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Abstract: This review presents a comprehensive over-
view of the current status regarding the global diversity of
the echinoderm class Ophiuroidea, focussing on taxono-
my and distribution patterns, with brief introduction to
their anatomy, biology, phylogeny, and palaeontological
history. A glossary of terms is provided. Species names
and taxonomic decisions have been extracted from the
literature and compiled in The World Ophiuroidea
Database, part of the World Register of Marine Species
(WoRMS). Ophiuroidea, with 2064 known species, are the
largest class of Echinodermata. A table presents 16
families with numbers of genera and species. The largest
are Amphiuridae (467), Ophiuridae (344 species) and
Ophiacanthidae (319 species). A biogeographic analysis
for all world oceans and all accepted species was
performed, based on published distribution records.
Approximately similar numbers of species were recorded
from the shelf (n = 1313) and bathyal depth strata (1297).
The Indo-Pacific region had the highest species richness
overall (825 species) and at all depths. Adjacent regions
were also relatively species rich, including the North
Pacific (398), South Pacific (355) and Indian (316) due to
the presence of many Indo-Pacific species that partially
extended into these regions. A secondary region of
enhanced species richness was found in the West Atlantic
(335). Regions of relatively low species richness include
the Arctic (73 species), East Atlantic (118), South America
(124) and Antarctic (126).

Introduction

General background
The Ophiuroidea or brittle stars, basket stars (euryalids with

branching arms) and snake stars (euryalids with non-branching

arms), are the largest group among extant echinoderms, with 2064

described species [1], found in all oceans from the intertidal to the

greatest depths. The name Ophiuroidea is derived from the Greek

words ophis, meaning snake, and oura, meaning tail, in reference to

the often thin, snail-like winding or coiling arms. The discovery of

the currently recognized extant species began with two descrip-

tions, published in the Systema Naturae [2] (Asterias caput-medusae

Linnaeus, 1758), now in Gorgonocephalus, and Asterias ophiura

Linnaeus, 1758, now in Ophiura). From the mid-eighteenth

century, the discovery rate accelerated and remained relatively

high for about a century, when it levelled-off to today’s lower rate

(Fig. 1). Remarkably, the first deep-sea animal ever to be reported

on was the brittle star Gorgonocephalus caputmedusae accidentally

dredged up by Sir John Ross in 1818 while sounding the bottom of

Baffin Bay in his attempt to find the North West passage [3]. The

first fossil ophiuroid was described as early as 1804 from the

Middle Triassic of Göttingen, Germany [4] (Asterites scutellatus

Blumenbach, 1804; now in Aspiduriella). The description rate for

fossils has remained relatively low and constant since that date.

The use of isolated skeletal elements (see glossary below) as the

taxonomic basis for ophiuroid palaeontology was systematically

introduced in the early 1960s [5] and initiated a major increase in

discoveries as it allowed for complete assemblages instead of

occasional findings to be assessed.

This review provides an overview of global ophiuroid diversity

and distribution, including evolutionary and taxonomic history. It

was prompted by the near completion of the World Register of

Marine Species (http://www.marinespecies.org) [6], of which the

World Ophiuroidea Database (http://www.marinespecies.org/

ophiuroidea/index.php) is a part. A brief overview of ophiuroid

anatomy and biology will be followed by a systematic and

biogeographic synthesis.

Anatomy
The typical ophiuroid body plan shows a pentagonal to round

central disc that is offset clearly from the five arms; but a

considerable number of species depart from this generalized shape.

Species with six, seven and up to ten arms are known. In basket

stars the arms branch once or multiple times (Fig. 2). Most species

are moderate in size with disc diameters between 3 mm and

50 mm; the largest species of basket stars may have discs of

150 mm diameter. The length of their arms is usually measured in

relation to their disc diameter and varies from about 2–3 times the

disc diameter to 20 times or more (e.g. Macrophiothrix, Amphiodia).

At first glance, ophiuroids may resemble certain seastars, but a

number of unique features set them apart. The ambulacral groove,

found on the underside of the arms, is completely closed over by

hard skeletal parts (lateral and ventral plates; Fig. 3), whereas in

asteroids it is an open furrow. Ophiuroids lack an anus and the

madreporite that connects the water vascular system (often

through one or several hydropores) with the surrounding ocean

water is part of the mouth skeleton (one of the oral shields), instead

of a plate on the dorsal surface as in asteroids. The ophiuroid

mouth opening is closed by a number of jaws that corresponds to

the number of arms. The jaws or oral plates (Fig. 3I, J) are

hypothesised to have evolved from ambulacral plates and are
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homologous to another ophiuroid specialisation, the arm vertebrae

(Fig. 3D, E) [7]. Ophiuroid tube feet lack suction cups and are

rarely used for locomotion. Instead, ophiuroids move by twisting

and coiling their arms, pushing against the surface like a snake or

gripping objects and pulling themselves forward. Swimming has

been reported in some species [8]. No eyes have been found in

ophiuroids, but arm plates, functioning as calcitic microlenses

above light sensitive tissues have been identified in several

phototactic species in the genus Ophiocoma [9]. Brittle stars easily

fragment (autotomize arms) when stressed (Stöhr & O’Hara,

personal observations), a property of the mutable collagenous

tissue [10], found in all echinoderms.

For centuries, ophiuroid species were delimited and identified

mainly on external adult characters. Recent efforts to describe

juvenile characters have provided valuable new information

(Fig. 4), but juvenile stages are still only known for less than 50

species [11,12]. Promising results have been obtained by the

inclusion of internal skeletal characters such as jaws and dental

plates [13–15]. A limited number of molecular studies have been

published so far, dealing mostly with problems of morphologically

similar (cryptic) species [16–18]. The small number of genetic

studies compared to other echinoderm groups is partly due to

difficulties with efficiently obtaining suitable DNA sequences, but

recent attempts have been made to solve these problems [19].

Glossary
The terminology used over the centuries for ophiuroid features

has varied greatly between authors, which is a source of confusion,

particularly for novices and non-specialists. The terms used for

ophiuroid structures differ considerably from those used for other

echinoderm classes, which contributes to the confusion. No official

consensus has been reached yet, but more and more ophiuroid

workers attempt to use the same terminology. As a step towards

easier communication and understanding we propose here an

illustrated glossary of terms that have been used most frequently in

recent years. Figure 3 provides an overview over general ophiuroid

anatomy with isolated skeletal elements and their position in situ.

Figures 5 and 6 provide details of the structures described below.

