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Abstract

Background: Currently, the naı̈ve Bayesian classifier provided by the Ribosomal Database Project (RDP) is one of the most
widely used tools to classify 16S rRNA sequences, mainly collected from environmental samples. We show that RDP has
97+% assignment accuracy and is fast for 250 bp and longer reads when the read originates from a taxon known to the
database. Because most environmental samples will contain organisms from taxa whose 16S rRNA genes have not been
previously sequenced, we aim to benchmark how well the RDP classifier and other competing methods can discriminate
these novel taxa from known taxa.

Principal Findings: Because each fragment is assigned a score (containing likelihood or confidence information such as the
boostrap score in the RDP classifier), we ‘‘train’’ a threshold to discriminate between novel and known organisms and observe
its performance on a test set. The threshold that we determine tends to be conservative (low sensitivity but high specificity) for
naı̈ve Bayesian methods. Nonetheless, our method performs better with the RDP classifier than the other methods tested,
measured by the f-measure and the area-under-the-curve on the receiver operating characteristic of the test set. By
constraining the database to well-represented genera, sensitivity improves 3–15%. Finally, we show that the detector is a good
predictor to determine novel abundant taxa (especially for finer levels of taxonomy where novelty is more likely to be present).

Conclusions: We conclude that selecting a read-length appropriate RDP bootstrap score can significantly reduce the search
space for identifying novel genera and higher levels in taxonomy. In addition, having a well-represented database
significantly improves performance while having genera that are ‘‘highly’’ similar does not make a significant improvement.
On a real dataset from an Amazon Terra Preta soil sample, we show that the detector can predict (or correlates to) whether
novel sequences will be assigned to new taxa when the RDP database ‘‘doubles’’ in the future.
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Introduction

The 16S ribosomal RNA (rRNA) gene has become a standard

in microbial community surveys [1,2,3,4,5]. While the 16S rRNA

gene is the standard for identification of bacterial isolates and the

discovery of novel bacteria [6], 16S rRNA has its faults [7]. Not

all known species can be resolved with 16S rRNA, and it is

impossible to use 16S sequences to discriminate strains – the

maximum difference between members of the same species is

very small, approximately 1–1.5% sequence difference for

complete gene sequences [8]. For example, in a study of 683

isolates obtained from clinical specimens, 83% were able to be

resolved at species level and 99% at the genus- level [9]. Due to

this sensitivity of the 16S rRNA gene, the ribosomal database

project (RDP) [10] offers genus-level classification through a

naı̈ve Bayes classifier [11].

The RDP 16S rRNA classifier has become a standard way that

biologists, ecologists, and clinicians identify full-length and sub-

sequences of 16S rRNA sequences and is widely cited under a wide

range of applications. Scientists have used the RDP classifier to a)

correlate mammals to their gut microbes [12], b) correlate microbiota

composition to human obesity [13], c) study the soil community

structure [14], and d) investigate diversity of surface ocean waters

[15]. The unique advantage of the RDP classifier is that it not only

provides the best matching taxa but offers a bootstrap confidence

score, which is able to give a level of confidence to the assignment it

makes. The bootstrap score will give low confidence to a read if it

does not match its assignment well. Most likely, if a poor assignment is

made, this is due to the read originating from an organism not in the

database. Therefore, the RDP classifier may be able to determine

novel taxa at various phylogenetic levels, but no study has

benchmarked how well it performs this task.
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We aim to study the RDP classifier bootstrap score against

recently proposed methods that can be used for a similar purpose.

NBC is a variant of the naı̈ve Bayes classifier that can also be

applied to whole genome sequences) [16], Phymm(BL) is another

method originally proposed for whole-genome sequences but can

be used on any database [17], and PhylOTU [18] which is an

alignment-based clustering designed for 16S rRNA sequences.

The question remains – what is novelty? Novelty in this paper

is defined as a sequence that forms a new clade with respect to a

particular taxonomic level, or a clade that is not nested within a

clade of previously sequenced organisms. In other words, a

novel taxon is one that has no representatives in the database.

An example is that we may find that the bootstrap score is

confident for the Enterobacteriales clade but has low-confidence

for the Escherichia genus. In this case, we would deduce that

this read derives from a novel genus within Enterobacteriales

(where Escherichia happens to be its ‘‘closest’’ relative in the

database, where closeness is relative). In our studies, we do not

claim to be able to bin reads that may originate from a similar

novel taxon, but just to be able to discriminate a 16S rRNA

sequence representing a new taxon from known lineages in the

database.

In our work, we demonstrate that the RDP classifier combined

with a detector (trained with a bootstrap threshold) performs the

best for 500 bp reads. In addition, we demonstrate the RDP

classifier+detector on a real soil dataset and show that the detector

predicts novel genera (e.g. low-confidence reads with a small

database are more likely to match better to newer taxa in a larger

database). We can combine our detector with most other

composition-based taxonomic classifiers and do so when bench-

marking performance. Due to this restriction, we only use the

terminology of RDP classifier in this paper, and we use RDP and

RDP classifier interchangeably.

I. Background on detection theory and experimental
design for supervised learning

In supervised classification, experiments are usually limited by

the amount of data available. In order to test how well a method

works, a part (usually majority) of the data is used to train a

classifier. The part of the data used for training is the training set

Figure 1. The number of sequences per genera (log-scale) demonstrating the imbalance of the database.
doi:10.1371/journal.pone.0032491.g001

Figure 2. Setup for the ‘‘half-fold’’ experiments where half the sequences were used for training and half for testing.
doi:10.1371/journal.pone.0032491.g002
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while the part left out of the training is the test set. If one were to

do one iteration like this, it can give an idea of how the classifier

will perform when it sees never-seen-before data. To develop an

idea for how its performance may vary on new data, 5-fold cross-

validation is performed, which usually takes random 4/5ths of the

data and test on the other 1/5th.

