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Abstract

Protein function is often modulated by protein-protein interactions (PPIs) and therefore defining the partners of a protein
helps to understand its activity. PPIs can be detected through different experimental approaches and are collected in
several expert curated databases. These databases are used by researchers interested in examining detailed information on
particular proteins. In many analyses the reliability of the characterization of the interactions becomes important and it
might be necessary to select sets of PPIs of different confidence levels. To this goal, we generated HIPPIE (Human Integrated
Protein-Protein Interaction rEference), a human PPI dataset with a normalized scoring scheme that integrates multiple
experimental PPI datasets. HIPPIE’s scoring scheme has been optimized by human experts and a computer algorithm to
reflect the amount and quality of evidence for a given PPI and we show that these scores correlate to the quality of the
experimental characterization. The HIPPIE web tool (available at http://cbdm.mdc-berlin.de/tools/hippie) allows researchers
to do network analyses focused on likely true PPI sets by generating subnetworks around proteins of interest at a specified
confidence level.
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Introduction

Protein function occurs or is regulated by protein interactions

and therefore knowledge on the partners of a given protein can

give us important information regarding its activity. For instance,

specific protein-protein interactions (PPIs) can be involved in

diseases (see e.g. [1]). PPIs can be evaluated by many experimental

methodologies, which have hugely different degrees of confidence

and different experimental set-ups. For instance, while yeast two

hybrid (Y2H) identifies direct physical interactions between two

proteins, mass spectrometry (MS) based datasets report compo-

nents of protein complexes, which may or may not be in direct

physical contact. In addition to experimental methods, computa-

tional methods propose protein interactions based, for example, on

orthology, protein domains known to interact, co-expression and

functional annotations [2,3].

PPIs are collected in several databases that make the data and

the evidence behind it easily accessible and allow different

mechanisms to query and display the data [4,5,6,7,8,9,10]. These

resources are very useful for researchers interested in checking a

small number of particular proteins of interest. However, PPI data

can also be used globally for systematic network analyses,

prediction of protein properties, and evaluation of novel datasets

of PPIs produced in a high-throughput fashion.

Computational use of PPI datasets often requires selecting PPIs at

particular levels of confidence. For example, the quality of a novel

PPI dataset may be evaluated by its overlap with known interactions

defined with high reliability, whereas a statistical analysis might

require a large number of interactions therefore benefiting from a

less restricted set of PPIs. The flexible selection of PPI datasets at

various confidence levels requires a continuous scoring scheme for

PPIs reflecting the reliability of their experimental characterization.

With the objective of creating a resource allowing the selection

of PPIs by experimental confidence cut-offs, we generated HIPPIE

(Human Integrated Protein-Protein Interaction rEference), a

scored human PPI collection integrated from multiple sources.

Following [8], we developed an expertly curated scoring scheme

that takes into account the reliability of different experimental

evidence in the definition of a PPI combining three types of

information: experimental techniques used, number of studies

finding the PPI, and reproducibility in model organisms.

A web tool to browse the data as well as the scored PPI dataset

are provided at http://cbdm.mdc-berlin.de/tools/hippie. The

scored dataset includes information on the data we used to build

it so that modifications of the scoring mechanism can be easily

achieved. We illustrate the usefulness of HIPPIE in increasing the

coverage of novel PPI datasets and demonstrate that its scoring

scheme reflects the reliability of the reported interactions.

Methods

2.1 Sources
Interactions were retrieved from the following public databases:

BioGRID (version 2.0.62; release date: March 16, 2010) [4], DIP
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(release date: December 30, 2009) [5], HPRD (version 8; release

date: July 6, 2009) [6], IntAct (release date: March 29, 2010)

[7], MINT (release date: 9 November 2009) [8], BIND (2004

release [11]), and MIPS (published: November 5, 2004) [10].

Genetic interactions were removed from BioGRID. Additionally,

we integrated interactions from manually selected studies

[12,13,14,15,16,17,18,19,20,21,22]; interactions from these studies

were integrated that were not contained in the public databases at

the time of integrating the sources. All resources integrated in

HIPPIE are summarized in Table 1.

