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Abstract

Background: The Salmonella genomic island 1 (SGI1) is a 42.4 kb integrative mobilizable element containing several
antibiotic resistance determinants embedded in a complex integron segment In104. The numerous SGI1 variants identified
so far, differ mainly in this segment and the explanations of their emergence were mostly based on comparative structure
analyses. Here we provide experimental studies on the stability, entrapment and variant formation of this peculiar gene
cluster originally found in S. Typhimurium.

Methodology/Principal Findings: Segregation and conjugation tests and various molecular techniques were used to detect
the emerging SGI1 variants in Salmonella populations of 17 Salmonella enterica serovar Typhimurium DT104 isolates from
Hungary. The SGI1s in these isolates proved to be fully competent in excision, conjugal transfer by the IncA/C helper
plasmid R55, and integration into the E. coli chromosome. A trap vector has been constructed and successfully applied to
capture the island on a plasmid. Monitoring of segregation of SGI1 indicated high stability of the island. SGI1-free
segregants did not accumulate during long-term propagation, but several SGI1 variants could be obtained. Most of them
appeared to be identical to SGI1-B and SGI1-C, but two new variants caused by deletions via a short-homology-dependent
recombination process have also been detected. We have also noticed that the presence of the conjugation helper plasmid
increased the formation of these deletion variants considerably.

Conclusions/Significance: Despite that excision of SGI1 from the chromosome was proven in SGI1+ Salmonella populations,
its complete loss could not be observed. On the other hand, we demonstrated that several variants, among them two newly
identified ones, arose with detectable frequencies in these populations in a short timescale and their formation was
promoted by the helper plasmid. This reflects that IncA/C helper plasmids are not only involved in the horizontal spreading
of SGI1, but may also contribute to its evolution.
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Introduction

Salmonella is one of the most prevalent food-borne zoonotic

pathogen. Among more than 2500 serotypes, the majority of

infections in humans are caused only by a few serotypes, such as S.

enterica serovar Enteritidis and Typhimurium. Since the early

1990 s, the spread of a multidrug resistant (MDR) clone of S.

Typhimurium (S. T.) DT104 has been observed among human

and domestic animals characterized by resistance to ampicillin,

chloramphenicol/florfenicol, streptomycin/spectinomycin, sul-

phonamides and tetracycline (often designated as ACSSuT) [1].

The region responsible for the MDR phenotype is located on a

chromosomal island named SGI1 [2]. The 42.4 kb island

(GenBank AF261825.2) contains a complex class 1 integron,

In104, related to the In4 group [3], including determinants for the

above resistances (Figs 1A and 2A). The 13 kb In104 gene cluster

appears to be a transposable unit delimited by the 25 bp inverted

repeats IRi and IRt [2]. The facts that these IRs are surrounded

by 5 bp direct repeats and a similar gene cluster is located at a

different position in an SGI1-related island, SGI2, also suggest the

insertional acquisition of In104 segment into the SGI1 backbone

[2,4]. The In104 cluster contains two incomplete integrons with

functional attI1 sites (Fig. 2A). The left integron located near the

IRi has an intact 59 conserved sequence (59-CS) with a functional

intI1gene and an aadA2 gene cassette conferring resistance to

streptomycin and spectinomycin (StrR and SptR) in the attI1 site

and an incomplete 39-CS with the qacED1sulD1 gene fusion. The

right integron has a truncated 59-CS including the groEL-intI1

fusion with the gene cassette blaPSE-1 conferring resistance to b-

lactams (AmpR) in the attI1 site and an intact 39-CS with

qacED1sul1 fusion conferring resistance to sulphonamides (SulR).

The other two resistance genes floR and tet(G) conferring resistance

to chloramphenicol/florfenicol (ChmR/FloR) and tetracycline

(TetR) are not parts of the integrons. They are located together

with a mobile element ISCR3 [5] in the segment defined by the

two integron regions.

Since the discovery of the SGI1 prototype [6], numerous

variants designated from SGI1-A to V have been described from
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several Salmonella serotypes and recently from Proteus mirabilis

strains [3,7–18]. Most of the variants differ in the MDR region,

with the exception of an SGI1 isolate from S. e. serovar Kentucky,

where ISVch4 mediated deletion occurred in the SGI1 backbone

near to the 59 end [13], and the SGI1-V, where 2.3 kb insertion

occurred in ORF S014 [17]. Involvement of several recombina-

tion processes have been presumed in the formation of different

MDR regions. Some variants seem to be deletion derivatives of the

prototype SGI1 (SGI1-B and C) and that of SGI1-I (SGI1-O),

which were possibly generated by homologous recombination,

while SGI1-A, D and G are probably derived by the insertion of a

putative mobile element, ISCR1, into SGI1, SGI1-C and B,

respectively. Another class of variants is where antibiotic resistance

cassettes vary in the integrons (SGI1-F, H, I, L, M). In these cases,

homologous recombination between SGI1 In104 and related

integrons located on plasmids or the chromosome has been

proposed as the mechanism of incorporation of the variant MDR

region into SGI1. Further variants have probably been formed by

transposon/IS mediated rearrangements (SGI1-E, K2-5, P1-2,

Q1-3). On the other hand, the most complex MDR region found

in SGI1-K1, shows a highly mosaic structure that can hardly be

deduced from the prototype SGI1, as well as SGI1-V, which also

contains a new complex integron region [13,17].

SGI1 and its variants are located on the chromosome at the 39

end of thdF gene and are delimited by 18 bp imperfect direct

repeats (DRL and DRR). DRR corresponds to the last 18 bp of

thdF (attB), while DRL probably derives from the joined ends of the

free circular form of SGI1 (attP) [19]. The site-specific excision and

integration of SGI1 are catalysed by the lambda integrase family

member Int and Xis encoded near the 59 end of the island [19].

Although the SGI1 backbone encodes several conjugation-related

genes, its self-transfer could not be observed, but the mobilization

of the island by the IncA/C plasmid R55 has been reported [2,19].

A recent study demonstrated that plasmids belonging to other

incompatibility groups cannot mobilize SGI1, but numerous

members of IncA/C group are able to help the SGI1 transfer with

different efficiencies [20]. After conjugal transfer, SGI1 integrates

into the attB site of the recipient, however, secondary insertion sites

can also be targeted with lower frequencies [21].

In this work we performed experimental studies on the mobility

functions and stability of SGI1 in 17 S. T. DT104 strains isolated

from different animal or food sources in Hungary. Furthermore

we aimed to study the molecular basis of variant formation of this

genomic island. The strains have earlier been characterised by

phage typing and PFGE, showing at least 7 different genotypes

among the isolates [22]. Here we demonstrated that SGI1 is able

to excise spontaneously from the chromosome in all of these

strains, and we could detect a high frequency of SGI1 transfer and

integration into the E. coli chromosome. Additionally, we

constructed a trap vector applicable for the capture of the island

via its conjugal transfer. Although the excision ability can

theoretically lead to the loss of the island, SGI1-free segregants

could not be detected during long term propagation, in turn,

segregants with altered resistance phenotype emerged in several

cultures. These variants appeared to be identical to SGI1-B and

SGI1-C. Additionally, a new variant with a ca. 10 kb deletion

between the short direct repeats in the SGI1 backbone was

isolated and the appearance of a further deletion variant lacking

the floR gene was also confirmed. We concluded that SGI1+

strains continuously produce these variants and showed that the

presence of conjugation helper plasmids significantly increase their

formation. Several hypotheses for the mechanisms are also

discussed.