In detection theory, a classifier is a way to map observations of

an event into a class by scoring an input. If we can use a two-class

system, such as classifying something as known or novel, then we

have a ‘‘positive’’ (in our case, a positive is something that is

known in our database) and a ‘‘negative’’ (a read from a novel

organism). A detector tries to identify the positive from negative

classes. When classifying in this manner, we have four different

scenarios – a true positive (TP) which is a read from a known

organism that is correctly classified as a known, a false negative

(FN) which is a read from a known organism falsely classified as

novel, a true negative (TN) which is a read form a novel

organisms correctly classified as novel, and a false positive (FP)

which is a read from a novel organism falsely classified as a

known. Ideally, a classifier will have many TPs and TNs and

attempt to minimize the FPs and FNs. But depending on the

classifier, one can have more FNs than FPs which would mean

that many reads from known taxa are getting classified as novel

but the reads from novel are rarely misclassified. Therefore, there

are two types of error (Type I and Type II).

Based on these different rates, a receiver operating characteristic

(ROC) curve can be constructed that illustrates the true positive

rate (TPR is sensitivity) vs. the false positive rate (FPR is 1-

specificity). Given the TPs, FPs, FNs, and TNs, one can choose the

threshold that attempts to maximize the TPR while minimizing

the FPR. In our work, we choose the threshold that maximizes the

harmonic mean of the sensitivity and specificity. We noticed that

this threshold is not always consistent and will depend on the

subset chosen. Therefore, we decided to break a detector training

set up into folds (as in cross validation), and to average threshold

over 5 folds. This is just the training step and would still need data

left out as ‘‘test’’ (in this case we decide to do a half-fold for

training and testing the detector).

Methods

I. Construction of datasets
a. RDP Training Data version 6. For the full database, we

acquired RDP Classifier’s TrainingData6 from the associated

website. This set contains 8422 sequences belonging to 1712

genera, 311 families, 112 orders, 79 classes, 39 phyla, and 2

kingdoms.

Fig. 1 demonstrates the unbalanced nature of the database. Out

of the ,8000 sequences, about 50% of the genera contain one

example sequence, because for many genera, there is only a single

known (named) species. Whereas on the other extreme, Strepto-

myces has 508 sequences from 508 different species and

subspecies, and is the most well-represented genus.

b. Half-fold experiment using all sequences. For most

experiments (except for investigations into well-represented and

highly-similar genera), we constructed a standard dataset for

training the detector using half of the 16S rRNA sequences, and a

test dataset formed from the other half of the sequences (sequence

distribution illustrated in Fig. 2, Table 1, and known/novel

distribution illustrated in Table 2). The detector-training half of

the dataset was used to train the detector threshold. Once the

detector threshold is determined (through 5-fold experiments), we

can test its feasibility on the test dataset (the other half of the data).

In order to train the detector threshold, we trained the classifier

database on 1/5 of the detector-training data on each iteration

and left the other 4/5 (of the detector-training data) as novel data.

This is different from 5-fold experiments where one uses ‘‘most’’ of

the data for training data (commonly using 4/5 for training and 1/

5 for testing). In our case, we’re using 4/5 novel data and 1/5

known data. We chose this experimental design with the

assumption that we want to train a threshold that is accustomed

to having 20% known and 80% novel data, which we believe is

more reflective of diverse environments such as soil, where ,95%

of the organisms may be novel. We did not want to train a detector

threshold that was used to a majority of the data being represented

in the training database.

Therefore, the training dataset was split in a 5-fold fashion to

train a detector threshold that can discriminate between reads

of known and novel origin. Each 5-fold split was selected to

contain nearly 1/5 of the genera in the training dataset. There

are no novel taxa at the family-level or higher in the test dataset

compared to the training dataset. Subsequently, a read dataset

was constructed from the entire dataset to determine a

threshold for this training dataset, (Table 2.) In order to test

each rank higher than genus, a separate dataset was

constructed (Table 3).

Table 1. The taxa breakdown when testing on all the
taxonomic levels.

4211 training seqs 4211 testing seqs

1216 genera 486 genera novel 673 genera known

272 families 39 families novel 228 families known

101 orders 11 orders novel 85 orders known

76 classes 3 classes novel 70 classes known

37 phyla 2 phyla novel 33 phyla known

While genera have 29% novel representation in the test set (in 15% of the
sequences mentioned in Fig. 2), 14.3% of the families are novel (in 15% of the
sequences), 11% of the orders are novel (in 5% of the sequences), 4% of the classes
are novel (in 2.4% of the sequences), and 5% of the phyla are novel (in 0.07% of the
sequences).
doi:10.1371/journal.pone.0032491.t001

Table 2. The number of known/novel reads on genus level selected per training set for use in detector design and the separate
test set.

Half-fold Training1 Training2 Training3 Training4 Training5 Testing

100 bp 12150/48650 12150/48650 12150/48650 12150/48650 12200/48600 35750/6350

250 bp 4840/19440 4860/19420 4840/19440 4860/19420 4880/19400 14268/2536

500 bp 2380/9580 2380/9580 2380/9580 2410/9550 2410/9550 6956/1238

doi:10.1371/journal.pone.0032491.t002
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Due to the unbalanced nature of the data, it was difficult to only

train on particular genera while also having representatives in the test

dataset. Table 2 represents the reads (subsequences) used to train the

detector, while Fig. 2 shows the dataset taxonomic composition. A

random half of the sequences (4211 16S rRNA sequences) was

selected for the detector- training half of the dataset, which was

composed of 1216 genera (71% of the genera). After all the

restrictions on the training dataset,, the resulting test dataset

contained 85% known reads and 15% novel reads on the genus-level.

The detector was designed by using 1/10 of the entire data (1/5

of the training dataset) at a time to derive the threshold to be used

for the detector. Then, the detector was benchmarked by using the

test dataset; the sensitivity, specificity, and their harmonic-mean

(the f-measure) were used to measure how well the detector could

identify known and novel sequences. An illustration of the detector

development and testing is illustrated in Fig. 3.

II. Detector threshold determination
To develop the detector, we average the thresholds over 5-fold

subdivisions of the training dataset (seen in Fig. 3), then the

detection threshold was evaluated on the testing set. To develop a

detection threshold, we use a method similar to the one outlined in

[19] (where Rosen et al. developed a detection threshold for whole

genomic data and not just 16S). First, we created a ROC (receiver-

operating characteristic) curve using the scores of the RDP, NBC,

and Phymm(BL) separately on the training set. Each score was

associated with the binary decision of whether the genus exists in

the training set or not. The best operating point for each training

set was determined as the threshold that obtained the best

combined sensitivity and specificity, defined as the maximum

point of the f-measure (or the harmonic mean of the sensitivity and

specificity). The development of the detector is summarized as

follows:

Table 3. The known/novel training and testing dataset composition when testing RDP on all taxonomic levels.