Where available, we retrieved the information on the

originating study and the experimental methodology used to

measure each interaction from the source databases and also

assigned an experimental category to interactions from the

additionally included studies. As a result, more than 99% of all

interactions in HIPPIE are associated to at least one of the

methods listed in Table 2 and are annotated with the studies in

which they were detected.

To add to the confidence scoring of experimentally verified

human PPIs a component based on experimental evidence in non-

human organisms we included data from three databases that map

interactions between non-human protein pairs to their human

orthologs: HomoMINT (release date: March 5, 2009) [23], I2D

(release date: January 7, 2010) [2] and the PPI dataset from [24].

2.2 Identifier mapping
Different public PPI databases and datasets use different types of

gene or protein identifiers. We aimed at mapping all protein pairs

listed in HIPPIE to Entrez Gene and UniProt identifiers. For this

purpose we applied the database identifier mapping tables curated by

UniProt [25] and the HUGO Gene Nomenclature Committee

(HGNC) [26]. We mapped all database entries to their canonical

representatives and did not consider splicing forms. In the web

interface the data can be queried either by protein (UniProt id or

accession) or by gene identifier (Entrez Gene id or gene symbol).

Interactions containing identifiers that could not be mapped to

human Entrez Gene ids or UniProt ids were not included in HIPPIE.

Mapping PPIs to the genes encoding the interacting proteins is

affected by certain ambiguity since the same protein sequence may

be encoded by duplicated genomic loci. In the flat file version of

HIPPIE these ambiguous PPIs are expanded such that a given PPI

is represented by all possible combinations of gene identifiers.

2.3 Score calculation
For each interaction a score S between 0 and 1 was calculated

reflecting the reliability of its combined experimental evidence.

This score was calculated as a weighted sum of three different

subscores which are ss (a function of the number of studies in

which an interaction was detected), st (a function of the number

and quality of experimental techniques used to measure an

interaction; see below for details) and so (a function of the number

of non-human organisms in which an interaction was reproduced).

Each of these three subscores si was calculated with a non-linear

saturating function of the form:

si(n)~
2

1ze({ai�n)
{1n

such that si(0) = 0 and si(‘) = 1, where the ai are constants that

control the steepness of the function.

For subscore ss, n is the number of different studies where the

interaction was reported (number of PubMed identifiers associat-

ed), regardless of whether multiple experimental evidence was

provided in each study.

For subscore so, n is the number of species where orthologs of the

interacting proteins could be defined and were found experimen-

tally to interact (currently Bos taurus, Caenorhabditis elegans, Canis

familiaris, Drosophila melanogaster, Gallus gallus, Mus musculus, Rattus

norvegicus, Saccharomyces cerevisiae, and Sus scrofa).

For subscore st, n is a sum of scores from different experimental

techniques by which an interaction was verified (even if used in the

same study). Most PPI databases use controlled vocabulary

descriptors for these experimental techniques as defined by the

PSI-MI ontology [27], however for some terms we could not find an

equivalent ontology term. Manual curation was used to assign a

score to each PPI detection method ranging from 0 (no experiment

assigned, less than 1% of PPIs) to 10. Scores and corresponding PSI-

MI codes are displayed in Table 2. Methods that can ascertain

interactions with the highest reliability, such as in vitro techniques

like X-ray crystallography, were assigned the highest scores.

Complementation-based assays and affinity based technologies

were roughly equally scored with an average value of 5, slightly

increased for those methods that are used generally in homologous,

more physiological setups, such as FRET. Methodologies that do

not directly provide evidence for interaction, such as colocalization

or cosedimentation, are scored with the lowest values. The total

score S was calculated as a weighted sum of the three subscores:

S~ws � sszwo � sozwt � st

with wszwozwt~1.

It is important to note that our dataset does not include

interactions not experimentally verified with human proteins: no

interaction received a score alone from its verification in non-

human organisms. We also remark that this scoring scheme does

not consider computational evidence other than the definition of

orthology relations from human proteins to proteins in other

organisms.