Results

Mobility functions of SGI1 in the Hungarian S.
Typhimurium isolates

Eighteen florfenicol resistant S. Typhimurium DT104 isolates

were tested for their antibiotic resistance and the occurrence of

SGI1. All but one of the 18 S. T. strains showed all the SGI1

related resistance markers and gave positive signals in PCRs

specific for the left and right chromosomal junctions DRL and

DRR [22]. Furthermore, all the 18 strains proved to be resistant

for rifampicin, four for nalidixic acid (ST1579, 1712, 1713 and

1714) and one for gentamicin (ST1388) (Table 1). To test

whether the 17 SGI1+ strains harbour the fully active SGI1

prototype [19], the excision and the mobilization of the island

were examined.

Figure 1. Detection of the spontaneous excision of SGI1 in the
Hungarian S. T. DT104 isolates. (A) Simple representation of the
excision/integration cycle of SGI1 on the S. T. chromosome. Thick and
thin lines represent the Salmonella chromosome and SGI1 DNA,
respectively. In SGI1, only the elements of the site-specific recombina-
tion system are detailed (blue arrows). Green and yellow colours of
rectangles representing the recombinogenic sites refer to the sequence
identities (DRL/attP and DRR/attB). The primers applied (Table S1) in the
nested PCR for detection of the attB site in the SGI1+ S. T. strains are
indicated. (B) The panel shows the PCR products obtained from the
total DNA of 18 S. T. DT104 isolates using primers attsgi1for and C9-L1.
The ST LT2 (Salmonella enterica serovar Typhimurium LT2 strain
MA1703) was an SGI12 positive control and SE11 (Salmonella enterica
serovar Enteritidis strain 11) devoid of the retron phage served as a
negative control. Mw: l DNA digested with PstI was used as molecular
weight standard on each figure. The 1031 bp attB specific amplicon is
indicated. Note that S. T. 1261 showing strong attB signal proved to be
SGI1-free where the attB site is intact. (C) The panel shows the products
of the second PCR using primers U7-L12 and C9-L2. The 455 bp attB
specific amplicon is indicated. For PCR parameters see Materials and
Methods.
doi:10.1371/journal.pone.0032497.g001
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Spontaneous excision of SGI1 was tested by nested PCRs

specific for the attB sequence which is known to re-establish

whenever the excision of the island occurred (Fig. 1A). In the first

round of PCRs, attB was detected as a week 1.0 kb fragment in

each SGI1+ strain indicating the very low frequency of the SGI1-

free attB sites in the bacterial population (Fig. 1B). To achieve

more intensive signal, the attB site was amplified in a second PCR

(Fig. 1C). Sequencing of a nested-PCR amplicon (GenBank

JQ345501) confirmed the correct excision of SGI1 (Figure S1A).

To test whether SGI1 can be mobilized from the S. T. isolates,

the R55 helper plasmid was conjugated into the NalS strains from

Ec/R55 (Table 1) and the transconjugants were used as donors in

crosses with E. coli TG90Nal recipient. Transfer of SGI1 into E.

coli from all 12 S. T. strains tested was detectable and its frequency

ranged between ca. 0.014–5.9% (Table 2). Total DNA was

isolated from several transconjugant colonies from each cross and

the samples were analyzed by PCRs (Figure S2A). Two E. coli

specific PCRs showed that all StrRNalR clones were E. coli

transconjugants harbouring SGI1. In the majority of transconju-

gants, SGI1 integrated into the attB site located at the 39 end of

trmE (thdF) gene. In several clones strong attP signal was obtained

suggesting that SGI1 integrated as tandem repeats as it was

detected previously [21]. In two cases (Figure S2B), SGI1 was

probably integrated into a secondary attachment site, as both DR

specific PCRs were negative and attB specific PCR showed that

this site is free of SGI1, however, the SGI1 specific PCR for tet(G)

and the resistance pattern of these clones confirmed that both

harbour the island. These results showed that the tested SGI1

copies of Hungarian S. T. isolates are all fully competent for

excision, integration and mobilization by the helper plasmid R55.

Based on the above data, as well as on the resistance pattern of the

original and the transconjugant strains and additional PCR and

sequencing results (not shown), we supposed that these SGI1

copies are all identical to the prototype of the island [2].

Stability of SGI1
Detection of attB site in the SGI1+ bacterial populations

indicated that the island can be excised from the chromosome

with a low but detectable frequency. This raises the possibility that

SGI1 may be unstable and can segregate. In order to test the

stability of the island, all the 17 SGI1+ S. T. isolates were

propagated through ca. 350 generations (43 passages) without

Figure 2. SGI1 deletion variants isolated from the wt form. (A) Schematic map of SGI1 (not in scale). ORFs are represented by arrows,
resistance genes are red. DRs are shown as green and yellow rectangles. Dashed lines above the graph show the two IntI1 integron regions. Below
the graph, the directly repeated homologous tracts are shown as bars (from left to right): light blue bars: 3588–3618 bp and 13516–13546 bp, dark
grey bars: 27552–27992 bp and 36824–37264 bp, black bars: 28840–29822 bp and 38300–39282 bp, purple bars: 30150–30252 bp (floDRL) and
31791–31893 bp (floDRR). Coordinates are according to the annotated SGI1 sequence (GenBank AF261825.2). The lettered arrows show PCR primers
used for the amplification of the deletion forms (for primer sequences see Table S1). Long horizontal bars below the graph represent the deleted
regions between the direct repeats. Filling of bars corresponds to those of the respective direct repeats. (B) PCR test of the isolated A- and S-type
deletion variants. The expected size of PCR products is indicated. Lanes 1–10: PCR products from total DNA of strains ST11A/2, ST14A, ST21A, ST11S/1,
ST15S, ST18S, ST19S, ST20S, ST21S/1 and ST28S/1. Used primers are indicated below the picture. (C) PCR test of the d1 deletion in the SGI1 variants
entrapped in pJKI666. The size of the wt (primers: a–b) and the d1 (primers: a–c) amplicon is indicated. Lanes 1–4: PCR products from plasmid DNA of
entrapped SGI1 derived from strains ST1773, ST28S/1, ST21S/1 and ST21A. Primers used are indicated below the picture. (D) PCR test for the presence
of dflo SGI1 deletion variant. The wt and dflo PCR products (primers: h–i) and their size are indicated. Lanes 1–2: PCR products from total DNA of
ST1375/IP40a, lanes 3–4: ST1375 (2 parallel colonies).
doi:10.1371/journal.pone.0032497.g002
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selection for SGI1 and the loss of the island was monitored by

replica plating. Altogether 12732 and 4021 colonies from the 1st

and 43rd passages, respectively, were tested for changes in their

antibiotic resistances. Twenty ChmS and TetS segregants were

isolated from 10 strains (Table 3), which all classified into two

phenotypes: AmpRStrSChmSTetS (A-type) or StrRAmpSChm-
STetS (S-type). PCRs proved the presence of both the DRL and

DRR junctions in these segregants, suggesting that the resistance

variations were probably due to deletions inside SGI1 rather than

the complete loss of the island. Thus, - contrary to the expectations

- we could not isolate any SGI12 clones from the 16753 tested

colonies. Additionally, PCR amplification of attB from the 1st, 11th

and 43rd passages did not show detectable accumulation of SGI12

cells in the populations (data not shown). This suggested that

SGI12 segregants (if exist) represent a very small proportion of the

populations and they have no significant advantage during

propagation. On the other hand, the isolated segregants with

altered resistance phenotype indicate that the structure of SGI1 is

Table 1. Bacterial strains used in the experiments.