Upper Taxonomic Levels train0 train1 train2 train3 train4 testing

genus 100 bp 12150/48650 12150/48650 12150/48650 12150/48650 12200/48600 35750/6350

250 bp 4840/19440 4860/19420 4840/19440 4860/19420 4880/19400 14268/2536

500 bp 2380/9580 2380/9580 2380/9580 2410/9550 2410/9550 6956/1238

family 100 bp 2300/9350 2300/9350 2350/9300 2350/9300 2350/9300 35440/6300

250 bp 920/3740 920/3740 940/3720 940/3720 940/3720 14136/2520

500 bp 460/1870 460/1870 470/1860 470/1860 470/1860 6890/1242

order 100 bp 800/3400 850/3350 850/3350 850/3350 850/3350 36760/2280

250 bp 320/1360 340/1340 340/1340 340/1340 340/1340 14668/904

500 bp 150/670 170/650 170/650 160/660 170/650 7172/414

class 100 bp 550/2400 600/2350 600/2350 600/2350 600/2350 35600/11370

250 bp 220/960 240/940 240/940 240/940 240/940 14208/4532

500 bp 110/470 110/470 120/460 120/460 120/460 6948/2236

phylum 100 bp 350/1500 350/1500 350/1500 400/1450 400/1450 42070/30

250 bp 140/600 140/600 140/600 160/580 160/580 16792/12

500 bp 70/300 70/300 70/300 80/290 80/290 8188/6

doi:10.1371/journal.pone.0032491.t003

Figure 3. Illustrating how Figure 2 relates to the overall detector development and testing for each method.
doi:10.1371/journal.pone.0032491.g003
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1. Acquire training sequences outlined in part I of the Methods

section.

2. Train the scoring method (RDP/NBC/Phymm(BL)) on each

1/5 subset of the training sequences.

3. Construct a read set for the training subset (Table 2) composed

of L-length reads simulated from the reserved 4/5ths of the

training sequences (Fig. 2), where L is 100 bp, 250 bp, and

500 bp.

4. Score the L-length reads (using RDP, NBC, PhymmBL).

5. Construct an ROC curve using the algorithm’s scores and

known/unknown labels of the reads.

6. Determine best operating point by maximizing the f-measure.

7. Select the scoring method’s threshold corresponding to the best

operating point for the training data (to be subsequently used

on test data).

III. Methods used for algorithm comparison
Three scoring methods were used to score reads and we tested how

well they worked after selecting a detection threshold. In addition, for

RDP, two variants of the scores (the bootstrap and likelihood scores)

were tested. Also, in PhymmBL, besides using our detection

framework, we also compared against their provided confidence score

and selected two scores (80 and 85%) that would be expected to give

good sensitivity and specificity. Finally, we also benchmarked against

PhylOTU which is a clustering method that does not provide scores.

a. RDP bootstrap score. The RDP Classifier (RDP) is based

on a naı̈ve Bayes model [11], which assigns a sequence to the

closest match using a posterior score. The unique advantage of

RDP is that it also provides a bootstrap confidence score, which is

able to give a level of confidence to the assignment. This bootstrap

score is obtained by taking a random 1/8th of the query (input

read) and ‘‘reconstructing a new query fragment’’ then classifying

it via the naı̈ve Bayes classifier, iterating this procedure 100 times,

and calculating how the proportion of times that the random

subset resulted in the same taxon as the original match. This is a

way to gauge how susceptible the sequence’s classification is to

error and incomplete data, etc. If the bootstrap score is low, this

means that the sequence may not be from a known taxon and

could represent a novel organism.

b. NBC and RDP likelihood. When computing the naı̈ve

Bayes classification, Bayes theorem derives the posterior probability

from conditional and prior probabilities [11,20,21]. For this

application, the marginal probabilities are assumed to be

equiprobable, thereby implying that the likelihood probability is

maximized when the posterior probability is maximized [11,21].

Therefore, the likelihood probability of a read against each genome

in the database is computed, and the genome corresponding to the

maximum probability is the maximum likelihood solution. This

maximum likelihood probability can be interpreted as the

probability of the taxon given the read.

c. Phymm/PhymmBL’s built-in confidence scores. A

different phylogenetic classification method, which also learns the

Table 4. RDP’s accuracy of correct assignment when the sequence that the read originated from was indeed in the training set.

Genus Family Order Class Phylum

100 bp 90.3+/20.9% 93.9%+/20.7% 94.2+/21.4% 99.1+/20.5% 99.9+/20.0%

250 bp 98.1+/20.4% 97.4+/20.6% 95.2+/21.3% 99.3+/20.5% 100+/20.0%

500 bp 99.4+/20.2% 97.6+/20.6% 95.2+/21.4% 99.3+/20.5% 100+/20.0%

doi:10.1371/journal.pone.0032491.t004

Figure 4. The ROC curve for 4 different novel/known detection methods using the 500 bp read test dataset at the genus-level. The
naı̈ve Bayesian methods perform better (higher AUC) than Phymm(BL). The threshold (f-measure) determined chosen from the training data is shown
with a blue dot.
doi:10.1371/journal.pone.0032491.g004
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underlying sequence composition, is Phymm, which is based on

interpolated Markov models (IMMs) [17]. This method is further

enhanced in PhymmBL by integrating the IMM probability score

with the BLAST score. Since PhymmBL was shown to have better

performance than BLAST, we use the hybrid PhymmBL as an

‘‘alignment-based’’ method comparison. The PhymmBL package

also produces confidence scores that they recommend to users to

differentiate known from novel. For our studies, we trained the

detection thresholds using Phymm and PhymmBL scores using the

5-fold training process (see Fig. 3). In addition, we compared the

performance of PhymmBL’s recommended confidence scores

(selecting reasonable thresholds of 80 and 85%).

d. PhylOTU. PhylOTU aligns query reads with a database of

SSU-rRNA’s and then develops a hierarchical clustering with

FastTree [18]. With our detection method, we determine if reads

are novel or known, while PhylOTU groups the reads, which

potentially offers more information since there is a read grouping.