Aboral: surface of the animal opposite the mouth, more often

dorsal is used.

Abradial (adj.): away from central line of the arm.

Accessory dorsal arm plate: small plate on the periphery of

the dorsal arm plate, found in Ophionereididae and Ophiolepis, not

to be confused with fragmented arm plates found in e.g. Sigsbeia,

Ophioderma.

Adoral shield: skeletal element, in pairs distal to oral shield,

often separating it from the oral plate; homologous to lateral arm

plate.

Adradial (adj.): close to the arm.

Apical papilla(e): oral papilla at tip of jaw, often homologous

to first tooth; may be single or in a cluster.

Arm: moveable ambulacral projection attached to the disc,

divided into segments (joints); the segments closest to the disc are

the oldest, those at the tip of the arm the youngest.

Arm comb: row of papillae on the distal end of the abradial

genital plate, next to either side of an arm base; only in the

Ophiuridae.

Arm spine articulation: specific structures on lateral arm

plates for attachment of spines; character of high taxonomic value,

with family- and sometimes genus-specific shape (Fig. 3C, 5P, R,

V, X, Z).

Buccal scale: distalmost lateral oral papilla, wide and low, at

the oral plate; one of the first oral papillae in postlarvae (often

modified during later ontogeny) of all examined Ophiuridae and

Amphiuridae, moves higher up on the oral plate in Amphiura

(Fig. 3G); as far as known absent in the Ophiotrichidae,

Ophiomyxidae, Ophiocomidae and among ophiactids in Ophio-

pholis aculeata (Linnaeus 1767) (but present in Ophiactis spp.), in

Ophiacanthidae so far found only in Ophiolimna bairdi (Lyman,

1883).

Bursa(e): sac usually on either side of an arm, holds the

gonads, also respiratory function.

Dental plate: vertical plate covering the tip of each jaw,

bearing teeth and apical papillae, often with holes and socket-like

depressions (Fig. 4F–J, H).

Disc: central body, containing the main internal organs

(Fig. 3A).

Disc diameter: common unit of size for ophiuroids, measured

from the distal edge of the radial shields to the edge of the

opposite interradial.
Distal (adj).: away from the disc center.

Dorsal: surface away from the mouth, more commonly used

than aboral.

Figure 1. Discovery rate of ophiuroid species since 1758.
doi:10.1371/journal.pone.0031940.g001
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Dorsal arm plate: skeletal element on the dorsal part of each

arm segment (Fig. 3B).

Fissiparity: asexual reproduction by division, here splitting of

the disc, after which both halves regenerate a complete individual;

common in hexamerous (six-armed) species.

Genital papillae: granule-like skeletal elements along the

bursal slit; in Ophiuridae, Ophiochitonidae and Ophionereididae;

in some genera (e.g. Ophiura) their row is elongated near the

dorsolateral surface of the disc to form an arm comb.

Genital plates: a pair of skeletal elements to either side of each

arm, supporting the bursal slit, articulating with each other distally

and internally with the radial shield (Fig. 4K); the pair of plates are

known as the adradial and abradial genital plate; they may be

elongated, club-like, short, scale-like, forked or other (Fig. 4L–U).

Genital slit (bursal slit): external opening to the bursa.

Granules: articulated, or loosely attached, grain-shaped

skeletal elements, may rub off, occur on disc and arms.

Infradental papillae: pair of oral papillae that originate

laterally on the dental plate and then move onto the oral plate;

only in Amphiuridae (Fig. 3G).

Interradius (interradii): the areas of the disc between the

arms.

Lateral arm plate: plates on both sides of each arm segment,

with a series of articulations bearing the arm spines (Fig. 3C); with

family- and in some cases genus-specific characters, such as the

presence and shape of excavations for the tentacle pore,

elevations and holes, striations and elevated spine bearing ridges.

Madreporite: part of the ambulacral system, see oral shield.

Oral: side of the mouth, often termed ventral instead; also as

adjective for structures in close association with the mouth.

Oral papillae: articulated skeletal elements along the jaw

edges, may be spine-shaped, block-like, scale-like or other. Often

distinguished as lateral papillae, along each side of a jaw, and one

or several apical papillae, at the proximal tip of the jaw; absent

in Ophiotrichidae; fused/not fragmented in some species of

Ophiolepididae.

Oral plate: one half of a jaw (Fig. 3I, J, 4A–E), composed of a

proximal and a distal part, sometimes with visible suture line, distal

part with tentacle pore and tentacle, sometimes with tentacle
scale.

Figure 2. Diversity of brittle stars. A. Ophiolepis superba, a typical five-armed form with simple arms; B. Ophiacantha enopla veterna, a form with
long serrated arm spines and spinelets covering the disc; C, Ophiactis tyleri, a six-armed fissiparous form; D. Euryale aspera, a basket star with
branched arms. Scale bars in millimetres.
doi:10.1371/journal.pone.0031940.g002

Diversity of Brittle Stars

PLoS ONE | www.plosone.org 3 March 2012 | Volume 7 | Issue 3 | e31940



Figure 3. Skeletal morphology of brittle stars shown on Amphiura chiajei. SEM images. A. dorsal disc and arms; B. arm dorsolaterally; C.
isolated lateral arm plate with spine articulations; D, E. arm vertebrae dissected from the inside of the arm; D. distal face; E. proximal face; F. ventral
aspect of disc and arms; G. detail of jaw; H. dental plate from tip of jaw; I, J. oral plates(half-jaws); I. abradial face; J. adradial face. AS, adoral shield; ASS,
adoral shield spine (often described as oral tentacle scale); CPP, central primary plate, DAP, dorsal arm plate; M, madreporite, OS, oral shield, RPP,
radial primary plate; RS, radial shield; SA, spine articulation; TS, tentacle scale; VAP, ventral arm plate. Scale bars in millimetres.
doi:10.1371/journal.pone.0031940.g003
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Oral shield: large plate distal to each jaw, separated from the

jaw by a pair of adoral plates, at least one oral shield functions

as madreporite, often enlarged and/or with a visible hydropore.

Ossicle: see skeletal elements.

Peristomial plates: thin plates covering the dorsal (inner)

surface of the oral frame.

Plates: larger, flat skeletal elements with fixed position (but the

term plate is used as a more general term for skeletal element as

well).

Primary plates: the central plates of the dorsal disc,

composed of the central primary plate, surrounded by five radial

primary plates (Fig. 3A), which together are also known as the

primary rosette; present in most, but not all species, in adults not

always distinguishable, in postlarvae they are the first plates that

form the disc.