Table 1. PPI data sources integrated in HIPPIE.

PPI dataset Reference Size

HPRD [6] 40110

BioGRID [4] 30027

IntAct [7] 28073

MINT [8] 14094

Rual05 [19] 6946

Lim06 [17] 5579

Bell09 [13] 3300

Stelzl05 [20] 3232

DIP [5] 1618

BIND [11] 1415

Colland04 [21] 882

Lehner04 [16] 385

Albers05 [12] 290

MIPS [10] 252

Venkatesan09 [22] 239

Kaltenbach07 [15] 227

Nakayama02 [18] 84

HIPPIE 72916

doi:10.1371/journal.pone.0031826.t001

Experiment-Based Scores for Protein Interactions
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Table 2. Scores for experiment types.

Technique PSI score Technique PSI Score

3 hybrid method MI:0588 5 footprinting MI:0417 3

acetylation assay 7.5 FRET 6

Affinity Capture-Luminescence 5 gal4 vp16 complementation MI:0728 5

Affinity Capture-MS 5 genetic interference MI:0254 0

Affinity Capture-RNA 2 gst pull down MI:0059 5

Affinity Capture-Western 5 gtpase assay MI:0419 7.5

affinity chromatography technology MI:0004 5 his pull down MI:0061 5

affinity technology MI:0400 5 homogeneous time resolved fluorescence MI:0510 7

anti bait coimmunoprecipitation MI:0006 5 imaging technique MI:0428 1

anti tag coimmunoprecipitation MI:0007 5 in vitro MI:0492 1

antibody array MI:0678 5 in vivo MI:0493 1

array technology MI:0008 3 in-gel kinase assay MI:0423 7.5

atomic force microscopy MI:0872 9 inferred by curator MI:0364 1

beta galactosidase complementation MI:0010 5 ion exchange chromatography MI:0226 3

beta lactamase complementation MI:0011 5 isothermal titration calorimetry MI:0065 10

bimolecular fluorescence complementation MI:0809 6 kinase homogeneous time resolved fluorescence MI:0420 7.5

Biochemical MI:0401 1 lambda phage display MI:0066 6

Biochemical Activity 5 lex-a dimerization assay MI:0369 5

bioluminescence resonance energy transfer MI:0012 6 light microscopy MI:0426 1

Biophysical MI:0013 1 light scattering MI:0067 10

blue native page MI:0276 3 mammalian protein protein interaction trap MI:0231 6

chromatin immunoprecipitation assay MI:0402 2 mass spectrometry studies of complexes MI:0069 5

chromatography technology MI:0091 1 methyltransferase assay MI:0515 7.5

circular dichroism MI:0016 9 methyltransferase radiometric assay MI:0516 7.5

classical fluorescence spectroscopy MI:0017 7.5 molecular sieving MI:0071 2

Co-crystal Structure 10 no experiment assigned 0

Co-fractionation 1 nuclear magnetic resonance MI:0077 10

Co-localization 1 peptide array MI:0081 5

Coimmunoprecipitation MI:0019 5 phage display MI:0084 6

colocalization by fluorescent probes cloning MI:0021 1 phosphatase assay MI:0434 7.5

colocalization by immunostaining MI:0022 1 phosphotransfer assay 7.5

colocalization/visualisation technologies MI:0023 1 polymerization MI:0953 5

comigration in gel electrophoresis MI:0807 3 protease assay MI:0435 7.5

comigration in non denaturing gel electrophoresis MI:0404 3 protein array MI:0089 5

comigration in sds page MI:0808 3 protein complementation assay MI:0090 5

competition binding MI:0405 5 protein cross-linking with a bifunctional reagent MI:0031 5