In order to benchmark PhylOTU performance at known/novel

discrimination, we determined that if PhylOTU clustered the

reads with a sequence from the database, the reads are ‘‘known’’,

Figure 5. The ROC curve for 4 different methods for 250 bp reads on the genus-level. RDP obtains the best AUC followed by NBC,
PhymmBL, and Phymm. The blue star indicates the threshold determined from the training data. In this case, for PhymmBL, the training data
determination of the threshold resulted in the most optimal point for the test set unlike the other methods. This results in PhymmBL’s good
performance in Fig. 8 (bar graph for 250 bp).
doi:10.1371/journal.pone.0032491.g005

Figure 6. The ROC curve for 4 different methods for 100 bp reads on the genus-level. RDP obtains the best AUC followed by NBC,
PhymmBL, and Phymm. The blue star indicates the threshold determined from the training data. In this case, for NBC, the training data determination
of the threshold resulted in the most optimal point for the test set unlike the other methods. This results in NBC’s good performance in Fig. 16{9} (bar
graph for 100 bp).
doi:10.1371/journal.pone.0032491.g006

RDP Classifier to Reduce the Novel Search Space
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whereas, if PhylOTU clustered reads in groups without a training

representative, they are novel.

IV. Methods for 16S sequence similarity
We also examined the intra-genus similarity to study the effects

on class similarity to novelty detection performance. We used CD-

HIT [22] with a similarity threshold of 95% to identify genera that

may be too diverse. Using this measure, 76% of the genera

contained one cluster, while 92% of the genera contained 3 or

fewer clusters. Bacillus was the most diverse genus and contained

50 clusters based on the 95% criterion.

Results

In this section, we benchmark various methods for their ability

to determine which reads are from known taxa (those in the

training database) and those reads which are of novel (to the

database) origin. We use common metrics to benchmark

performance: sensitivity (TP/(TP+FN)), specificity (TN/(TN+FP)),

and the f-measure (2*sensitivity*specificity/(sensitivity+specificity)).

Essentially, sensitivity measures how well the detector is able to

identify ‘‘known’’ reads, while specificity measures how well the

detector can identify ‘‘novel’’ reads. Since we would like an

optimum of both, we use the harmonic mean of the two, the f-

measure to reveal a combined performance.

First, we compare various methods on the genus-level and show

that RDP performs the best and compare RDP’s performance on

higher taxonomic levels. We compare the effects of using only

well-represented and higher-similarity genera. Then we test our

methods on a sequence data from Amazon soil and demonstrate

the computational times of the methods.

I. Comparison of methods for known/novel detection at
the genus-level

First, we show that the RDP classifier has high assignment

accuracy for sequences from known genera. Next we explore how

Figure 7. The sensitivity, specificity, and f-measure comparison of novel/known detection of the 500 bp read test dataset on the
genus-level. RDP’s bootstrap performs the best for being able to discriminate between reads from known and novel origin, with around 76% for the
combined f-measure.
doi:10.1371/journal.pone.0032491.g007

Figure 8. The sensitivity, specificity, and f-measure comparison of 250 bp reads on the genus-level. The naı̈ve Bayesian methods and
the hybrid PhymmBL (with empirically chosen threshold) have the best f-measure while Phymm and PhymmBL’s built-in confidence measures do not
do that well. PhylOTU discarded 789 reads out of 16804 reads. Only those classified are calculated in our performance metric.
doi:10.1371/journal.pone.0032491.g008

RDP Classifier to Reduce the Novel Search Space
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well the thresholds from the training set operate on the test set, and

finally, we benchmark how well the methods work for known/

novel detection.

a. Accuracy of RDP classifier for known classifica-

tion. Before we examine the performance of novel/known

detection for RDP, we benchmarked RDP’s performance for

classifying known taxa. The whole dataset and all reads were used

for this benchmarking. For classifying known taxa, the classifier

has 90% and above accuracy with near-perfect accuracy for the

class-level and above for 250 bp and longer reads (shown in

Table 4).

b. ROC analysis (RDP vs. PhymmBL vs. NBC) + detector

for novel/known discrimination. To develop the detector,

we average the threshold over 5-fold subdivisions of the training

dataset (seen in Fig. 3), then the detection threshold was evaluated

on the testing set. A receiver-operating characteristic curve for the

test set on the genus-level is plotted in Fig. 4. The optimal

threshold that was chosen through the training procedure,

illustrated in Fig. 3, is shown on the ROC curves with a blue

dot. In Fig. 4, the ROC area under the curves (AUCs, which can

be interpreted as the method’s potential) are similar for RDP and

NBC, while Phymm and PhymmBL also perform similarly to each

other, with the RDP and NBC pair producing the greater/better

AUC values. For shorter read lengths (100 and 250 bp) in Figures 5

and 6, RDP maintains its good performance (high AUC) while

NBC drops. Also in Fig. 4, we see that at the optimal threshold,

Figure 9. The sensitivity, specificity, and f-measure comparison of 100 bp reads on the genus-level. The Naı̈ve Bayesian methods and
the hybrid PhymmBL (with empirically chosen threshold) have the best f-measure while Phymm and PhymmBL’s built-in confidence measures do not
perform well overall. PhylOTU had memory errors when placing the ,6400 reads in the test dataset and therefore, there is no performance metric
here.
doi:10.1371/journal.pone.0032491.g009

Table 5. The Sensitivity, Specificity, and F-measure for different read-lengths comparing novel-known detection at genus-level
and higher (where each rank is trained separately).