Strains Genotype Reference

E. coli

Ec/R55 E. coli strain containing the IncA/C resistance plasmid R55 A. Cloeckaert, p.c.

Ec/IP40a E. coli strain containing the IncA/C resistance plasmid IP40a B. Doublet, p.c.

TG1 supE hsdD5 thiD(lac-proAB) F9[traD36 proAB+ lacIq lacZDM15] [35]

TG1Nal NalR derivative of TG1 This work

TG2 supE hsdD5 thiD(lac-proAB)D(srl-recA)306::Tn10(TetR) F9[traD36 proAB+ lacIq lacZDM15] [37]

TG90 pcn B80 zad::Tn10 (TetR) derivative of TG1 [36]

TG90Nal NalR derivative of TG90 This work

S. e. Typhimurium.

LT2 MA1703 recA1, srl L. Bossi, unpublished

ST1134 wt, SGI1+, AmpR,ChmR,FloR,StrR,SptR,SulR,TetR,RifR,KanS,GenS,NalS [22]

ST1233 wt, SGI1+, AmpR,ChmR,FloR,StrR,SptR,SulR,TetR,RifR,KanS,GenS,NalS [22]

ST1261 wt, SGI12, AmpR,ChmS,FloR,StrR,SptR,SulS,TetS,RifR,KanS,GenS,NalS [22]

ST1288 wt, SGI1+, AmpR,ChmR,FloR,StrR,SptR,SulR,TetR,RifR,KanS,GenS,NalS [22]

ST1289 wt, SGI1+, AmpR,ChmR,FloR,StrR,SptR,SulR,TetR,RifR,KanS,GenS,NalS [22]

ST1321 wt, SGI1+, AmpR,ChmR,FloR,StrR,SptR,SulR,TetR,RifR,KanS,GenS,NalS [22]

ST1323 wt, SGI1+, AmpR,ChmR,FloR,StrR,SptR,SulR,TetR,RifR,KanS,GenS,NalS [22]

ST1367 wt, SGI1+, AmpR,ChmR,FloR,StrR,SptR,SulR,TetR,RifR,KanS,GenS,NalS [22]

ST1369 wt, SGI1+, AmpR,ChmR,FloR,StrR,SptR,SulR,TetR,RifR,KanS,GenS,NalS [22]

ST1373 wt, SGI1+, AmpR,ChmR,FloR,StrR,SptR,SulR,TetR,RifR,KanS,GenS,NalS [22]

ST1375 wt, SGI1+, AmpR,ChmR,FloR,StrR,SptR,SulR,TetR,RifR,KanS,GenS,NalS [22]

ST1388 wt, SGI1+, AmpR,ChmR,FloR,StrR,SptR,SulR,TetR,RifR,KanS,GenR,NalS [22]

ST1579 wt, SGI1+, AmpR,ChmR,FloR,StrR,SptR,SulR,TetR,RifR,KanS,GenS,NalR [22]

ST1712 wt, SGI1+, AmpR,ChmR,FloR,StrR,SptR,SulR,TetR,RifR,KanS,GenS,NalR [22]

ST1713 wt, SGI1+, AmpR,ChmR,FloR,StrR,SptR,SulR,TetR,RifR,KanS,GenS,NalR [22]

ST1714 wt, SGI1+, AmpR,ChmR,FloR,StrR,SptR,SulR,TetR,RifR,KanS,GenS,NalR [22]

ST1772 wt, SGI1+, AmpR,ChmR,FloR,StrR,SptR,SulR,TetR,RifR,KanS,GenS,NalS [22]

ST1773 wt, SGI1+, AmpR,ChmR,FloR,StrR,SptR,SulR,TetR,RifR,KanS,GenS,NalS [22]

ST11S (1,2,3) SGI1+, AmpS,ChmS,FloS,StrR,SptR,SulR,TetS,RifR,KanS,GenS,NalS derivatives of S. T. 1134 This work

ST11A (1,2) SGI1+, AmpR,ChmS,FloS,StrS,SptS,SulR,TetS,RifR,KanS,GenS,NalS derivatives of S. T. 1134 This work

ST14A SGI1+, AmpR,ChmS,FloS,StrS,SptS,SulR,TetS,RifR,KanS,GenS,NalS derivative of S. T. 1288 This work

ST15S SGI1+, AmpS,ChmS,FloS,StrR,SptR,SulR,TetS,RifR,KanS,GenS,NalS derivative of S. T. 1289 This work

ST18S SGI1+, AmpS,ChmS,FloS,StrR,SptR,SulR,TetS,RifR,KanS,GenS,NalS derivative of S. T. 1367 This work

ST19S (1,2) SGI1+, AmpS,ChmS,FloS,StrR,SptR,SulR,TetS,RifR,KanS,GenS,NalS derivatives of S. T. 1369 This work

ST20S SGI1+, AmpS,ChmS,FloS,StrR,SptR,SulR,TetS,RifR,KanS,GenS,NalS derivative of S. T. 1373 This work

ST21S(1,2,3,4,5,6) SGI1+, AmpS,ChmS,FloS,StrR,SptR,SulR,TetS,RifR,KanS,GenS,NalS derivatives of S. T. 1375 This work

ST21A SGI1+, AmpR,ChmS,FloS,StrS,SptS,SulR,TetS,RifR,KanS,GenS,NalS derivative of S. T. 1375 This work

ST28S (1,2) SGI1+, AmpS,ChmS,FloS,StrR,SptR,SulR,TetS,RifR,KanS,GenS,NalS derivatives of S. T. 1773 This work

S. e. Enteritidis 11 PT1 wt [42]

p.c. – personal communication.
doi:10.1371/journal.pone.0032497.t001
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Table 3. Phenotypic characterisation of ChmSTetS segregants obtained from long term propagation of SGI1+ S. T. strains.

Strain Colonies tested (1st/43rd passage) ChmSTetS segregants (1st/43rd passage) Remaining resistancesa Name attB DRL DRR

ST1134 809/212 3/0 StrSptSull ST11S/1-3 - + +

ST1134 809/212 2/0 AmpSu ST11A/1-2 - + +

ST1233 306/201 0/0 * * * * *

ST1288 502/234 0/1 AmpSul ST14A - + +

ST1289 185/132 1/0 StrSptSu ST15S - + +

ST1321 448/234 0/0 * * * * *

ST1323 1939/321 0/0 * * * * *

ST1367 326/185 1/0 StrSptSul ST18S - + +

ST1369 1742/176 2/0 StrSptSul ST19S/1-2 - + +

ST1373 478/241 1/0 StrSptSul ST20S - + +

ST1375 1638/183 1/5 StrSptSul ST21S/1-6 - + +

ST1375 1638/183 1/0 AmpSul ST21A - + +

ST1388 542/241 0/0 * * * * *

ST1579 385/134 0/0 * * * * *

ST1712 195/342 0/0 * * * * *

ST1713 192/296 0/0 * * * * *

ST1714 178/241 0/0 * * * * *

ST1772 1220/132 0/0 * * * * *

ST1773 1647/195 2/0 StrSptSul ST28S/1-2 - + +

Sum total 12732/4021 14/6

aOnly the SGI1-borne resistances are shown. The AmpSul and StrSptSul phenotypes correspond to the A- and S-type derivatives, respectively.
*no segregants were detected.
doi:10.1371/journal.pone.0032497.t003

Table 2. Transfer frequencies of SGI1 from S. T. strains into E. coli recipient.