confocal microscopy MI:0663 1 protein kinase assay MI:0424 7.5

Copurification MI:0025 2 protein tri hybrid MI:0437 5

Cosedimentation MI:0027 2 Protein-peptide 5

cosedimentation in solution MI:0028 2 Protein-RNA 0

cosedimentation through density gradient MI:0029 2 pull down MI:0096 2.5

cross-linking study MI:0030 5 pull-down/mass spectrometry 5

deacetylase assay MI:0406 7.5 Reconstituted Complex 10

demethylase assay MI:0870 7.5 reverse phase chromatography MI:0227 1

dihydrofolate reductase reconstruction MI:0111 6 reverse two hybrid MI:0726 5

dynamic light scattering MI:0038 9 ribonuclease assay MI:0920 7.5

electron microscopy MI:0040 5 saturation binding MI:0440 7.5

electron paramagnetic resonance MI:0042 9 scintillation proximity assay MI:0099 7.5

electron tomography MI:0410 9 solid phase assay MI:0892 1

electrophoretic mobility shift assay MI:0413 2 surface plasmon resonance MI:0107 10

Experiment-Based Scores for Protein Interactions
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2.4 Parameter selection
The six free parameters of the scoring formula (as, ao, at, ws, wo and

wt) were optimized by performing a grid search in the parameter

space. We performed the search in the range [0, 3] for the ai and in

the range [0, 1] for the wi. We chose a step width of 0.1 for both ai

and the wi. The step width was chosen sufficiently small such that

selecting neighboring parameter combinations resulted only in small

changes in the interaction scores which decreased the probability of

missing an optimal solution. Constraints were set on the weights wi

by requiring that they sum up to 1. Parameter combinations leading

to only few discrete scores were excluded (this happened, for

example, when wt was set to 0, since the different experimental

weights account for a large fraction of the score’s granularity).

PPIs are sometimes reported in multiple studies. We reasoned

that we could use this property to assess the performance of a

parameter combination. To do this evaluation we used the IntAct

dataset, which currently consists of 28 073 interactions (38.5% of

HIPPIE). This dataset has explicit associations between studies

and experiments, and the experimental information is annotated

following the PSI-MI format.

The assessment of performance of a parameter set was done by

successively removing each one of the 109 studies in IntAct that

contain at least 10 interactions and more than two PPIs found in

multiple studies. For each study j, we recalculated the scores of the

remaining dataset, IntActred, found the set of PPIs described both

in the study j and in IntActred, IntActred\studyj

� �
, and

computed the deviation from random expectation of the number

of highly scored interactions among the overlap:

devj~
scores IntActred\studyj

� �
wQ3

�� ��

IntActred\studyj

�� ��
0:25

where Q 3 is the upper quartile of the score distribution of IntActred.

To measure the overall performance of a parameter combina-

tion we chose a function f of the weighted mean of the logarithm of

devi over all studies:

f ~

P
j vj � log2devj

n

where the weights vi were chosen proportional to the overlap size

between IntActred and studyj and n is the number of studies. The

best parameter combination maximizes f.

We found several parameter combinations (several thousand

optimal combinations out of more than 700 000 different

parameter combinations tested) maximizing the function f

(max(f) = 1.023). From the equally well performing parameter

combinations we chose the set of parameters that resulted in the

largest spread of the distribution of scored interactions. For that

purpose the scores of the entire HIPPIE were repeatedly

calculated for each of the optimal parameter combination and

for each score distribution the interquartile range (iqr) was

determined. We found that the parameter set [as = 2.3, ao = 1.6,

at = 0.2, ws = 0.6, wo = 0.1, wt = 0.3] maximized both f and iqr.

Results

HIPPIE is a dataset of experimentally measured human PPI

derived from several publicly available PPI datasets (Table 1). For

reference, we distribute a stable release of HIPPIE consisting of

72 916 interactions, which was used in this manuscript for several

descriptive analyses (Table S1; HIPPIE version 1.2). The live version

of HIPPIE is monthly updated making use of the web query interface

PSICQUIC [28], which allows us to automatically retrieve the

newest interaction data from most of the manually curated source

databases (BioGrid, IntAct, MINT, DIP and BIND) and integrate

the new interactions and updated evidence records into HIPPIE.