Primary rosette: see primary plates.

Proximal (adj.): towards the disc center.

Radial shields: pair of dorsal disc plates at the arm base

(Fig. 3A), with internal distal articulation with the genital plates

(Fig. 4K).

Radius (radii): the arms and areas of the disc where the arms

are attached.

Scales: smaller, thinner, often more or less round skeletal

elements, usually found on the disc, sometimes on the arms.

Skeletal elements (plates, ossicles): hard structures

consisting of a Mg calcite meshwork, grown inside dermal cells;

includes plates, scales, spines, granules, and papillae.

Spines: articulated, moveable skeletal elements of elongated

shape, smooth or serrated, with terminal thorns or without, at

arms and on disc; often distinguished as spinelets (smaller disc

spines), stumps (short, blunt, usually thorny disc spines), spines

(longer, rodlike, tapering, with or without thorns, at arms and on

disc) and hooks, although these terms are not well defined. Arm

spines are modified into hooks in epizoic species, sometimes only

in juveniles or only at the distal arm segments. Bands of girdle

hooklets occur on the dorso-lateral surface of Gorgonocephalidae

arms.

Stereom: mesh-like structure of skeletal elements.

Streptospondylous: see vertebra.

Stomach and gonad ossicles: small rod-like, plate-like or

‘c’-shaped ossicles lining the walls of the stomach and gonads.

Teeth: small skeletal elements at the dental plate, block-like or

spine-like (Fig. 3G).

Tentacle: tube foot.

Tentacle pore: opening on ventral arm, between lateral and

ventral plate or as a perforation within the lateral arm plate, from

which a tube foot protrudes, a pair of pores per segment.

Tentacle rods: small elongated ossicles strengthening the tube

feet in the Ophiomyxidae.

Tentacle scale: articulated skeletal element at tentacle pore,

may be at lateral arm plate and/or ventral arm plate, single or

several, spine-shaped, scale-like or other (Fig. 3F).

Terminal plate: the last segment at the tip of an arm, tube-

like, hollow; the terminal plate is present from the earliest

postlarva to the largest adults, the arm grows by forming new

segments proximal of the terminal plate.

Tooth papillae: cluster of short, granule-like apical papillae

on the dental plate; in Ophiotrichidae and Ophiocomidae. Not

to be confused with the cluster of larger, pointed apical papillae in

some Ophiacanthidae.

Tubercles: non-articulated outgrowths of plates and scales,

cannot be rubbed off (compare granules).

Ventral: side of the mouth, more commonly used than oral.
Ventral arm plate: plate on ventral side of each arm segment

(Fig. 3F).

Vertebra(e): inner arm ossicle, one in each segment,

composed from two ambulacral plates, often with visible suture

line, which may separate during maceration; with distal and

proximal articulations, traditionally classified as streptospondylous

(hourglass-shaped) and zygospondylous, but intermediate types

exist (Fig. 5A–O). Euryalida possess only streptospondylous

vertebrae, in Ophiurida a variety of both streptospondylous and

zygospondylous types occur. In Ophionereididae, Ophitrichidae

and among Ophiactidae only the genus Ophiopholis the vertebrae

have a dorsal keel, extending distalwards into a large groove on the

proximal face of the following vertebra. Some vertebrae in the

Euryalidae have a ventral bridge between the proximolateral

processes that protects the radial canal and nerve.

Zygospondylus: see vertebra.

Feeding
The ophiuroid digestive system is comparatively simple,

consisting of a short oesophagus and a sac-like stomach with

ciliated epithelium [20]. Lacking an anus, ophiuroids are not well

Figure 4. Comparison of juvenile and adult morphology.
Ophiopleura borealis. SEM images. A. early postlarva, lacking dorsal
arm plates, interradial disc scales and radial shields, madreporite lateral;
B. small (young) adult, scales partially obscured by thickened skin. LAP,
lateral arm plate; TP, terminal plate. Scale bars in millimetres.
doi:10.1371/journal.pone.0031940.g004
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equipped to extract nutrients from large amounts of ingested mud,

in the manner of holothuroids or some asteroids and echinoids.

Instead, ophiuroids display a broad range of feeding types, such as

suspension-feeding, deposit-feeding, scavenging and predation, all

designed for a more selective nutrient intake. Some species may

use more than one feeding strategy, and diet as well as feeding type

may vary between ontogenetic stages. However, few studies on the

diet of ophiuroids have been conducted so far. Correlating feeding

Figure 5. Diversity of ophiuroid skeletal elements: jaws, dental and genital plates. A–E. oral plates (half-jaws), abradial face; A. Ophiura
sarsii (Ophiuridae), strongly elongated; B. Ophiothrix fragilis (Ophiotrichidae), short jaw with branch-like ornamentation; C. Ophiocoma erinaceus
(Ophiocomidae), short jaw with striations; D. Ophiacantha bidentata (Ophiacanthidae), weakly elongated; E, Ophioderma longicauda
(Ophiodermatidae), strongly elongated. F–J. dental plates, external (proximal) face; F, O. sarsii, multiple openings per tooth; G. O. fragilis, different
areas for tooth papillae and teeth; H. O. erinaceus, different areas for tooth papillae and teeth; I. O. bidentata; J, O. longicauda, dental plate consists of
several pieces; K–U. genital plates. K–L. O. sarsii; K, genital plates articulating with radial shields; M–N. O. fragilis; O–P. O. erinaceus; Q–R. O. bidentata; S,
O. longicauda; T–U. Amphiura chiajei (Amphiuridae). ad, adradial; ab, abradial; am, articulation to arm; m, muscle attachment area; RS, radial shield.; to,
tooth socket; tp, tooth papillae area; Scale bars in millimetres.
doi:10.1371/journal.pone.0031940.g005
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mode with taxonomic level (genus, family) is problematic also,

since the systematics of ophiuroids is currently in flux (see below).