Donor strain/R55a Donor titer (6109/ml) Recipient titerb (6109/ml) Transconjugant titer(6107/ml) Frequency of conjugation (%)

transconjugant/recipient transconjugant/donor

ST1134 3.8060.86 4.0562.13 19.5610.7 5.8962.78 5.1762.65

ST1233 12.4064.25 4.1060.92 8.5063.60 2.0260.65 0.7360.26

ST1288 11.8064.21 6.1060.59 16.0610.5 3.1762.37 1.9261.62

ST1289 31.3064.11 9.3362.49 0.2660.12 0.03360.022 0.00860.003

ST1321 6.2563.90 4.0562.32 16.0610.5 3.9460.97 9.5061.41

ST1323 19.3066.60 10.7061.89 0.1560.10 0.01460.008 0.00760.003

ST1367 14.7064.11 12.7063.77 0.8060.28 0.06260.003 0.05460.008

ST1369 15.3067.80 7.5763.89 0.1460.09 0.01860.007 0.01060.004

ST1373 19.3069.57 5.7360.19 3.2060.75 0.5560.13 0.2260.11

ST1375 22.0062.83 5.876019 2.1360.94 0.3760.17 0.10260.051

ST1772 12.0065.89 10.761.89 26.7612.3 2.4760.90 2.3360.50

ST1773 11.3065.73 5.9360.25 24.0618.5 4.1763.38 2.3161.20

ST21Sc 8.5366.64 10.1067.59 153665.0 20.0066.92 27.50617.5

ST21A/1c 9.3360.94 7.4760.50 23.363.4 3.1760.69 2.560.25

ST28S/1c 15.5064.77 4.3360.13 25.069.9 5.7662.27 1.7860.84

aAll donor strains harboured the IncA/C helper plasmid R55.
bRecipient strain was the E. coli TG90Nal in each cross.
cThe three donor strains are representatives of the newly isolated S- and A-type variants.
doi:10.1371/journal.pone.0032497.t002
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not perfectly conserved and variants emerge with detectable

frequency even in a short timescale.

Analysis of the A- and S-type SGI1 variants
First, the mobilization of SGI1 from several A- and S-type

segregant clones (ST21S, ST21A/1 and ST28/S1) was tested. The

transfer rates proved to be similar to or higher than that of the wt

island (Table 2), suggesting that the deletions did not affect the

regions necessary for mobilization and transfer functions. Resis-

tance patterns of these variants suggested that deletions eliminat-

ing several resistance markers could occur between the directly

oriented homologous sequences of the In104 cluster. The 441 bp

repeats are located at the 59 end of ORFs IntI1 and groEL/IntI1

bracketing the aadA1 (StrR/SptR), floR (FloR/ChmR) and tet(G)

(TetR) resistance genes, while the 983 bp repeats take place in

qacED1/sulD1 and qacED1/sul1 bracketing the floR, tet(G) and

blaPSE-1 (AmpR) resistance genes (Fig. 2A). Primers specific for

upstream and downstream sequences of the repeats were applied

for verifying the structures of A- and S-type SGI1 segregants

(Fig. 2A and Table S1). As expected, PCR primers f-g amplified a

704 bp fragment from the A-type variants and none from the S-

type forms, while primers d-e did not amplify any fragments from

the A-type, but resulted in a 1172 bp fragment from the S-type

segregants (Fig. 2B). Sequencing of the PCR products obtained

from two of these segregants ST21A/3 and ST21S/1 (GenBank

JQ345502 and JQ345503, respectively, both isolated from the wt

strain ST1375) confirmed that both deletions occurred between

the homologous tracts (Figure S1B and C).

Entrapment of SGI1 on plasmids
For detailed analysis we decided to integrate SGI1 it into a

plasmid. Since SGI1 integration into secondary attB sites had been

observed, we supposed that the spontaneously excised island could

integrate into a conjugative plasmid as well, and the cointegrates

then could be mobilized. To test this, the KanR plasmid pJKI635

(a pRK2013 derivative) was conjugated into 11 SGI1+ S. T.

strains. After a two-day-long incubation at room temperature (to

help the accumulation of pJKI635::SGI1 cointegrates), the

transconjugants were used as donors in a second cross with an

E. coli recipient. Although the transfer frequency of pJKI635

ranged between 0.09 to 26.7% of the recipient cells, no pJ-

KI635::SGI1 cointegrates were detected (the frequency was

,1.461026 among the pJKI635 transconjugants in each cross).

A similar negative result was obtained when the attB site from E.

coli chromosome (attBEc) was inserted into pJKI635 and large

number of colonies harbouring the resulting trap plasmid,

pJKI643, was pooled and used as donor in conjugations (the

frequency of pJKI643::SGI1 cointegrates was ,1.661027 per

donor in each cross).

After these unsuccessful attempts, the experimental setup was

changed. The p15A-based plasmid, pJKI629, containing the attB

from S. T. chromosome (attBST) was introduced into E. coli

TG90Nal and this strain was used as a recipient in crosses with

SGI1+ donor strains harbouring R55. In this setup, SGI1

mobilized by R55 can integrate into two types of attB sites in the

recipient: into the single chromosomal copy of attBEc and into the

20–30 copies of attBST placed on the trap vector pJKI629. In this

experiment, the integration site in SGI1+ transconjugants could be

identified only by PCRs specific for DRREc (chromosomal

integration) and DRRST (plasmid integration). After several

unsuccessful attempts to detect SGI1 integration in the trap

plasmid, we supposed that the severe replication disadvantage of

the large and rare cointegrates among the empty trap plasmid

copies (46 vs. 3 kb) might have been responsible for the negative

results. To decrease this disadvantage, a single copy trap vector

pJKI666 was constructed. Applying pJKI666 in a similar

experimental setup as described above, we could detect insertions

of SGI1 as well as the S- and A-type variants onto the single copy

trap plasmid (Table 4). Several transconjugant colonies were

assayed by PCR for the integration sites. In almost half of the

tested colonies the integration occurred at both available attB sites.

The chromosomal integration appeared to be more frequent (88–

100%), while integration into the trap plasmid ranged between 0–

88% (Table 4), but we found two clones (in the case of ST28S/1

donor) where only the plasmid born attB site was occupied.

Identification of further SGI1 deletion derivatives
Restriction analysis of the pJKI666::SGI1 cointegrates (not

shown) suggested that one of them, derived from ST28S/1,

carried a large deletion in the first third of SGI1. We supposed that

this new deletion could be the result of recombination between

direct repeats, similarly to the S- and A-type deletions. After

thorough analysis of the SGI1 sequence, we found 31-bp imperfect

direct repeats having a 22 bp perfect palindrome, which are

located ca. 10 kb from each other (Fig. 2A and Fig. 3). To test

whether the new deletion occurred between these repeats, PCR

primers specific to the flanking regions of the repeated sequences

were designed. PCR tests for four entrapped SGI1 variants proved

Table 4. Capture of SGI1 in pJKI666 trap vector.