Read-length Sensitivity Specificity F-measure Bootstrap threshold

genus 100 bp 48.5%+/20.6% 86.0+/20.8% 62.0%+/20.5% 0.7540

250 bp 55.4%+/21.2% 93.3%+/20.7% 69.5%+/21.1% 0.9640

500 bp 64.2%+/21.7% 92.9%+/21.5% 75.9%+/21.2% 0.9960

family 100 bp 27.6%+/20.7% 96.7%+/20.4% 42.9%+/20.7% 0.8460

250 bp 47.6%+/21.1% 95.2%+/20.7% 63.5%+/21.2% 0.9800

500 bp 67.8%+/21.1% 87.7%+/21.3% 76.5%+/21.3% 1.0000

order 100 bp 29.7%+/20.4% 99.4%+/20.3% 45.7%+/20.4% 0.9020

250 bp 49.8%+/21.3% 99.3%+/20.4% 66.3%+/21.3% 0.9980

500 bp 69.4%+/20.9% 94.4%+/21.1% 80.0%+/20.8% 1.0000

Class 100 bp 40.0%+/21.1% 99.5%+/20.3% 57.0%+/21.1% 0.9240

250 bp 63.3%+/21.0% 99.8%+/20.1% 77.5%+/20.9% 0.9960

500 bp 80.4%+/20.6% 98.6%+/20.2% 88.6%+/20.4% 0.9960

phylum 100 bp 51.9%+/20.5% 100.0%+/20% 68.4%+/20.5% 0.9300

250 bp 66.0%+/20.6% 100.0%+/20% 79.5%+/20.5% 0.9920

500 bp 84.4%+/20.8% 100.0%+/20% 91.5%+/20.5% 0.9980

doi:10.1371/journal.pone.0032491.t005
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both RDP and NBC sacrifice some sensitivity to achieve higher

specificity but less so for RDP. In Phymm and PhymmBL, the

opposite is true with these methods sacrificing specificity to obtain

better sensitivity. For all fourmethods methods, this implies that

the training data were not sufficiently diverse to determine an

appropriate generalized threshold. Due to limitations in the

Figure 11. The ROC curve for RDP on all levels for 250 bp reads. Again, the phylum level has high sensitivity at very high specificity.
doi:10.1371/journal.pone.0032491.g011

Figure 10. The Receiver-Operating Characteristic Curves for RDP on various taxonomic ranks for 500 bp reads. The Phylum-level has
almost perfect performance (maximized TPR while minimized FPR). Surprisingly, family and order have slightly lower AUC than genus, but this is most
likely due to taxonomic anomalies at these levels. Using the threshold derived on the training data, the performance on the test data is shown with a
blue star.
doi:10.1371/journal.pone.0032491.g010
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training data, we can see that the naı̈ve Bayesian methods both

obtain low sensitivity/high specificity on the training data while

the Phymm-based methods obtain high sensitivity/very low

specificity. However, the AUC measure demonstrates that the

naı̈ve Bayesian methods have a greater potential on the test

dataset, and thus have greater potential as more representatives of

rare taxa become available, so the training data becomes more

balanced.

c. Sensitivity, Specificity, and F-measure of Novel/Known

Detection using: RDP Bootstrap, RDP Likelihood, NBC

Likelihood, Phymm Score, PhymmBL Score, PhymmBL

Confidence Score . = 0.8, PhymmBL Confidence Score

. = 0.85. Using the thresholds derived from the process in

Fig. 3, we evaluated the process on NBC/RDP’s likelihood scores

and Phymm/PhymmBL’s raw scores. We also evaluated how well

the chosen PhymmBL confidence scores and the PhylOTU

method performed on the test set; for the latter, we used the

training set, but did not go through the 5-fold training shown in

Fig. 3. The results of the methods on the test dataset are shown in

Fig. 7 for 500 bp reads (with 250 bp and 100 bp reads in Figs. 8

and 9 respectively).

II. RDP bootstrap at all levels
Using different training datasets on all levels (see Appendix

Tables 3 and 1), we tested the ability of the RDP bootstrap score to

predict novel/known reads at three different read-lengths. The

Figure 12. The ROC curve for RDP on all levels for 100 bp reads. Performance decreases for all levels compared to the 500 bp reads but the
area-under-the-curves are still over 75%.
doi:10.1371/journal.pone.0032491.g012

Figure 13. Comparison of 500 bp read performance on databases composed of genera that have at least 10 example sequences
(well-represented genera) and genera which have highly similar sequences (Genera with one CD-HIT cluster). While the database with
the highly similar genera has about the same performance as the original, the database with the well-represented genera performs about 10% better,
in terms of f-measure.
doi:10.1371/journal.pone.0032491.g013
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bootstrap score yielded a superior operating threshold and F-

measure (Table 5) and ROCs (Fig. 10, Fig. 11, and Fig. 12). For

500 bp reads in Fig. 10, the threshold does very well at the at

phylum level (AUC of 92%) but not as well at the genus-level

(AUC of 76%), with the intermediate taxonomic ranks performing

in-between. Either due to some taxa missing labels at particular

levels like family and order, or because taxa at these intermediate

ranks are on average less phylogenetically coherent than the

phylum and genus levels, the performance is not as high as genera

for these levels.

While the sensitivity is low, especially for 100 bp reads, the

specificity is high (shown in Fig. 12). This means that at this

threshold the detector incorrectly identifies about 50% of the

known organisms as novel while correctly identifying all truly

novel organisms. In our test set, 85% of the test reads come from

known organisms – the method was able to identify almost all of

the 15% of novel reads plus filter out over 50% of the known

reads, resulting in an approximate reduction of 45% from the

potentially novel set! A user can use this as a first step to reduce the

search space for novel organisms. For 500 bp reads at order-and-

above taxonomic ranks, the f-measure was above 80%, demon-

strating that it could identify known from novel reads reasonably

well. From the ROC area-under-the-curve metrics for the different

levels in Fig. 10, we see that the phylum and class levels have the

greatest potential with 99%/95% AUC. For the order-level and

below, the curves are not quite as good but reasonable. In Section

IV, we directly use the thresholds in our computations on a real

dataset to determine how well the detector predicts novel taxa.

III. Improving classifier performance via well-represented
and highly-similar genera

In Fig. 1, we show that the training set is greatly unbalanced.

About 50% of genera are represented by only a single sequence,

which is possibly the greatest source of poor performance, a

conjecture we test in this section for RDP. Also, we hypothesize

that using genera where all members are very similar to each other

can improve performance – in this case, it did not. In order to

illustrate these points, we conducted a ‘‘well-represented’’ and

‘‘tightly clustered’’ training set simulation (see Appendix for details

on training/testing sets).

We can see in Fig. 13 that in the case of the well-represented

genera, sensitivity rises by 15% and the harmonic mean f-measure

rises by 10%. This is due to the fact that new sequences are more

confidently assigned and increase the number of true positives.

This improvement is across all read lengths (Table 6). This

performance improvement is because RDP has more examples to

fully learn the genus and therefore makes fewer mistakes marking

known organisms (since those genera that are known are well

characterized). The well-represented advantage is also maintained

at 250 bp, shown in Fig. 14.