Basket stars feed on plankton (copepods, apendicularians), clinging

to sea pens or corals, using their often multi-branched arms to

capture prey. Several species in the family Ophiuridae are

carnivorous: Ophiura ophiura Linnaeus, 1758 hunts epibenthic

Figure 6. Diversity of ophiuroid skeletal elements: lateral arm plates and vertebrae. A–O. arm vertebrae; A–K. zygospondylous
articulation. A–B. Ophiura sarsii (Ophiuridae); C–E. Ophiothrix fragilis (Ophiotrichidae), keeled type; F–G. Ophiocoma erinaceus (Ophiocomidae); H–I.
Ophiacantha bidentata (Ophiacanthidae); J–K. Ophioderma longicauda (Ophiodermatidae); L–O. streptospondylous articulation, Gorgonocephalus
eucnemis (Gorgonocephalidae); L–M. regular vertebrae; N. first vertebra of a new branch; O. last vertebra before a new branch (N and another similar
vertebra articulate with O). P–Z. lateral arm plates. P–Q. O. sarsii; R–S. O. fragilis; T–U. O. erinaceus; V–W. O. bidentata; X–Y. O. longicauda; Z. G.
eucnemis, dist, distal; ext, external; g, groove; int, internal; k, keel; m, muscle attachment area; prox, proximal; sa, spine articulation. Scale bars in
millimetres.
doi:10.1371/journal.pone.0031940.g006
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animals, whereas Ophiura albida Forbes, 1839 and Ophiura sarsii

Lütken, 1855 can hunt infaunal prey, scavenge carrion or feed off

seafloor organic matter [21] and the Antarctic Ophiosparte gigas

Koehler, 1922 is known to be an active predator of at least 10

phyla [22]. Ophionereis reticulata (Say, 1825) (Ophionereididae) is

omnivorous, consuming both plant (algae) and animal material

(polychaetes), as well as sediment, possibly scavenging or deposit

feeding [23], amphiurids typically live in burrows, extending some

of their arms above the sediment surface, collecting food from the

burrow walls, the sediment surface and the water column with

their tube feet [24], but the stomach content of Amphipholis squamata

(Delle Chiaje, 1828) included fine particles as well as a wide range

of animal and plant fragments indicating an omnivorous habit

[25].

Reproduction
A detailed review of ophiuroid reproduction was provided by

Hendler [26]. In most ophiuroids, the gonads are restricted to the

disc, although there are a few taxa (Ophiocanops, Euryalinae,

Asteroschematinae) in which these organs extend into the base of

the arms. The majority of ophiuroid species are dioecious, but

hermaphrodites exist and self-fertilization has been shown for at

least one species, Amphipholis squamata [27]. Males and females in

most species look alike, but in Ophiodaphne formata (Koehler, 1905),

Ophiodaphne scripta Mortensen, 1933, Ophiosphaera insignis Brock,

1888 and Astrochlamys bruneus Koehler, 1911 the male is much

smaller than the female, to which it clings. In Amphipholis linopneusti

Stöhr, 2001, both sexes are about the same size, but the males

have an enlarged first ventral arm spine, hook-shaped in juveniles

(perhaps facilitating attachment to their sea urchin host), wide and

blunt in adults [28]. Many species are broadcast spawners that

freely release their eggs into the water, others are brooders that

keep the eggs, larvae and small juveniles inside the gonadal

chambers (bursae) of their disc (e.g. A, squamata) or in the gonads

(e.g. Ophiacantha anomala G.O. Sars, 1872) [26]. Asexual reproduc-

tion by fission, in which the disc splits into two halves, followed by

regeneration, is common in hexamerous species such as Ophiactis

savignyi (Müller & Troschel, 1842), although not all six-armed

species are fissiparous. Brooding does not co-occur with fissiparity,

for example the brooding six-armed Ophiacantha anomala does not

divide [12]. Fissiparity in combination with hexamery is

particularly common in the genus Ophiactis with so far 16

fissiparous six-armed species, but has been found in almost all

families and many different genera. Likewise, brooding has been

found in most families and continues to be discovered, sometimes

in well-known species such as some populations of Ophioderma

longicauda (Bruzelius, 1805) [29].

It is generally assumed that the ancient larval type of ophiuroids

is the planktotrophic pluteus larva, but non-feeding plutei with

abbreviated development and direct developing vitellaria larvae,

are known as well [26]. It has been suggested that the presence of

vitellaria larvae may facilitate the evolution of brooding [26] and

in at least one species, Ophioderma longicauda, this appears to be a

likely explanation [29].

Life-style and habitat
Ophiuroids have adapted to a wide variety of life-styles. The

majority of species are bottom dwellers on the sea floor, buried in

mud or hidden in crevices and holes in rock or coral. Some species

are epizoic, living on a variety of hosts such as gorgonian or black

corals (many basket and snake stars, some Ophiotrichidae and

Ophiacanthidae), sea urchins (e.g. Amphipholis linopneusti; Ophio-

daphne scripta [28,30], crinoids (e.g. Ophiolophus novarae Marktanner-

Turneretscher, 1887, Ophiomaza cacaotica Lyman, 1871) [31,32] or

jellyfish (Ophiocnemis marmorata (Lamarck, 1816)) [33]. Ophiactis

savignyi is a well-known sponge-dweller [34]. Juveniles of

Ophiomastix annulosa (Lamarck, 1816) seek out adults of Ophiocoma

scolopendrina (Lamarck,1816) and crawl into their bursae, where

they live through the earliest stages of their development, similar to

species that brood their young [35]. Some of these associations are

of ancient origin. Most notable are cases of Jurassic and

Cretaceous ophiacanthid brittle stars displaying the anatomical

prerequisites for climbing and clinging (e. g. vertically coiling arms,

hook-shaped spines) and found preserved as articulated specimens

in close relationship with stalked crinoids [36,37]. Articulated

specimens of the small Middle Jurassic species Ophiomusium?

ferrugineum Böhm, 1889 are commonly found in the dense isocrinid

aggregations of the Burgundy platform [38], mostly preserved

close to the proximal portions of the crinoid stalk. Another

remarkable case of ophiuroid-host interaction known from the

fossil record is the Late Palaeozoic genus Onychaster, articulated

specimens of which have been reported tightly wrapped around

stalked crinoids [39].

Brittle stars have been found at hydrothermal vents (Ophioctenella

acies Tyler et al. 1995, Spinophiura jolliveti Stöhr & Segonzac, 2006

and Ophiolamina eprae Stöhr & Segonzac, 2006) [40,41], methane

cold seeps (O. acies, Ophienigma spinilimbatum Stöhr & Segonzac,

2005) [42] and on sunken wood (Ophiambix spp.) [43]. These

species appear to be restricted to reducing environments and all,

except O. acies, occur in only one type of environment.

Ophiuroids often occur in large numbers, sometimes in dense

aggregations, such as Ophiothrix fragilis (Abildgaard, in O.F. Müller,

1789) in the British Sea [44,45].

