-
Thomson model.
doi:10.1371/journal.pone.0033086.g012
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varying coupled linear system well beyond 2 s after the onset of the

perturbation.

Tracking stiffness and damping changes using regressive

techniques requires multiple perturbations at different instants.

This is particularly critical when trying to identify a system with

fast dynamics and sudden changes in stiffness and damping. The

Nyquist–Shannon sampling theorem specifies that to identify a

change in a viscoelastic variable occurring at a frequency fk, the

time gap between the points at which the variable is to be

identified must be smaller than the Nyquist period tN
k ~

1

2fk

. By

contrast, our technique does not require multiple perturbations to

identify fast changing dynamics of the viscoelastic field and is able

to track fast dynamic changes such as the ‘‘sharp’’ presented here.

Estimation accuracy does tend to degrade as the changes in

stiffness and damping become faster because of the filtering effect

of the spectrogram, when several sliding windows are averaged

together.

Arm stiffness can be influenced by three separate factors: the

intrinsic stiffness of muscles and tendons, the level of voluntary co-

contraction, and the intervention of reflexes. Our technique’s

capacity for continuous stiffness estimation following a perturba-

tion duration of only 20 ms separates these three components

because they tend to predominate in different epochs of a

movement. For example, we can observe the influences of each

factor as the estimated stiffness changes in time: the intrinsic

stiffness is mostly dependent upon the biomechanics of the limb

which will influence the stiffness estimation right after the

perturbation is applied; stretch sensitive reflexes, usually act on a

specific time scale between 70 and 150 ms after the perturbation

onset, and their effects are visible on the stiffness estimation with a

50 ms delay [14,84]. This temporal segmentation implies that

whatever is estimated more than 200 ms after the perturbation

onset may be influenced by voluntary control. Hence, by

analyzing how stiffness evolves in time, the effect of each control

loop can be studied in single trials. The rapidity of this estimation

is thus suitable for identifying stiffness time-profiles during

movement adaptation paradigms, thereby providing a fundamen-

tal tool to identify motor control strategies. The capacity to

monitor variations in stiffness and damping during single trials

may particularly benefit the study of rehabilitation training.

During robotic therapy, an assistive force field is applied to the

limbs of impaired individuals to supply the minimal amount of

force necessary to assist them in completing motor tasks. The force

is then diminished on a trial-by-trial basis to help the subject

regain independence. During such a procedure, the modulation of

the assistive force field is different from trial to trial (i.e. non-

repeatable motor tasks) and a low fatigue threshold may limit the

number of trials the subject can perform [85,86,87,88]. The

robotic manipulandum can be a viable tool to estimate limb

stiffness, but its utility has so far been restricted by the limitations

of regressive techniques. Our proposed approach avoids these

limitations.

The technique we propose also has applications in the study of

motor adaptation to novel environments where constant, velocity-,

and acceleration-dependent force fields are present [89,90,91].

The object of analysis often is to capture stiffness and other

characteristics in individual perturbed movements, such as the

initial perturbed movement or single catch trials. Our approach

also applies to cases where a subject adapts to an inertial force field

delivered without mechanical contact at the arm [90], because the

perturbations needed for modal time-frequency analysis are

introduced without robotic devices. The modal analysis techniques

can be applied on a trial-by-trial basis to monitor how stiffness

varies during motor adaptation.
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