In the case of the ‘‘tightly clustered’’ genera experiment (where

we only retained genera that met a criterion of clustering with CD-

HIT at 95% or higher sequence similarity), performance slightly

decreased. While we had thought that tighter groups would be

easier for the classifier to ‘‘learn’’, such a selection mostly retained

genera with only one sequence. Therefore, improving the

membership of a genus in the training dataset is more important

than the intra-genus similarity. For 100 bp reads, both factors (the

representation and similarity) help in known/novel detection (seen

in Fig. 15).

IV. Example on a real Metagenomic dataset collected
from Amazonian soil

An amazon terra preta soil dataset [23] was obtained from the

short read archive (SRA), accession number ERR023723. For this

dataset, our goal was to measure how the detector’s prediction of

Figure 14. Comparison of 250 bp read performance on databases composed of genera that have at least 10 example sequences
(well-represented genera) and genera which have highly similar sequences (Genera with one CD-HIT cluster).
doi:10.1371/journal.pone.0032491.g014

Table 6. % average increase in performance for different read lengths, using ‘‘well-represented’’ genera that have at least 10
example sequences.

Sensitivity (% change) Specificity (% change) F-measure (% change) AUC threshold

100 bp 3.7% 6.1% 4.8% 83.6% 0.8740

250 bp 4.1% 3.1% 4.3% 90.6% 0.9940

500 bp 16.8% 21.8% 10.0% 91.4% 0.9980

The bootstrap threshold used for the detector is also given.
doi:10.1371/journal.pone.0032491.t006
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novel taxa correlates with the change in number of assignments to

a known taxon when the training set size is doubled. The

reasoning behind our performance metric is that reads from novel

organisms are more likely to find a close match in the ‘‘updated’’

and doubled training dataset and effectively ‘‘defect’’ from the

previously known taxa to new taxa added to the new database (or

taxa that more closely approximate the ‘‘best match’’). We find

that this occurs for the genus and family levels, where newer taxa

are more frequently added. For higher levels such as class and

phylum, it is more likely that new examples added to these already

existing taxa are the closer match. Therefore, we measure the

Pearson correlation of the number of reads assigned to a taxon

with half-the-database-plus-detector to how many reads the taxon

retains when the full training database is used.. We also find that

low abundance of a known taxon can introduce noise into the

novelty prediction, since the few that may be marked as novel may

be by chance, and we show better correlations for abundant taxa.

Because the original half-database was used for training, we

chose the RDP bootstraps according to the guidelines we

recommended in Table 5, adjusted slightly for 230 bp average

reads (instead of 250 bp). The RDP bootstrap thresholds chosen

are 0.8 for the phylum level, 0.73 for the class level, 0.7 for the

order level, 0.74 for the family level, and 0.94 for the genus-level.

The process by which we used these thresholds and measured

performance on Amazonian dataset is shown in Fig. 16. The

Amazonian read dataset was sent through the RDP classifier

trained on the half-database. Then the RDP bootstrap scores were

processed by the detector. We repeat the process using the full

training database and measure the relative percent drop in novel

reads (from the half-database predictions) for each taxon.

The best correlations were for highly abundant taxa (predicted

by the original half-database; Fig. 17). The detector predicted

some taxa may attract more novel reads than others (by the # of

reads that passed the detector), and this was directly correlated

with the fraction of reads that stayed or defected from that taxon

when more examples were added with the full-database. We based

our correlations upon the relative decreases, since reads in a truly

novel taxon may not ‘‘defect’’ as much as we would hope, since

there is no better match in the database (Table 7). In fact, some

phyla now contain a better match for reads that were incorrectly

classified to known phyla before, and this introduces an inverse

correlation on the class and phylum levels (seen in Fig. 17) due to

the fact that these ‘‘known’’ taxa are missing many representative

examples (since there are few novel classes/phyla). In Table 7, we

see that there is a correlation between the amount that the detector

passes as ‘‘known’’ to the amount classified in the full-database.

Figure 15. Comparison of 100 bp read performance on databases composed of genera that have at least 10 example sequences
(well-represented genera) and genera which have highly similar sequences (Genera with one CD-HIT cluster). The optimal detection
threshold determined on the training dataset is shown with a blue star.
doi:10.1371/journal.pone.0032491.g015

Figure 16. Calculation of the correlation between 1) the detector prediction using the ‘‘present’’ and 2) the full, ‘‘future’’ database.
The percent change in the taxon bin is correlated to the previous prediction of novelty of the reads in that bin.
doi:10.1371/journal.pone.0032491.g016
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To better illustrate, in Fig. 17, we show the effect of observing

the correlation for all taxa classified (blue line), not just the highly

abundant taxa. For rarer taxa, it is difficult to measure the relative

change, for example, if an RDP bin contains 3 reads, a removal of

one will result in a 33% decrease, and if this correlated to 2

defections out of this taxon and when testing against the full-

database, this would amount to a 66% decrease. It is harder to

measure a linear correlation with such noisy measurements, so

there is very little correlation for all taxa. We also show that as we

examine the more abundant taxa (those with abundances over-50,

over-100, and over-500 assignments), the detector’s ability to

predict at the genus- and family-levels increases.

V. CPU time
On a computer with 2 IntelHCoreTMCPU @ 1.86 GHz Speed

and 2 GB of memory, the methods in the paper were

benchmarked. In Table 8, we can see that RDP was 20–30 times

faster than most methods in training. Most importantly, RDP is

60–140 times faster in testing over other methods. While RDP’s

time increases as a function of the read-length, NBC/PhymmBL/

PhylOTU’s time decreased because the number of test reads in

each dataset decreased, as shown in Table 2.