Phylogeny
The so far only quantitative phylogenetic reconstruction of the

Ophiuroidea has been performed by Smith et al. [46]. Their tree

suggested that the family Ophiacanthidae is paraphyletic, because

some of its species show close affinities to Ophiomyxidae and

Hemieuryalidae and some of the species included in those families

may better be placed in Ophiacanthidae. A recent new approach

using the spine articulation on the lateral arm plates and internal

skeletal characters suggested major changes in the ophiuroid

phylogeny and proposed a clearer delineation of Ophiacanthidae

from Ophiomyxidae [47,48]. Ophiuroid higher taxa are difficult

to delimit, because the class radiated over a relatively short time in

the Late Paleozoic and Early Mesozoic, in particular after the mass

extinction at the end of the Permian, and many species show

character combinations that overlap with the diagnoses of several

families. Our understanding of these characters and the selection

pressures acting on them is still quite limited, but several projects

are currently being executed in different workgroups to improve

the situation.

The current phylogeny divides the Ophiuroidea into two sister

groups, Euryalida (basket and snake stars) and Ophiurida (brittle

stars) [46,49], but the known fossil evidence does not support an

early origin of the Euryalida [46]. Recent molecular evidence

instead places it within Ophiurida [50], but more data are needed

to confirm this hypothesis. Within the Euryalida, the Gorgono-

cephalidae have recently been confirmed as sister taxon to a clade

consisting of Asteronychidae and Euryalidae [51].

Fossil record
The skeleton of brittle stars is composed of high-Mg calcite

which is transformed into low-Mg calcite during diagenesis.

Thanks to the high chemophysical stability of low-Mg calcite and

the transformation occurring early in the process of fossilisation,

the ophiuroid skeleton is likely to be preserved in most types of
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marine rocks. From a taphonomical point of view, however, the

ophiuroid skeleton is composed of a multitude of plates connected

by soft tissue and disintegrates within hours to days after death

[52]. Articulated specimens with most of the skeletal plates in place

are extremely rare fossils (Fig. 6) and document exceptional cases

of rapid and definite burial preventing dislocation of the skeletal

plates [53]. Dissociated plates of the ophiuroid skeleton, in

contrast, occur in large amounts in most marine sediment and can

account for a considerable portion of micropalaeontological

samples.

Ophiuroids have been shown to display a remarkable

morphological conservatism, at least since the early Mesozoic.

Yet, many known fossil taxa have not been studied from the

perspective of modern representatives. The global diversity of

ophiuroids in the course of the Phanerozoic is also still poorly

understood. The number of currently accepted brittle-star species

from the Jurassic, one of the best sampled geological time intervals,

is approximately 70 (Thuy, unpublished data), and even

acknowledging a limitation of the Jurassic ophiuroid fossil record

to shallow-water settings, this is an extremely low total diversity for

a time interval spanning more than 40 Ma compared to present-

day diversity. The low diversity of fossil brittle stars is clearly due

to a lack of systematic sampling. Most records of fossil ophiuroids

represent occasional findings of articulated specimens. It has been

repeatedly demonstrated that species diversity can dramatically

increase as soon as the diagnostic skeletal elements preserved as

microfossils after disintegration are taken into account [36,54,55].

The inclusion of dissociated skeletal plates in the survey of fossil

ophiuroids is highly promising, but still a poorly deployed

perspective, in particular when combined with detailed morpho-

logical studies of the respective skeletal parts in recent ophiuroids

[5,47].

The oldest currently known ophiuroid is Pradesura jacobi (Thoral,

1935) from the Late Tremadocian (Early Ordovician, ,480 Ma)

of southern France [56]. It belongs to an extinct group of

ophiuroids displaying plesiomorphic characters not found among

extant adult forms, the most conspicuous being the unfused

ambulacral plates (pairs are firmly fused into vertebrae in extant

ophiuroids). These assumed stem-group ophiuroid representatives

were fairly diverse during the Ordovician and Silurian [57]), but

by the Late Carboniferous they had nearly disappeared and were

outnumbered by groups with closer affinities to modern ophiu-

roids.

Less than one third of the extant ophiuroid families are known

from the Early Mesozoic and include the Ophiacanthidae,

Ophiuridae and Ophiolepididae [5,37]. The majority of the

families which dominate present-day shallow tropical and

temperate habitats, in particular the Ophiocomidae, Ophiotrichi-

dae, Amphiuridae and Ophiactidae, seem to be of Late Mesozoic

origin [36,58], thus challenging the major radiation of modern

ophiuroid clades in the Early Triassic as postulated by Smith et al.

[46]. In addition, Upper Devonian to Lower Carboniferous

ophiuroids were recently demonstrated to have strong affinities

with extant ophiolepidid brittle stars, suggesting that at least part

of the crown-group radiation took place much earlier than

previously assumed [59]. A reassessment of Upper Paleozoic and

Lower Triassic ophiuroids in close comparison with modern clades

is required to further elucidate the early evolution of the crown-

group ophiuroids. Many post-Paleozoic ophiuroid taxa are

incompatible with family concepts of extant ophiuroids (e.g.

[37]). This has lead to the recognition of new, extinct families (e.g.

Aplocomidae by Hess, 1965, [60]) which potentially contribute to

a better understanding of the origin of and phylogenetic

interrelationships among extant lineages.

Methods

Ophiuroid species names were collected from the literature and

entered into the online World Ophiuroidea Database [1], part of

the World Register of Marine Species (WoRMS) [6]. The current

taxonomic status of the about 3000 nominal species and over 4000

names (including new combinations) was assessed and recorded in

the database. Then these data were used to assemble Table 1,

numbers of species and genera per family. The systematics largely

follows Smith et al. [46], except where more recent information is

available. Ophiocanopidae was removed by Stöhr et al. [61] and its

only genus Ophiocanops is included in Ophiomyxidae. The genera

Ophiomoeris and Ophiochondrus, formerly placed in Hemieuryalidae,

have recently been transferred to Ophiacanthidae [47]. The

systematics of the Euryalida has been revised recently and the

family Asteroschematidae has been lowered to subfamilial rank

within Euryalidae [51].

A biogeographic analysis of the world’s extant ophiuroid species

was performed by extracting a list of described species from the

World Ophiuroidea Database [1]. Distributional data was

obtained from a global database of museum catalogue sample

data [62], supplemented by additional records from the taxonomic

literature to ensure a coverage of all species. We selected this

database, because the World Ophiuroidea Database is complete

with regard to taxonomic information, but still lacking in

distributional data. Other possible databases that collect distribu-

tion data are the Encyclopedia of Life (EoL), the Global

Biodiversity Information Facility (GBIF) and the Ocean Biogeo-

graphic Information System (OBIS), but none of these has yet

sufficient amounts of data. The imprecise nature of the data

contained in older taxonomic literature did not permit a

quantitative approach to defining biogeographical regions.