The network is accessible via a web tool (http://cbdm.mdc-

berlin.de/tools/hippie) that allows for querying the interactions by

a gene symbol, Entrez gene id or UniProt identifier (id and

accession). On the result page a confidence score is listed with each

interaction partner of the query protein and detailed information

on the evidence contributing to the confidence score can be

accessed. Links to the original studies are provided.

A typical problem after generation of experimental results

producing a list of genes, proteins and/or interactions between

them, is the evaluation of the results in relation to the known PPI

data. For example, a researcher may have obtained proteomics

data for a few proteins of interest and wants to evaluate the novelty

of the interactions, or the possible relation of the interactors with a

disease protein of interest.

Technique PSI score Technique PSI Score

electrophoretic mobility supershift assay MI:0412 2 t7 phage display MI:0108 6

enzymatic study MI:0415 1 tandem affinity purification MI:0676 5

enzyme linked immunosorbent assay MI:0411 5 tox-r dimerization assay MI:0370 5

experimental interaction detection MI:0045 1 transcriptional complementation assay MI:0232 5

far western blotting MI:0047 5 transmission electron microscopy MI:0020 5

filamentous phage display MI:0048 6 two hybrid fragment pooling approach MI:0399 5

filter binding MI:0049 5 Two-hybrid MI:0018 5

fluorescence correlation spectroscopy MI:0052 10 ubiquitin reconstruction MI:0112 5

fluorescence microscopy MI:0416 1 x ray scattering MI:0826 9

fluorescence polarization spectroscopy MI:0053 10 x-ray crystallography MI:0114 10

fluorescence technology MI:0051 1 x-ray fiber diffraction MI:0825 9

fluorescence-activated cell sorting MI:0054 1 yeast display MI:0115 5

fluorescent resonance energy transfer MI:0055 6

doi:10.1371/journal.pone.0031826.t002

Table 2. Cont.

Experiment-Based Scores for Protein Interactions
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To facilitate this analysis, HIPPIE can be queried with a set of

proteins and/or interactions between them from which a network

of known data around the proteins of interest is constructed. The

online tool will identify interactions between the proteins

submitted (layer 0 network), or their interactors not contained in

the query set (layer 1 network). The computation of networks with

more layers might be lengthy if hundreds of protein partners have

to be analysed. For this we provide a Java command line tool

(available from http://cbdm.mdc-berlin.de/tools/hippie and also

deposited at the SourceForge open software archive: https://

sourceforge.net/projects/hippiecbdm) that will do the computa-

tion on the local machine of the user for large input sets or

neighbours of neighbours. A confidence threshold to control the

reliability and size of the constructed network can be also applied.

Additionally, we provide a filter option for the PSI-MI interaction

type annotation provided by most of HIPPIE’s source databases.

This feature allows for selecting direct physical interactions from

HIPPIE. The thereby generated HIPPIE subnetworks can be

exported from HIPPIE for further analyses or can be visualized

using the tool Cytoscape Web [29], which has been integrated into

HIPPIE.

The web site also offers the entire HIPPIE dataset for download

in two different formats: in PSI-MI TAB 2.5 format as defined by

the Protein Standard Initiative [27] and in our own tab delimited

flat file format. Currently we distribute a freeze version (version

1.2) used in this manuscript for analyses, and the monthly updated

version.

While merging the different data sources we kept track of the

information about which experimental system type was used to

detect each single interaction and whether there were several

studies where the interaction was found. Additionally we retrieved

the interaction data from PPI databases that link interactions in

non-human model organisms to their human orthologs. From

these different types of information (experimental systems, number

of studies and reproducibility in other organisms) we calculated an

overall score reflecting the reliability of each interaction (See

Methods for details and Table 2).

We note that the different experimental methodologies behind

the PPIs in HIPPIE are able to detect direct physical interactions

between proteins to a varying degree. Even though some of them

are in fact measuring co-membership in larger protein-complexes

we will refer to all types of associations detected by these methods

as interactions or PPIs. The HIPPIE score tries to reflect both the

reliability of the various methods as well as the ability to detect

direct rather than indirect interactions.

The number of PPIs derived from different experimental system

types was very variable. HIPPIE integrates various datasets dealing

with different experimental systems and thus contains a larger

amount of interactions than each of those sets separately (Table 1).