Discussion

Through rigorous benchmarking, we find that developing a

threshold based on the RDP bootstrap score results in the best

novelty detection performance of the detectors tested, with an f-

measure (a harmonic mean of sensitivity and specificity) of 75%

and higher for 500 bp reads. It is very conservative in its novel

detection, in that it detects novel reads almost perfectly (high

sensitivity), but also tends to mark reads from known organisms as

novel (low specificity). If the user wishes to reduce the search

space of reads from novel taxa in dataset, this detector would be

an easy and fast first filtering step. In low complexity samples,

such as the oral cavity [24], where most taxa are well-known, this

could constitute useful method to identify those reads that

originate from novel organisms. For complex samples, such as

soil, this method can act as a filter to identify a smaller set of

reads that may come from novel taxa, thus reducing the time it

may take to run binning algorithms (such as PhylOTU) on these

sequences. While RDP does perform well, we have found that the

bootstrap score is read-length dependent. If 1/8 of the sequence

is used for bootstrapping, more basepairs will determine the

bootstrap percentage for longer reads. Since the bootstrap score is

read-length dependent, we recommend using a standard number

of basepairs (such as 100 bp out of any sequence length) chosen

randomly to compute the bootstrap. This would result in the

input minimum read length to be at least 200–300 bp (in order to

choose this 100 bp subset).

We show that a 10% improvement (for 500 bp reads) can be

achieved just by increasing the number of training sequences to at

least 10 per taxon. The more training data available to a taxa, the

better the classification performance that can be achieved. This

Figure 17. Pearson correlation coefficient of the decrease predicted by the detector (from the half-database) to the change in
abundance in that taxa with the full, updated database for an amazon soil pyrosequence dataset.
doi:10.1371/journal.pone.0032491.g017

Table 7. The abundance numbers after each step in Fig. 8{16}.

Order Half
Half+
Detector Full Family Half

Half+
Detector Full Genus Half

Half+
Detector Full

Rhizobiales 1092 1040 1112 Conexibacteraceae 757 45 646 Spartobacteria_genera
_incertae_sedis

1086 987 1082

Solirubrobacterales 821 188 705 Hyphomicrobiaceae 554 249 523 Conexibacter 757 7 646

Actinomycetales 648 466 596 Gp6 676 468 674

Gp1 507 326 506

The novelty predicted by the detector is correlated to a decrease in abundant (over-500 occurrences) taxa, when using the RDP trained on the full (future) database.
doi:10.1371/journal.pone.0032491.t007
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places great importance on projects such as the Genomic

Encyclopedia of Bacteria and Archaea (GEBA) [25], which aim

to sequence novel and ill-represented taxa.

A comparison of all the methods on the test dataset is shown in

Fig. 7. We chose to benchmark the methods using the sensitivity,

specificity, and harmonic mean of the two, since sensitivity

determines how well the detector can sense ‘‘known’’ reads,

specificity determines how well the detector can sense ‘‘unknown’’

reads, and the F-measure is an equally weighted balance between

the two. We can see that the naı̈ve Bayes classification methods

perform similarly, with RDP’s bootstrap score outperforming

other methods for the f-measure. The RDP optimal bootstrap

threshold is 99.6%. The Phymm/PhymmBL methods showed

high sensitivity but very low specificity (using our detector method)

resulting in a low f-measure. Reasonable thresholds for

PhymmBL’s built-in confidence metric (80–85%) performed

similarly to the PhymmBL raw score in terms of f-measure. (A

90% confidence threshold performed even worse.) For PhylOTU,

1502 out of 8194 reads (in the 500 bp test set) were discarded by

the algorithm (due to its quality filters, etc.), and only the reads that

were not discarded were measured in the performance metric in

Fig. 7. For PhylOTU’s results, if a read clustered with any

sequence in the training dataset, it was counted as ‘‘known’’

whereas if it clustered by itself or with other reads not in the

training dataset, it was counted as novel. In conclusion, the two

Bayesian methods gave more balanced results, with RDP using the

bootstrap performing somewhat better overall in discriminating

reads from novel and known taxa.

We would like the reader to note that our detector threshold was

trained using only half the standard data for training and carving

this dataset into five subdivisions, each using 1/5 of K of the RDP

classifier database. But in each training iteration, all training

dataset reads are used – 1/5 are from examples of known genera

and the other 4/5 are from novel genera. This simulates a scenario

where the detector threshold is trained on samples where 20% of

the reads originate from known-to-the-database genera. This

training of detector using1/5th-known and 4/5th-novel data may

account for the conservativeness (# of FNs .. # of FPs) of the

detection threshold. In reality, the known/novel composition of

the sample may vary (20% could be low for the oral cavity but

high for soil). So, we provide this as a caution for those processing

samples that may be low-complexity and/or have many organisms

that have been previously sequenced – some reads from known

organisms will be falsely labeled as novel. We recommend the

bootstrap thresholds shown in Table 5 be used as a rough

guideline for interpreting RDP classifier results.

We demonstrate on a soil dataset that if the detector only passes

a fraction of reads for a particular taxon, when trained on the half-

dataset, the reads assigned to that taxon decrease when the full

(doubled) database is used for training. This shows that the

detector was able to successfully predict that those reads most

likely originate from novel organisms. Of course, if there is no

better match in the database or no novel taxa at high phylogenetic

levels (such as class or phylum), the reads will still be match to the

same incorrect taxa but with low bootstrap scores. For highly

abundant taxa, where there is more diversity in reads, we can

show that those reads predicted as novel do ‘‘defect’’ to better

matching taxa when the full dataset is used for training, thereby

showing the efficacy of the novelty detection.

There are several main conclusions for the increase in

correlation from phylum to family and genus in Fig. 17. For

highly abundant taxa, the more reads that the detector predicts as

novel (with the half-database), the higher the decrease in that

taxon (on the order-, family-, and genus-levels) after classification

using the full-database. It is more likely that the closest match is a

newly added member of a known phylum (or class) and therefore,

this trend inverts, since the database gets few added phyla or

classes in the updated database; the trend is due to the fact that

reads from novel taxa are still being incorrectly matched to known

taxa, not to the fault of the detector but to the fact that the true

phylum/class has not been added to the database yet. Also, the less

abundant taxa are more difficult to assess since the ‘‘relative

proportion calculations’’ are noisy. Nonetheless, for genera bins

that contain over 50 reads, the Pearson correlation coefficient is

about 0.5 which still shows a significant linear correlation.

While detecting whether a read is from ‘‘known’’ (in the training

data) or ‘‘novel’’ origin is a challenging task with such little

‘‘known’’ data, we show in our study that classification methods

can discriminate between reads originating from known and

unknown organisms. By carefully selecting a threshold using the

current database, the RDP classifier and its corresponding

bootstrap score can offer a known/novel assignment better than

most methods. It is a quick method that does not rely upon

alignment or BLAST. We show that the method is highly

conservative in its identification of reads from known taxa.