Instead, the world’s marine environment was divided into 12 a

priori large-scale regions based on available information (Figure 6,

Table 1. Species diversity of extant Ophiuroidea, derived
from the online ‘‘World Ophiuroidea database’’, excluding
subspecies.

Order Family Genera
Species
described

Euryalida Asteronychidae 3 9

Euryalidae 10 77

Gorgonocephalidae 34 95

Ophiurida Amphilepididae 1 14

Amphiuridae 34 467

Hemieuryalidae 7 10

Ophiacanthidae 35 319

Ophiactidae 5 69

Ophiochitonidae 2 18

Ophiocomidae 8 78

Ophiodermatidae 21 109

Ophiolepididae 16 164

Ophiomyxidae 29 88

Ophionereididae 5 34

Ophiotrichidae 16 169

Ophiuridae 44 344

Total 270 2064

doi:10.1371/journal.pone.0031940.t001
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see below) and four depth strata: shelf (0–200 m), bathyal (200–

3500 m), abyssal (3500–6500 m) and hadal (below 6500 m) [63].

The aerial extent of these regions and depth strata was calculated

from the ETOPO bathymetric dataset [64]. Equatorial regions

were defined as being bounded by the 30u latitude in both

hemispheres, the approximate boundary of tropical shallow-water

coral-reef distributions [65] and the bathyal tropical-temperate

transition in the Indo-Pacific [46,59]. Polar regions were bounded

by 60u latitudes, thus separating the Antarctic continent from most

of the subantarctic islands [66]. Temperate/boreal regions were

defined as falling between these zones, 30–60u in each hemisphere.

Longitudinal boundaries were set for the equatorial and southern

temperate regions in mid-ocean reflecting the faunal relationship

between offshore areas and nearby continental margins. The

Indian Ocean boundary was set at 90uE, placing the Chagos and

St Paul/Amsterdam islands in the Indian and South Africa regions

respectively, and the Christmas/Cocos Islands and Indo-Malay

archipelago in the Indo-Pacific region. The Atlantic regions were

broadly separated by the Mid-Atlantic Ridge. The boundary in

the Pacific Ocean was placed between the eastern Pacific islands of

Juan Fernandez-Galapagos-Clipperton and the Indo-Pacific

Hawaii-Pitcairn-Easter Islands. These regions reflect our knowl-

edge of the fauna at shelf and upper bathyal depths, however, we

have adopted the same regions for deeper areas to facilitate inter-

depth comparisons. In reality, species ranges will not be exactly

congruent and adjacent biogeographic regions or depth strata are

likely to form broad transition zones, making it problematic to

define precise biogeographical boundaries [62]. The temperate

regions in particular contain enhanced species turnover between

tropical, temperate and polar faunas [62]. The lack of quantitative

location data from the older taxonomic literature also precludes

the adjustment of regional species richness by sampling effort [67].

Despite these limitations, we believe that the data are useful for a

first approximation of global ophiuroid biogeography.

Results and Discussion

Species diversity
Evaluating global ophiuroid diversity is difficult, because many

species have not been reported again since their original

description and their current taxonomic status is unknown. The

scientific effort has varied over the centuries, resulting in patchy

knowledge, and brittle stars have received comparatively little

attention during the past 50 years. Species inventories are more

reliable for better known areas such as the North Atlantic,

although, even here they are far from complete, as the discovery of

ten new species in the North Atlantic since 2003 shows [42,68,69].

Published records for less well known areas, such as the Pacific

Ocean, require careful analysis and verification, as many species

have been described more than once and need to be revised [70].

The species list presented in WoRMS has been accumulated from

publications, but many of the species names have never been

revised. Consequently, the precise number of species and their

taxonomic status change as new information is gathered.

The extant Ophiuroidea are currently divided into two orders

and 16 families; the largest are Amphiuridae (467 species),

Ophiacanthidae (319 species) and Ophiuridae (344 species), and

the majority of the species (1883) belong to the order Ophiurida

(Table 1). Species in the genera Ophiothrix and Macrophiothrix (family

Ophiotrichidae), abundant in shallow tropical habitats, are

morphologically similar and difficult to identify. Morphological

and molecular evidence suggests that their species diversity is

currently underestimated. Approximately 260 undescribed species

from various families have been putatively identified to date

(O’Hara unpublished data) and there are possibly several hundred

more remaining to be identified (Stöhr & O’Hara unpublished

data). Moreover, with the increase in molecular data, more cryptic

species can be expected to be discovered [71].

Biogeography
The 2064 described ophiuroid species are distributed from the

intertidal to hadal depths, from the equator to polar regions

(Table 2). Globally, there were approximately similar numbers of

species recorded from the shelf (n = 1313) and bathyal depth strata

(1297), although the total area of shelf (30.5 million km2) was only

a third of that from bathyal depths (93.9 million km2). Only 109

species were recorded from abyssal depths despite the massive

scale of the available habitat (240.2 million km2). Only 25 of these

species were restricted to abyssal depths, another four occur in

both abyssal and hadal habitats, and a further three were only

recorded from hadal depths (2.2 million km2). These low numbers

will almost certainly be boosted by further collection effort.

Mollusc researchers have proposed that abyssal animals are often

too sparsely distributed to maintain their own populations but

instead are largely derived by dispersal from bathyal sources [72].

Although shelf and bathyal habitats have similar numbers of

species, there was generally a considerable difference between

their constituent species [62]. In shallow water at tropical and

temperate latitudes, assemblages were dominated by the families

Ophiotrichidae, Ophionereididae, Ophiocomidae, Ophioderma-

tidae, Ophiactidae and Amphiuridae. Remaining families mostly

occurred at deeper depths. There were some exceptions, for

example Bathypectinura (Ophiodermatidae) occurred at bathyal

depths [73] and there were some species of Ophiacantha

(Ophiacanthidae) and Ophiura (Ophiuridae) in coastal zones. Some

species appeared to be eurybathic, the diminutive Amphipholis

squamata, as understood today, was found from the intertidal zone

to 1200 m, but this species is likely comprised of a complex of

several cryptic species [16,17]. Polar species tended to be more

eurybathic than temperate or tropical ones, with bathymetric

ranges of shallow water Antarctic species frequently extending

beyond 1000 m [62]. However, it was unclear whether this fauna

was derived from an emergent bathyal fauna or vice-versa (cf

[74]for octopodids).