Values for three well populated and meaningful sources of PPIs,

Y2H, anti-bait coimmunoprecipitation (Coprep), and tandem

affinity purification (TAP) are shown in Figure 1 that cover 78% of

the total amount of proteins in the current version of HIPPIE, but

only around 50% of its interactions. Coprep and TAP share

relatively many PPIs between each other (139 PPIs) compared to

the other pairwise overlaps between methods. For example, TAP

shares 95 interactions with Y2H despite the much higher amount

of Y2H interactions as compared to Coprep. This higher overlap

between Coprep and TAP in comparison with the Y2H data

might reflect the similarity between the first two approaches in

comparison with the latter, as Coprep and TAP are both based on

antibody capture of a protein complex while Y2H is based on the

reconstitution of a binary interaction inside of a heterologous

system (yeast).

To illustrate the benefit of using a large dataset such as HIPPIE,

we compared it with novel high-throughput PPI datasets not used

for its production. We chose two high-throughput PPI datasets

from the recent literature: a Y2H dataset, Y2He [30], containing

551 PPIs between 434 proteins and a MS dataset, MSe [31],

containing 711 PPIs between 424 proteins. The coverage of the

Y2He and MSe datasets by HIPPIE was of 120 (21.8%) and 73

(10.3%) PPIs, respectively.

We evaluated the usefulness of the HIPPIE score using the two

novel datasets. The HIPPIE database was divided in a high quality

Figure 1. Coverage of HIPPIE and overlap by three technique specific datasets. Left: proteins. Right: PPIs. Y2H is yeast-two-hybrid, Coprep
is anti-bait coimmunoprecipitation and MS is affinity capture mass spectrometry. The protein numbers show that Y2H can focus on many proteins
that have not been targeted by the other two techniques. Together the three techniques already cover 80% of all proteins currently considered in
HIPPIE (i.e. 80% of all proteins in HIPPIE participate in at least one Y2H, Coprep or MS experiment). However, the overlap in PPIs between these
datasets and to the remainder of HIPPIE is much smaller indicating that PPI detection is technique specific. Nevertheless, one can appreciate that
similar techniques have a bias towards detecting similar PPIs, here illustrated by the significant overlap between Coprep and MS and by the little
overlap of Y2H to the other two techniques.
doi:10.1371/journal.pone.0031826.g001

Experiment-Based Scores for Protein Interactions
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subset containing the top 25% highest scoring interactions (score

. = 0.73) and a lower quality subset (score ,0.73; see Figure 2).

Then, we compared the fraction of PPIs in each HIPPIE subset

that was recalled by the novel dataset. If the scores are meaningful

one would expect better recall of the set with high-confidence

scores.

To measure the recall of HIPPIE by an external dataset of PPIs

one has to consider that some HIPPIE PPIs may not be detectable

by the experimental setup used to produce the external dataset. In

the case of Y2H and MS datasets a number of proteins are used as

baits. Therefore, we considered for each of these studies that the

‘‘detectable PPIs’’ from HIPPIE were those where at least one of

the interacting proteins was a bait in the study considered

(Table 3). The values of detectable PPIs and recall were used to

calculate one-sided Fisher’s exact tests to assess the significance of

the differences in recall between high and low confidence HIPPIE

subsets. The high quality subset had the largest overlaps in

percentage with the PPIs of the novel datasets and these overlaps

were significant (Table 3; p-values of 6.40e-15 and 1.75e-6 for

Y2He and MSe, respectively) suggesting that the PPI score

correlates with experimental reproducibility.

Discussion

In this work we presented HIPPIE, an integrated dataset of

human protein interaction data scored according to experimental

evidence. This resource has been created for those researchers that

need to use globally the complete knowledge on human protein

interactions. This is required in systems biology studies and in the

evaluation of high-throughput results (e.g. novel PPI datasets) that

require contrasting results with interactions selected for a

particular level of reliability.