Recipient
strain/pJKI666a

Donor
strain/R55b

Donor titer
(6109/ml)

Recipient titer
(6109/ml)

Transconjugant
titer (6108/ml)

Frequency of conjugation
(transconjugants/recipients, %) Targeted integration site

chromosome pJKI666

TG90Nal ST1773 20.7069.57 1.0760.34 0.1360.04 1.4360.69 24/24 (100%) 16/24
(67%)

TG90Nal ST28S/1 18.5063.57 1.1060.64 0.3660.14 3.9662.34 21/24 (88%) 21/24
(88%)

TG90Nal ST21S/1 6.0062.91 5.9561.37 2.6460.66 4.8062.17 12/12 (100%) 2/12 (17%)

TG90Nal ST21A 29.5612.1 4.5060.57 0.34+0.06 0.7860.23 12/12 (100%) 0/12 (,8%)

TG1Nal ST21S/1 17.3061.89 2.8760.34 2.4261.25 8.0163.72 12/12 (100%) 3/12 (25%)

TG1Nal ST21A 21.566.98 2.5060.64 0.1960.04 0.7760.19 12/12 (100%) 1/12 (8%)

aRecipient strains harboured the single copy trap vector pJKI666.
bAll donor strains harboured the IncA/C helper plasmid R55.
doi:10.1371/journal.pone.0032497.t004
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that the expected deletion, designated as d1, occurred in the S-

type SGI1 captured from ST28S/1 (Fig. 2C). Sequencing of the

d1 specific amplicon showed that recombination took place at the

first 22 bp perfect homology of the 31 bp repeats (Fig. 3), and

removed ca. 10 kb (from 3610 to 13537 bp) including ORFs from

S005 to S012. To trace the origin of this deletion, d1 specific PCR

was carried out for the original strain ST28S/1, the donor strain

ST28S/1/R55 used in the entrapment cross experiment and

several other transconjugants derived from this donor strain. The

results showed that ST28S/1 did not contain d1 in a detectable

amount, while its derivative harbouring the R55 helper plasmid

was a mixed population carrying the wt and d1 variant of the S-

type SGI1 (data not shown), suggesting that the presence of R55

can enhance the formation of d1. The above results indicated that

the deleted region did not contain indispensable functions for

SGI1 mobilization. This assumption was verified when the

mobilization of d1 and non-d1 S-type variants (originally derived

from ST28S/1d1 and ST21S/1, respectively) were compared, and

the presence or absence of d1 deletion did not significantly

influence the transfer frequencies (d1: 7.768.861024 vs. non-d1:

12.064.661024 per recipients).

Detection of floR deletion
The formation of d1 deletion by recombination between short

direct repeats raised the possibility that a similar process using

other direct repeats in SGI1 can lead to additional deletion

variants. Since the florfenicol resistance gene floR is delimited by

102-bp imperfect repeats (floDRL and floDRR, Fig. 2A), this

region appeared to be suitable to test this assumption. PCR

primers (flofor-florev) specific for the outer flanking regions of

these repeats were designed and the SGI1+ ST1375 strain and its

derivative harbouring the IncA/C helper plasmid IP40a were

tested for the appearance of the variant deleted for floR (dflo).

PCRs resulted in two fragments and sequencing proved that the

large fragment (1945 bp) corresponded to the wt situation, while

the 304 bp fragment was amplified from dflo templates (Fig. 2D).

The appearance of the alternative bases in the sequence of the

304 bp PCR amplicon at the 9 positions, where floDRL and

floDRR are mismatched (Fig. 4), suggested that crossing over

could have occurred at many positions along the 102-bp

homology, thus the resulting subpopulation of dflo variants may

represent independent recombination events. Since d1 derivatives

were detected in the presence of R55 conferring resistance for

Chm/Flo, Kan, Amp, Gen and Sul, instead, a close relative helper

plasmid, IP40a, conferring resistance only for Kan, Amp and Sul

was applied to isolate dflo (AmpRStrRSptRTetRSulRChmS) SGI1

derivatives. IP40a was previously shown to participate in SGI1

mobilization similarly to R55 [20]. Two parallel colonies of strains

ST1375 and ST1375/IP40a were grown in LB until the stationary

phase under selection for Tet, but without selection for Chm (this

prevented the accumulation of A- and S-type derivatives, which

are also ChmS). The dflo derivatives then were sought by replica

plating. Although PCR and sequencing results clearly showed the

presence of dflo derivatives in the bacterial populations, no

ChmSTetR segregants could be isolated among 9723 and 10420

TetR colonies of the two strains. This suggested that the frequency

of dflo variants in the stationary phase populations was ,1024

per TetR cells.

Generation of deletion variants of SGI1 and the influence
of helper plasmid on this process

Our observation that several S- and A-type deletion variant

could be isolated even after the first passages of SGI1+ S. T. strains

suggested that these forms were continuously present as a small

fraction in the bacterial populations harbouring wt SGI1. The

additional observation that d1 deletion was only detectable in the

presence of R55 hinted at the potential role of the helper plasmid

in the generation of deletions. To test these possibilities, extensive

PCR analysis were carried out for all the 17 original SGI1+ S. T.

strains and their derivatives harbouring R55. Total DNA was

isolated from overnight cultures grown without any selection for

SGI1 markers and used in PCRs specific for the four deletions

described above (Fig. 5). PCRs were carried out with equal

amount of template DNA according to the standard conditions

(see Materials and Methods). The results confirmed that the

deletion variants were present in most of the populations (except

d1, which could not be detected in any of the 17 samples) (Fig. 5A–

D), although their proportion was obviously very low. The

semiquantitative PCR test for the 16S rDNA demonstrated that

different intensities (or absence) of PCR amplicons specific for the

deletion derivatives were not related to different DNA concentra-

tion of the preparations (Fig. 5E). On the other hand, the presence

Figure 3. Sequence chart of d1 PCR amplicon obtained from pJKI666::SGI28S/1d1. The alignment of d1 deletion product and the two
homologous regions in 59 part of SGI1 are shown below the chart, coordinates are indicated according to the SGI1 sequence (GenBank AF261825.2).
The 31 bp imperfect direct repeats are highlighted by orange and bold. The 22 bp perfect homology where the crossing over occurred is indicated
by frame. The 20 bp palindrome is shown by arrows.
doi:10.1371/journal.pone.0032497.g003
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of R55 in the S. T. strains caused a striking increase in the intensity

of PCR signals for all four deletions in the majority of samples.

This effect was most significant in the cases of A-, S- and d1-type

deletions.

Discussion

In this study we have investigated the mobility functions and

stability of SGI1 in 17 multidrug resistant S. T. DT104 strains

isolated in Hungary [22]. All the 17 strains showed the common

resistance phenotype indicative of SGI1 prototype (ACSSuT) [6],

together with additional resistances in several strains (Table 1).

The mobility functions (excision, conjugation and integration) of

SGI1 copies proved to be intact. The excision was monitored by

PCR-detection of attB site, which was previously reported to be

unsuccessful [6]. The weak attB-specific signal obtained in our first

PCRs suggests that the occurrence of the SGI1-free attB is rather

rare indicating that the excision is infrequent event or the

reintegration is very effective. The conjugal transfer rate of all the

tested strains appeared to be significantly higher (Table 2)

compared to the data of a previous report [19], which may be

due to the different experimental design and bacterial strains

applied. SGI1 predominantly integrated as a single copy into the

attBEc site at the 39 end of E. coli trmE (thdF) gene, while several

integrations occurred at secondary sites despite the presence of the

intact primary attB site and several tandem integrations also

occurred as it have been reported earlier [21]. Our results show

that the Hungarian S. T. DT104 isolates harbour fully competent

SGI1 copies in the excision/integration and transfer functions. All

the transconjugant E. coli clones acquired only the SGI1-specific

resistances, which supports that our isolates contain the SGI1

prototype.