The Indo-Pacific region had the highest species richness overall

(825 species) and at all depths (Table 2, Fig. 7). Adjacent regions

were also relatively species rich, including the North Pacific (398),

South Pacific (355) and Indian (316) due to the presence of many

Indo-Pacific species that partially extended into these regions. The

West Atlantic was a secondary region of enhanced species richness

(335). Regions of relatively low species richness include the Arctic

(73 species), East Atlantic (118), South America (124) and

Antarctic (126). Some of the species richness of the Indo-Pacific

could be attributed to its vast area (99.3 million km2). Sixty-four

percent of species (1316) were restricted to a single region. The

regions with the highest proportion of endemic species included

the East Pacific (63%) and West Atlantic (61%), although this

could be in part due to the lack of recent taxonomic reviews of the

bathyal fauna (O’Hara, unpublished data). The lowest level of

endemism was in the Arctic (8%), presumably reflecting the faunas

relatively recent origin [75]. Antarctic in contrast had 37%

endemism. Generally, the temperate regions have lower rates of

endemism, due to the overlap of tropical/temperate and

temperate/polar faunas; the exception is the North Pacific (51%).

A few species are widespread across the globe. At shelf depths,

the viviparous Amphipholis squamata has been recorded from all

regions except the poles. A few shelf species occur in all tropical

regions, for example the abundant fissiparous species Ophiactis
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savignyi. However, molecular analyses suggest that both these

species may consist of a suite of cryptic forms [16,76]. Species

ranges tend to be greater in the bathyal and abyssal zones, for

example Asteronyx loveni Müller & Troschel, 1842, Ophiura irrorata

(Lyman, 1878), Ophiomusium lymani Wyville-Thomson, 1873,

Ophiocten hastatum Lyman, 1878 and Amphiophiura bullata (Wyville-

Thomson, 1878) have been reported from across the Atlantic,

Indian, Pacific and Southern Oceans, although again some of

these species appear to have morphological variants [77] that need

to be confirmed by modern molecular studies. Seamount faunas

are also widespread at temperate latitudes, for example Ophiactis

abyssicola (M. Sars, 1861) and Ophiacantha spectabilis G.O. Sars,

1871, often associated with cold-water corals [62].

Most differences between regional and intra-regional faunas

tend to be at the species-level. All families and most genera are

longitudinally widespread; there is little evidence for the long-term

isolation of oceanic basins or seas [62]. Speciation processes are

unclear, particularly at bathyal and abyssal depths. There are

some cases where similar species appear to be segregated by depth

(e.g. Ophiacantha bidentata (Bruzelius, 1805) and O. fraterna Verrill,

Figure 7. Global distribution of described species of Ophiuroidea, based on Table 2.
doi:10.1371/journal.pone.0031940.g007

Table 2. Species richness and endemism of all described ophiuroids across 12 a priori defined regions and four depth strata.

Number of species in each depth stratum Area (million km2)

Region

No of
species
in region

Species
endemic to
region (%)

Shelf
(0–200 m)

Bathyal
(200–
3500 m)

Abyssal
(3500–
6500 m)

Hadal
(.6500 m)

Unknown
depth #

Shelf (0–
200 m)

Bathyal
(200–
3500 m)

Abyssal
(3500–
6500 m)

Hadal
(.6500 m) Total

Arctic 73 8.2 36 60 7 0 0 6.9 8.9 1.6 0.0 17.4

North Atlantic 241 23.7 138 180 30 0 3 4.8 8.1 8.9 0.0 21.8

North Pacific 398 50.8 262 259 20 2 21 2.8 4.5 18.3 0.7 26.3

West Atlantic 335 60.6 217 229 16 0 3 2.2 4.5 11.0 0.2 18

East Atlantic 118 39.8 73 63 17 2 0 0.6 3.7 21.0 0.1 25.4

Indian 316 25.6 222 160 19 1 4 1.7 8.9 18.0 0.0 28.5

Indo-Pacific 825 47.5 551 507 31 6 6 6.8 21.2 70.3 1.0 99.3

East Pacific 186 62.9 92 111 28 1 4 0.4 6.0 13.5 0.0 19.9

South Africa 201 21.9 152 135 20 1 4 0.2 7.9 20.0 0.0 28.1

South Pacific 355 22.8 235 259 21 0 0 0.9 9.9 33.8 0.0 44.6

South America 124 24.2 79 102 17 1 1 1.5 2.8 11.1 0.2 15.6

Antarctic 126 36.5 72 105 27 1 5 1.6 7.4 12.8 0.0 21.8

Unknown # 9 1 8

Total species * 2064 1313 1297 109 7 52

The area of each region/depth strata was calculated from the ETOPO bathymetric dataset (Amante & Eakins 2008).
# A few species were described from specimens without known sample locality or depth information.
*As species can occur in more than one region and depth stratum, the total species counts are not a simple arithmetic sum of regional species richness.
doi:10.1371/journal.pone.0031940.t002
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1885 in the Atlantic [69]; Acrocnida brachiata (Montagu, 1804)/

spatulispina Stöhr & Muths, 2010 [15]). There are several shallow-

water species separated by the Isthmus of Panama which has

emerged over the past 2–19 million years [78], for example

Ophiocoma pumila Lütken, 1856/O. alexandri Lyman, 1860 and O.

echinata (Lamarck, 1816)/O. aethiops Lütken, 1859 [79]. Some

genera have interesting anti-tropical distributions, for example

Ophiopteris papillosa (Lyman, 1875) (California) and O. antipodum

E.A. Smith, 1877 (New Zealand). However, these distributions

may be relicts from former more widespread ranges. For example,

fossils of the genus Ophiocrossota, currently restricted to southern

Australia, have been found in Eocene and Miocene strata of North

America [80,81].

Global patterns of benthic species richness have been assembled

for several other benthic groups including bivalves/gastropods

[82], galatheids [83], stylasterids [84] and ascidians [85] Some

patterns appear to be general; latitudinally, the poles have reduced

species richness, and longitudinally the Pacific Ocean tends to be

more speciose than the Atlantic. Other regional patterns are more

taxon specific. The East Indo-West Pacific region is the peak of

species richness for bivalves/gastropods and galatheids, whereas

the South-West Pacific appears to be the peak for stylasterids and

ascidians. Species richness in the eastern Pacific is high for bivalves

and gastropods but low for galatheids, in South America it is

relatively high for ascidians but also low for galatheids, in the

northern Pacific it is high for bivalves and ascidians but low for

gastropods and galatheids, and South Africa is very high for

gastropods. It is unclear how much these patterns are biased by

differences in spatial and bathymetric sampling effort and in

regional definitions.