HIPPIE currently integrates 72 916 interactions from several

public PPI resources scored according to confidence. For

comparison, the complete human interactome map has been

estimated to contain between 200 000 and 400 000 interactions

(according to [32] and [33], respectively) suggesting that our

knowledge of the human interactome is still incomplete.

Figure 2. Distribution of HIPPIE confidence scores. Interactions with scores above 0.73 (black bars) constitute only 25% of all and could be
considered high-confidence interactions. According to the design of the scoring function, such score implies that the interaction is supported by
multiple evidence.
doi:10.1371/journal.pone.0031826.g002

Table 3. Coverage of HIPPIE by novel datasets.

HIPPIE subset HIPPIE subset size Y2He MSe

detectable
PPIs

Overlap PPIs
(recall)

detectable
PPIs

Overlap PPIs
(recall)

score . = 0.73 18592 2239 75 (3.3%) 322 41 (12.7%)

score ,0.73 54324 5760 45 (0.8%) 806 32 (4.0%)

doi:10.1371/journal.pone.0031826.t003

Experiment-Based Scores for Protein Interactions
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Nevertheless, producing a large collection of integrated PPI data is

critical for its usability because novel high-throughput PPI datasets

often contain just hundreds of PPIs and might have little overlap

with smaller existing PPI resources integrated in HIPPIE.

Several resources have been created that, like HIPPIE, integrate

PPI data from multiple sources but do not have a focus on

distributing a simple scored dataset, while offering excellent tools

to examine evidence behind each PPI (e.g. iRefWeb [34]) or do

not focus on experimentally verified interactions (e.g. STRING

[35]). Some other databases offer a continuous confidence scoring

scheme, e.g. MINT [8] and HAPPI [36], but they do not allow

batch scoring of PPI sets or the exclusive retrieval of high

confidence interactions and lack the integration of several

important high-throughput experimental datasets. The scoring

system of MINT is closer to the one we use as it considers levels of

technical evidence, number of studies and orthology [8]; however,

as the PPI data from MINT is manually curated, the amount of

human PPIs in MINT is currently less than a third of those in

HIPPIE, limiting its use in the evaluation of novel datasets. Finally,

in contrast with MINT and HIPPIE, HAPPI contains only a small

fraction of PPIs experimentally derived in human while the

majority are either computationally predicted or inferred from

other species.

We are aware that any assignment of reliability scores to

experimental techniques necessarily reflects the individual belief of

researchers. We tried however to base our selection of parameters

and weights in the scoring formula on objective criteria by

optimizing the performance of our scoring scheme in assigning high

values to reproducible interactions. For researchers who nevertheless

wish to modify either the selected parameters or the scores assigned

to the different techniques we offer a tool at our homepage that

allows the scoring of HIPPIE using an altered set of these values.

HIPPIE has been used for the evaluation of existing novel PPI

datasets showing that it increases their coverage over individual

resources and that its scoring scheme correlates with the ability to

find a PPI in experimental data not included in the database

(Table 3). A web tool to query the data, the scored PPI dataset as

well as the raw data are available at http://cbdm.mdc-berlin.de/

tools/hippie. The tool allows batch annotation of datasets of PPIs.

Future work on HIPPIE will be directed towards the inclusion of

novel datasets and versions for major model organisms.

Supporting Information

Table S1 Scored dataset of PPIs. The columns indicate (1)

UniProt identifier and (2) Entrez Gene identifier of the first protein

partner, (3) UniProt identifier and (4) Entrez Gene identifier of the

second protein partner, (5) score and (6) a comment field

summarizing the origin of the evidence. Evidence is arranged in

three types: experiments, pmids, and sources. Experiment types

are indicated in Table 2. Pmids are the PMID of manuscripts

reporting the interaction. Sources are the datasets where the

interaction was found and are indicated in Table 1. Multiple

evidences for each type are separated by semicolon and multiple

evidence codes for each type are separated by comma. If one

protein maps to several genes, each combination of genes is listed

in a separate line. This table is available from: http://cbdm.mdc-

berlin.de/tools/hippie/hippie_v1_2.txt.

(TXT)
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