Therefore, we recommend that the RDP bootstrap can be used as

a first step to isolate reads from novel genera and can reduce the

search space significantly if the sample contains many reads from

known taxa. The next step after this would be to perform

alignment to determine a sequence’s phylogenetic placement, such

as the SOPPI protocol [26] or to group the ‘‘novel’’ reads to

determine which belong to the same taxonomic groups. Programs

such as PhylOTU can be used for this purpose, and we

recommend using the RDP bootstrap score for known/novel

detection to enhance the PhylOTU’s tendency to discard reads

and to add confidence to clustering of reads.
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Table 8. Runtimes of the various methods (in minutes).

Training 100 bp Test Set 250 bp Test Set 500 bp Test Set

RDP 0.22 1.57 1.67 1.69

NBC 0.35 132.21 112.10 100.91

PhymmBL 4.73 165.33 147.30 138.51

PhylOTU 6.18 N/A 239.51 139.70

While RDP provides the best known/novel performance, it is also the fastest.
doi:10.1371/journal.pone.0032491.t008

RDP Classifier to Reduce the Novel Search Space

PLoS ONE | www.plosone.org 14 March 2012 | Volume 7 | Issue 3 | e32491



References

1. Pace B, Stahl DA, Pace NR (1984) The catalytic element of a ribosomal RNA-

processing complex. J Biol Chem 259: 11454–11458.

2. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, et al. (2006)

Microbial diversity in the deep sea and the underexplored ‘‘rare biosphere’’ Proc

Natl Acad Sci USA 103(32): 12115–12120.

3. Lazarevic V, Whiteson K, Huse S, Hernandez D, Farinelli L, et al. (2009)

Metagenomic study of the oral microbiota by Illumina high-throughput

sequencing, Journal of Microbiological Methods 79(3): 266–271.

4. Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, et al. (2009) A

comprehensive survey of soil acidobacterial diversity using pyrosequencing and

clone library analyses, ISME J 3(4): 442–53.

5. Galand PE, Casamayor EO, Kirchman DL, Lovejoy C (2009) Ecology of the

rare microbial biosphere of the Arctic Ocean, Proc Natl Acad Sci USA 106(52):

22427–22432.

6. Woo PCY, Lau SKP, Teng JLL, Tse H, Yuen KY (2008) Then and now: use of

16S rDNA gene sequencing for bacterial identification and discovery of novel

bacteria in clinical microbiology laboratories, Clinical Microbiology and

Infection 10: 908–34.

7. Janda JM, Abbott S (2007) 16S rRNA gene sequencing for bacterial

identification in the diagnostic laboratory: pluses, perils, and pitfalls. Journal

of Clinical Microbiology 45(9): 2761–4.

8. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold

standards. Microbiol Today 33: 152–5.

9. Mignard, Flandrois JP (2006) 16S rRNA sequencing in routine bacterial

identification: A 30-month experiment, Journal of Microbiological Methods

67(3): 574–581.

10. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, et al. (2009) The Ribosomal

Database Project: improved alignments and new tools for rRNA analysis. Nucl

Acids Res 37(suppl 1): D141–D145.

11. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive bayes classifier for rapid

assignment of rrna sequences into the new bacterial taxonomy. Applied

Environmental Microbiology 73(16): 5261–5267.

12. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, et al. (2008)

Evolution of Mammals and Their Gut Microbes, Science 320(5883):

1647–1651.

13. Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, et al. (2009) Human

gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA

106(7): 2365–2370.

14. Ulrich A, Becker R (2006) Soil parent material is a key determinant of the
bacterial community structure in arable soils. FEMS Microbiology Ecology

56(3): 430–443.
15. Biers EJ, Sun S, Howard EC (2009) Prokaryotic Genomes and Diversity in

Surface Ocean Waters: Interrogating the Global Ocean Sampling Metagenome.
Appl Environ Microbiol 75: 2221–2229.

16. Rosen GL, Reichenberger ER, Rosenfeld A (2011) NBC: The Naive Bayes

Classification Tool Webserver for Taxonomic Classification of Metagenomic
reads, Bioinformatics 27(1): 127–129.

17. Brady A, Salzberg SL (2009) Phymm and PhymmBL: metagenomic phyloge-
netic classification with interpolated Markov models. Nature Methods 6(9):

673–676.

18. Sharpton TJ, Riesenfeld SJ, Kembel SW, Ladau J, O’Dwyer JP, et al. (2011)
PhylOTU: A High-Throughput Procedure Quantifies Microbial Community

Diversity and Resolves Novel Taxa from Metagenomic Data. PLoS Comput
Biol 7(1.

19. Rosen GL, Polikar R, Caseiro DA, Essinger S, Sokhansanj B (2011) Discovering

the Unknown: Improving Detection of Novel Species and Genera from Short
Reads, Journal of Biomedicine and Biotechnology, Article ID 495849.

20. Sandberg R, Winberg G, Branden C-I, Kaske A, Ernberg I, et al. (2001)
Capturing whole-genome characteristics in short sequences using a naive

Bayesian classifier. Genome Res 11(8): 1404–1409.
21. Rosen GL, Garbarine E, Caseiro D, Polikar R, Sokhansanj B (2008)

Metagenome fragment classification using N-mer frequency profiles. Advances

in Bioinformatics, Article ID 205969.
22. Li W, Godzik A (2006) CD-HIT: a fast program for clustering and comparing

large sets of protein or nucleotide sequences, Bioinformatics 22(13): 1658–1659.
23. Navarette AA, Cannavan FS, Taketani RG, Tsai SM (2010) ‘‘A Molecular

Survey of the Diversity of Microbial Communities in Different Amazonian

Agricultural Model Systems,’’ Diversity 2: 787–809.
24. Li L, Hsiao WWL, Nandakumar R, Barbuto SM, Mongodin EF, et al. (2010)

Analyzing Endodontic Infections by Deep Coverage Pyrosequencing. Journal of
Dental Research 89(9): 980–984.

25. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, et al. (2009) A
phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:

1056–1060.

26. Peplies J, Kottmann R, Ludwig W, Glöckner FO (2008) A standard operating
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