Human interest
Ophiuroids are rarely harvested directly by humans, although

some species of Ophioderma and Ophiarachna are sold as marine

aquarium species (O’Hara, unpublished data). On the other hand,

as they are a dominant component of seafloor faunas, they can be

impacted by other human activities such as mining or trawling

[86]. Scientifically, ophiuroids have emerged as a key taxonomic

group for macro-ecological or biogeographic studies, because they

occur in all marine habitats, have a range of trophic and life

history strategies, and are diverse and abundant enough to

statistically analyse without being so diverse that every survey

becomes a major taxonomic exercise. From a palaeontological

perspective, ophiuroids offer a high potential to act as model

organisms for the assessment of macro-evolutionary patterns and

the impact of palaeoceanographic events on the composition and

diversity of past communities, because their skeletal parts are

taxonomically identifiable and occur in great numbers as

microfossils in most marine sediments, including deep-sea cores.

Future research
Future biodiversity research must include additional molecular

studies. We need a comprehensive phylogeny of the group, the

lack of which is currently a major impediment to understanding

ophiuroid biogeography and evolution. In many cases we do not

understand species limits. Almost every molecular study on

ophiuroids to date has resulted in the discovery of further cryptic

species [71]. Conversely, bathyal and abyssal species may be more

widespread than we think because regional variants have been

described as separate species.
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42. Stöhr S, Segonzac M (2005) Deep-sea ophiuroids (Echinodermata) from
reducing and non-reducing environments in the North Atlantic Ocean. Journal

of the Marine Biological Association U.K. 85: 383–402.

43. Paterson GLJ, Baker AN (1988) A revision of the genus Ophiambix

(Echinodermata: Ophiuroidea) including the description of a new species.

Journal of Natural History 22: 1579–1590.

44. Warner GF (1971) On the ecology of a dense bed of the brittle-star Ophiothrix

fragilis. Journal of the Marine Biological Association U.K. 51: 267–282.

45. Broom DM (1975) Aggregation behaviour of the brittle-star Ophiothrix fragilis.

Journal of the Marine Biological Association U.K. 55: 191–197.

46. Smith AB, Paterson GLJ, Lafay B (1995) Ophiuroid phylogeny and higher

taxonomy: morphological, molecular and palaeontological perspectives. Zoo-
logical Journal of the Linnean Society 114: 213–243.

47. Martynov A (2010) Reassessment of the classification of the Ophiuroidea

(Echinodermata), based on morphological characters. I. General character
evaluation and delineation of the families Ophiomyxidae and Ophiacanthidae.

Zootaxa 2697: 1–154.

48. Martynov A (2010) Structure of the arm spine articulation ridges as a basis for
taxonomy of Ophiuroidea (a preliminary report). In: Harris L, Böttger SA,
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71. Boissin E, Stöhr S, Chenuil A (2011) Did vicariance and adaptation drive cryptic

speciation and evolution of brooding in Ophioderma longicauda (Echinodermata:
Ophiuroidea), a common Atlanto-Mediterranean ophiuroid? Molecular Ecology

22: 4737–4755.

72. Rex MA, McClain CR, Johnson NA, Etter RJ, Allen P, et al. (2005) A source–

sink hypothesis for abyssal biodiversity. American Naturalist 165: 163–178.

73. Madsen FJ (1973) The Ophiodermatidae. Galathea Report 11: 133–143.

74. Strugnell J, Cherel Y, Cooke IR, Gleadall IG, Hochberg FG, et al. (2011) The

Southern Ocean: Source and sink? Deep-Sea Research II 58: 196–204.

75. Dunton M (1992) Arctic biogeography: The paradox of the marine benthic

fauna and flora. Trends in Ecology & Evolution 7: 183–189.

76. Roy MS, Sponer R (2002) Evidence of a human-mediated invasion of the

tropical western Atlantic by the ‘‘world’s most common brittlestar’’. Proceedings
of the Royal Society of London B 269: 1017–1023.

77. Paterson GLJ (1985) The deep-sea Ophiuroidea of the North Atlantic Ocean.
Bulletin of the British Museum (Natural History), Zoology Series 49: 1–162.

78. Haug GH, Tiedemann R (1998) Effect of the formation of the Isthmus of
Panama on Atlantic Ocean thermohaline circulation. Nature 393: 673–676.

79. Devaney DM (1974) Shallow-water asterozoans of Southeastern Polynesia II.
Ophiuroidea. Micronesica 10: 105–204.

80. Blake DB, Allison RC (1970) A new west American Eocene species of the recent
Australian ophiuroid Ophiocrossota. Journal of Palaeontology 44: 925–927.

Diversity of Brittle Stars

PLoS ONE | www.plosone.org 13 March 2012 | Volume 7 | Issue 3 | e31940



81. Blake DB (1975) A new west American Miocene species of the recent Australian

ophiuroid Ophiocrossota. Journal of Palaeontology 49: 501–507.
82. Linse K, Griffiths HJ, Barnes DK, Clarke A (2006) Biodiversity and

Biogeography of Antarctic and Sub-Antarctic Mollusca. Deep-Sea Research II

53: 985–1008.
83. Schnabel KE, Cabezas P, McCallum A, Macpherson E, Ahyong ST, et al.

(2011) Chapter 6: World-wide distribution patterns of squat lobsters. In:
Poore GCB, Ahyong ST, Taylor J, eds. The biology of squat lobsters.

Melbourne: CSIRO Publishing. pp 149–182.

84. Cairns SD (2011) Global diversity of the Stylasteridae (Cnidaria: Hydrozoa:

Athecatae). PLoS ONE 6: e21670. doi:10.1371/journal.pone.0021670.

85. Shenkar N, Swalla BJ (2011) Global Diversity of Ascidiacea. PLoS ONE 6:

e20657. doi:10.1371/journal.pone.0020657.

86. Koslow A, Gowlett-Holmes K, Lowry JK, O’Hara TD (2001) The seamount

macrofauna off southern Tasmania: community structure and impacts of

trawling. Marine Ecology Progress Series 212: 111–125.

Diversity of Brittle Stars

PLoS ONE | www.plosone.org 14 March 2012 | Volume 7 | Issue 3 | e31940