SGI1 can spontaneously excise from its chromosomal location

and the resulting free circular form appears unable to replicate

[19]. The 42.4 kb SGI1 DNA represents ca. 0.86% of the S. T.

chromosome so its loss might provide some growth advantage for

the SGI12 cells. This raises the likelihood that the island

segregates in an SGI1+ population under non-selective condi-

tions. However, our attempts to isolate SGI1-free segregants of

the 17 SGI1+ S. T. strains and to detect the accumulation of

SGI1-free attB site by PCR have failed even after 43 passages

suggesting that the loss of SGI1 must be very rare and is not

significantly beneficial for the cells under the given experimental

conditions. The stability of SGI1 has also been reported for two S.

enterica serovar Paratyphi B dT+ isolates, however, the segregation

assay was carried out in a smaller scale [23]. The complete loss of

pathogenicity islands (PAIs) of the uropathogenic E. coli 536 was

also investigated [24] and the deletion rate of four of the five PAIs

ranged between 1025–1026. In cases where the excision

frequency was ,1025, the attP from the free circular form could

not be amplified and the PAI-free attB site amplification was not

attempted [24]. The facts that after SGI1 excision attP and attB

were also hardly detected by PCR [19 and this work], and that no

SGI12 segregants were found by us among more than 16000

colonies suggest that the rate of SGI1-loss falls into a similar

range than that of the four PAIs of E. coli 536. This stability can

be explained by the low activity (or repression) of the site-specific

recombination system of SGI1 (int and xis) responsible for the

excision, and/or by the high efficiency of integration reaction

leading to nearly 100% reintegration of the excised island.

Significantly higher expression level of Int than of Xis [25]

suggests that both effects may proceed. Another possibility is that

SGI1 provides some advantage for its host. Although SGI1 does

not contain genes related to known stability factors such as toxin-

antitoxin systems or kil functions of several plasmids, one or more

of the 44 ORFs, especially those of unknown functions, may

contribute to the increased fitness of the SGI1+ host, which can

compensate for the potential growth advantage of the SGI12

cells.

Although SGI1-free segregants could not be isolated from the

17 S. T. strains propagated for ca. 350 generations, two different

antibiotic resistance phenotypes were detected. Both arose by

deletions between long directly repeated homologous regions in

the In104 cluster. Crossing over between the 59 end of ORFs IntI1

and groEL/IntI1 eliminated the aadA1, floR and tet(G) resistance

genes led to the formation of A-type variant (retaining only the

AmpR and SulR), while the recombination between qacED1/sulD1

and qacED1/sul1 deleted the floR, tet(G) and blaPSE-1 resistance

genes and resulted in the S-type variant (retaining StrRSptRSulR).

These variants showed similar transfer activity to that of wt SGI1

(Table 2) and supposedly they are identical to the previously

described variants SGI1-B and SGI1-C [3], which were detected

in several Salmonella serotypes such as Typhimurium DT104,

Agona and Paratyphi B and were suggested to arise by a single

crossover between the homologous tracts present in the In104

integron region [3,23,26,]. Our results demonstrate that the A-

Figure 4. Sequence chart of dflo PCR amplicon. The 304 bp dflo PCR fragment obtained from total DNA of strain ST1375 using primers flofor
and florev was isolated from agarose gel and directly sequenced with primer flofor. The alignment of floDRL and floDRR are shown below the chart,
coordinates are indicated according to the SGI1 sequence (GenBank AF261825.2). The nine mismatched positions and the corresponding signal in the
primary sequence are indicated by arrows.
doi:10.1371/journal.pone.0032497.g004
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and S-type deletion variants are spontaneously arising even in a

short timescale in the bacterial populations containing the intact

SGI1. The fact that SGI1-B and SGI1-C has been detected in

serotypes reported to harbour also the prototype SGI1, further

supports this assumption.

The widely accepted reason for spreading the MDR pathogens

is the extensive use of antibiotics in human and animal healthcare,

however, the observed stability of SGI1 may reflect that

pathogens, once acquired such a MDR genomic island, can

preserve their resistance determinants for a long time even in the

Figure 5. Occurrence of the deletion derivatives of SGI1 in the populations of the 17 original S. T. DT104 strains harbouring wt
SGI1. PCRs were carried out using total DNA of the original strains and of their derivatives harbouring plasmid R55. Parts A, B, C and D: PCR
detection of A-, S-, d1- and dflo-type deletion derivatives, respectively. In part C, the first panel shows the wt PCR amplicon. Note that in part D, the
wt flo and dflo amplicons appear together in the same PCRs. Part E: Semiquantitative PCR test using 16S rDNA specific primers 16Sfor and 16Srev.
PCRs contained templates from ST1233, ST1388 and ST1579 including both the R55- and R55+ series. Cycle numbers applied are shown above the
lanes.
doi:10.1371/journal.pone.0032497.g005
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absence of antimicrobial selection pressure. On the other hand,

the emergence of SGI1 variants in the bacterial populations may

reflect rapid changes occurring even in a single infected patient as

well. Although similar changes have not been described so far

under natural conditions, it is expected that plasticity of SGI1

could also be proven in vivo. In fact, this may not require the

presence of artificially introduced helper plasmids, due to the

potential helper functions of IncA/C plasmids of the intestinal E.

coli of animals or man. In general, the conditions responsible for

mobilization and variant formation of genomic islands in Salmonella

have yet to be studied. A recent example shows that the

pathogenicity island ROD21 of Salmonella Enteritidis can excise

from the bacterial chromosome at an increased rate when bacteria

reside inside phagocytic cells, suggesting the role of certain in vivo

environmental conditions such as oxidative stress response against

intracellular bacteria [27]. On the other hand, differences in the

antimicrobial treatment regimes in different host species may

make an essential difference in formation of variants of SGI1, as

suggested recently based on Bayesian analyses [28].

For the detailed analysis of SGI1 and its variants, a trap vector

system has been developed. After several unsuccessful approaches

suggesting that incompatibility and replication handicap of the

rare and large plasmid::SGI1 cointegrates may prevent the capture

of the island, a single copy trap vector was applied. After conjugal

transfer of SGI1 and its A- and S-type variants, integration

occurred at both the chromosomal and the single copy plasmid-

borne attB sites in most cases. Similar approach was applied for

SXT integration onto the plasmid pIceCap, although the

chromosomal attB was deleted from the recipient strain to increase

the integration frequency in the plasmid [29]. Restriction and

PCR analyses of the entrapped islands showed that their structures

corresponded to the published SGI1, SGI1-B or SGI1-C variants,

with the exception of a large deletion, named d1, affecting the 59

region of S-type variant derived from ST28S/1 strain. Although

d1 deletion removed the ORFs S005–S012, including ORFs

related to plasmid-borne conjugation genes (S005, S011, S012)

[2], the conjugative transfer of this variant was not significantly

altered. This suggests that these ORFs are not involved in SGI1

transfer and oriT (origin of transfer) locates elsewhere in the island.

The 59 region was also affected in an SGI1 variant described from

S. e. serovar Kentucky, where the insertion of ISVch4 element

promoted deletion from S005 to S009, however the transfer

potential of this variant has not been tested [13].

We report a further rare deletion (dflo) occurring between the

102 bp imperfect direct repeats bracketing floR gene. Importantly,

A-, S- and dflo-type deletions were easily detectable by PCR in

the bacterial populations while d1 was identified only in the

presence of the helper plasmid R55. As the introduction of R55

caused significant increase in the formation of all variants, we

suppose that the helper plasmid or the conjugal transfer process

itself could promote deletion formation. In the lack of R55,

deletions resulting in A- and S-type variants probably occur via

RecA-dependent homologous recombination between the long

direct repeats. In contrast, d1 and dflo would require recombi-

nations between direct repeats where the perfect homologies are

shorter than 25 bp. This suggests that RecA-independent

recombination pathways are involved [30,31]. Short-homology

dependent illegitimate recombination was reported to occur

during plasmid replication [32,33], however, SGI1 is unlikely to

replicate itself, therefore deletions can form in a different way, e.g.

via chromosomal replication.

One of the possible explanations for the elevated recombination

frequency observed in the presence of helper plasmid is that the

conjugation helper initiates rolling circle replication of the excised

SGI1, which presumably favours the copy-choice recombination

between direct repeats [34]. Alternatively, the role of the l Red-

like recombinase RecT (Bet) expressed by the IncA/C helper

plasmids (e.g. orf_0123 in plasmid pIP1202, GenBank

CP000603.1) can not be excluded either. Since the recombination

events are presumably rare, the significant increase of the deletion

variants in the presence of the helper plasmid may hint at a growth

advantage provided by these variants to their host, which can

explain their relative accumulation. In any case, our results

indicate that recombination mechanisms of the host cell

continuously generate SGI1 deletion variants. The increased level

of recombination in the presence of the conjugative helper plasmid

emphasizes furthermore that conjugal transfer of SGI1 assisted by

IncA/C plasmids is not only important in its spreading, but

significantly contributes to the evolution of the island by

promoting the appearance of new variants.

In summary, we demonstrated that SGI1 is able to excise

spontaneously from the chromosome in all of the investigated

Hungarian SGI1+ S. T. strains, and we could detect a high

frequency of SGI1 transfer and integration into the E. coli

chromosome. Additionally, a trap vector has been constructed and

successfully applied to capture the island on a plasmid via its

conjugal transfer. Monitoring of segregation of SGI1 indicated

high stability of the island. SGI1-free segregants did not

accumulate during long-term propagation, but several SGI1

variants could be obtained. Most of them appeared to be identical

to SGI1-B and SGI1-C, but two new variants have also been

detected: one with a ca. 10 kb deletion between the short direct

repeats in the SGI1 backbone (d1), and a further deletion variant

lacking the floR gene (dflo). We have also noticed that the

presence of the conjugation IncA/C helper plasmid increased the

formation of these deletion variants considerably, indicating that

such helper plasmids are not only involved in the horizontal

spreading but also in the evolution of SGI1.

Materials and Methods

Bacterial strains and microbial techniques
Bacteria (Table 1) were grown at 37uC in LB and stock cultures

were stored at 270uC in LB supplemented with 20% glycerol. The

final concentration of antibiotics used were: ampicillin (Amp)

150 mg/ml, chloramphenicol (Chm) 20 mg/ml, gentamicin (Gen)

25 mg/ml, kanamycin (Kan) 30 mg/ml, nalidixic acid (Nal) 20 mg/

ml, rifampicin (Rif) 20 mg/ml, spectinomycin (Spt) 50 mg/ml,

streptomycin (Str) 50 mg/ml, tetracycline (Tet) 10 mg/ml. Proto-

trophy was tested on M9 plates supplemented with 0.4% glucose.

NalR derivatives of TG1 [35] and TG90 [36] were selected on

LB+Nal plates.

Conjugation was carried out as follows: 100 ml of stationary

phase LB cultures of donor and recipient cells supplemented with

the appropriate antibiotics were mixed, centrifuged, washed with

0.5 ml 0.9% NaCl solution, spread on LB agar plates and

incubated overnight (ON) at 37uC. The bacterial lawn was

suspended in 4 ml 0.9% NaCl solution, 1–1076 dilutions were

prepared in 96-well plates and 5 ml of dilutions were dropped onto

selective LB plates to determine the titers of donor, recipient and

transconjugant cells. Conjugation frequency was calculated from

data of 3–6 parallel crosses.

For comparison of mobilization of d1- and non-d1 S-type

SGI1, both islands were chromosomally integrated into TG1Nal

strain by crosses using the donor strains ST28S/1/R55 and

ST21S/1/R55, respectively. Then, R55 was conjugated into the

TG1Nal::SG1 transconjugants and these strains were applied as

donors in crosses with TG2 recipient.
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Segregation test for SGI1
Three parallel cultures were founded from single colonies in

3 ml LB medium for all the 17 SGI1+ S. T. strains and grown at

37uC under vigorous shaking without selection for the SGI1

resistance markers. Ten ml of the stationary cultures was serially

transferred into 3 ml fresh LB medium (2 passages per day, 3006
dilution per passage), thus one passage represented ca. 8

generations. Cultures from the 1st and 43rd passages were plated

on LB agar and replica-plated onto LB+Tet and LB+Chm plates.

ChmS and TetS derivatives were tested for the SGI1 resistance

markers (except SulR) and the presence/absence of DRL, DRR

and attB was monitored by PCR.

DNA techniques and PCR
In general, standard DNA procedures [37] were applied. All

cloning were carried out in E. coli strain TG1. Total DNA was

purified as described earlier [38]. Enzymes were purchased from

Fermentas, New England Biolabs and Amersham, chemicals from

Sigma, Roth and Roche. Sequencing was performed on ABI

Prism 3100 Genetic Analyzer (Perkin Elmer). For the sequence

analyses GCG software package was applied [39].

Standard PCRs were carried out in 25 ml containing 2.5 ml 106
buffer and 1U Taq polymerase (NEB), 10 mM of primers (Table

S1), 0.2 mM dNTP, 2 mM MgCl2 and 1 ml of 106 diluted total

DNA or 1006diluted plasmid DNA or 2.5 ml stationary phase LB

culture (for colony PCRs). Standard cycling conditions were 94uC
for 2 min followed by 35 cycles of 94uC for 20 s, 55uC for 30 s,

72uC for 2 min, followed by a final extension at 72uC for 5 min

(alterations are indicated in the text).

Detection of SGI1 excision by nested PCR specific for the
attB site

First PCR was carried out in 25 ml containing 2.5 ml 106
Thermopolymerase buffer and 1U Taq polymerase (NEB), 50 mM

of primers attsgi1for and C9-L1, 0.2 mM dNTP, 2.5 mM MgCl2
and 1 ml of 106 diluted total DNA. In the second PCR, 1 ml

sample from the first PCR was amplified with primers U7-L12 and

C9-L2 under the same reaction conditions. Cycling for both PCRs

was 94uC for 2 min followed by 35 cycles of 94uC for 20 s, 55uC
for 30 s, 72uC for 1 min, followed by a final extension at 72uC for

5 min.

Cloning of attB sites from S. Typhimurium and E. coli and
the construction of trap vectors for SGI1 entrapment

The attB site was amplified from total DNA of E. coli TG1 with

primers attsgi1for and attsgi1rev (attBEc–391 bp) and of S. T. LT2

MA1703 using primers attsgi1for and C9-L1 (attBST–1031 bp).

The attB fragments were cloned with longer flanking regions of the

18 bp integration site to provide all the potential sequences (if any)

that are important for integration of SGI1. Both PCR fragments

were inserted into the XbaI site of pJKI88 [38] resulting in

pJKI627 for attBEc and pJKI629 for attBST, then both clones were

sequenced. attBEc from pJKI627 was joined to the TetR gene from

pBR322 (pJKI639) and the TetR-attBEc cassette from pJKI639 was

inserted into the unique XbaI site of a pRK2013 [40] derivative

plasmid pJKI635 (J. Kiss, unpublished), resulting in pJKI643.

attBST from pJKI629 was joined to the GenR gene from

pJQ200SK [41] through several cloning steps and the attBST-

GenR cassette was inserted into pBeloBac11 (NEB) with EcoRI

resulting in the GenRChmS trap vector pJKI666 (see also Table 5,

more detailed plasmid descriptions are available upon request).

Capture of SGI1 in plasmids
The KanR conjugative plasmid pJKI635 (a pRK2013 deriva-

tive) was introduced into ST1134, ST1233, ST1288, ST1289,

ST1323, ST1367, ST1369, ST1373, ST1375, ST1388, ST1772

and ST1773. Single ChmRAmpRKanR colonies from all conjuga-

tions kept for two days at room temperature were grown in

LB+Chm+Amp+Kan ON at 37uC and used as donors in a second

conjugation with TG90Nal recipient. Transconjugants for

pJKI635 and pJKI635::SGI1 cointegrates were selected on

LB+Nal+Kan and LB+Nal+Chm, respectively. Plasmid pJKI643,

a derivative of pJKI635 containing the attBEc was introduced into

ST1289, ST1323, ST1367 and ST1772. 4–500 KanRChmR

transconjugant colonies of the four S. T. strains harbouring

pJKI643 were incubated at room temperature for 4 days, then

pooled in 4 ml LB+Kan+Chm, grown at 37uC for 2 hours and the

four pooled cultures were used as donors in a second conjugation

with TG90Nal recipient. Transconjugants for pJKI643::SGI1

cointegrates were selected on LB+Nal+Kan+Chm.

The IncA/C plasmid R55, conferring KanRGenRChmRFloR-

AmpR, was introduced into the SGI1+ strains ST1134, ST1233,

ST1288, ST1289, ST1323, ST1367, ST1369, ST1373, ST1375,

ST1388, ST1772, ST1773, ST28S/1, ST21S/1 and ST21A by

conjugation from an E. coli strain harbouring R55 (A. Cloeckaert,

pers. comm.). StrRSptRKanRGenR transconjugant colonies were

streaked on selective LB plates (except ST21A/R55, which was

selected on M9+glucose+Kan+Chm plate) and single colonies

showing all SGI1 and R55 specific resistance markers were used as

donors in crosses with TG90Nal recipient harbouring the trap

vector pJKI629 or pJKI666 containing the attBEc or attBST,

respectively.

Four S. T. strains (ST1773, ST28S/1, ST21S/1 and ST21A)

harbouring the R55 helper plasmid were used as donors in crosses

with TG90Nal/pJKI666 or TG1Nal/pJKI666 recipients. The

Table 5. Plasmids used in the experiments.

Plasmids Resistance Replication Derivative of Other relevant features

pJKI627 KanR p15A pACYC177 attBEc This work

pJKI629 KanR p15A pACYC177 attBSt This work

pJKI635 KanR colE1 pRK2013 tra+ This work

pJKI643 KanR,,TetR colE1 pRK2013 tra+, attBEc This work

pJKI666 GenR F pBeloBac11 attBSt This work

R55 AmpRKanRChlRFloRGenRSulR IncA/C - tra+ [20]

IP40a AmpRKanRSulR IncA/C - tra+ [20]

doi:10.1371/journal.pone.0032497.t005
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SGI1 transconjugants were selected on LB+Nal+Str plates (Except

A-type SGI1 transconjugants from ST21A/R55 donors, which

were selected on LB+Nal + 300 mg/ml Amp that is selective

against R55, then the NalRAmpRChmSKanS transconjugants

were selected to exclude all R55 transconjugants). The

TG90Nal::SGI1 transconjugant colonies were tested by PCR for

the integration site using primer pairs RJ2 and C9-L2 (character-

istic for DRRST, the integration into the attBST on the trap vector),

and RJ2 and attsgi1rev (characteristic for DRREc, the integration

into the chromosomal attBEc).

Supporting Information

Figure S1 Sequence and alignment of PCR amplicons.
A. Sequence of the nested PCR fragment representing the attB

sequence obtained from the SGI1+ strain ST1289. The PCR was

carried out using primers U7-L12 and C9-L2 (for primers see

Table S1) and sequenced with U7-L12. The alignment shows that

the PCR product corresponds to the 39-end of trmE (thdF) gene and

its downstream flanking region of the SGI1-free S. T. LT2

chromosome. The attB site is highlighted by orange in bold. B.
Sequence of the PCR fragment obtained from the A-type variant

clone ST21A/3 using primers sgi1Adelfor and sgi1Adelrev. The

alignment shows that the 704 bp PCR product spans the 441 bp

homology of the 59 part of IntI1 and groEL/IntI1 (highlighted by

green and bold) from the upstream flanking region of the first to

the downstream flanking region of the second repeat (the

alignment to the second repeat is shown partially), which proves

that A-type deletion occurred between the directly repeated

perfect homologies. C. Sequence of the PCR fragment obtained

from the S-type variant clone ST21S/1 using primers sgi1Sdelfor

and sgi1Sdelrev. The alignment shows that the 1172 bp PCR

product spans the 983 bp homology in qacED1/sulD1 and

qacED1/sul1 (highlighted by blue and bold) from the upstream

flanking region of the first to the downstream flanking region of the

second repeat (the alignment to the second repeat is shown

partially), which proves that S-type deletion occurred between

these directly repeated perfect homologies.

(PDF)

Figure S2 PCR analysis of the SGI1 transconjugant E.
coli TG90Nal strains. A. Lanes 1–12 show the PCR amplicons

from the total DNA of 12 randomly chosen NalRStrR TG90Nal

transconjugant colonies, where the donor strains (all harbouring

R55) were ST1134, ST1233, ST1288, ST1289, ST1321, ST1323,

ST1367, ST1369, ST1373, ST1375, ST1772 or ST1773,

respectively. Lane 13: TG90Nal recipient, Lane 14: ST1773/

R55 donor. Primers were used as follows: DRL – attsgi1for-LJ2,

DRREc – RJ2-attsgi1rev, attBEc – attsgi1for-attsgi1rev, attP – LJ2-

RJ2, tet(G) – tetGfor-tetGrev, IS30C – IS30Cfor-IS30Crev.

Positive signals for the DRL, DRREc, and tet(G) prove the

presence of SGI1, while bands for DRREc and IS30C (specific for

the chromosomal copy of E. coli IS element IS30, IS30C [1]) show

that the sample colonies were E. coli. The faint positive signal for

attBEc probably came from the attB site left behind SGI1 by its

spontaneous excision as observed with the original Salmonella

strains (see Fig. 1b). The expected fragment sizes are indicated. B.
PCR tests for two representative NalRStrR TG90Nal transconju-

gant colonies, where the insertion occurred outside of the primary

attB site. Lanes 1–2: two transconjugant colonies, where the donor

strains were ST1289 and ST1773, respectively. Lanes 3–4 are

TG90Nal recipient and ST1773/R55 donor, respectively. Refer-

ence: 1. Umeda M, Ohtsubo E (1990) Mapping of insertion

element IS30 in the Escherichia coli K12 chromosome. Mol Gen

Genet 222: 317–322.

(PDF)

Table S1 Oligonucleotide primers used for PCR.

(PDF)
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