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Abstract

Flagella mediated motility in Pseudomonas fluorescens F113 is tightly regulated. We have previously shown that motility is
repressed by the GacA/GacS system and by SadB through downregulation of the fleQ gene, encoding the master regulator
of the synthesis of flagellar components, including the flagellin FliC. Here we show that both regulatory pathways converge
in the regulation of transcription and possibly translation of the algU gene, which encodes a sigma factor. AlgU is required
for multiple functions, including the expression of the amrZ gene which encodes a transcriptional repressor of fleQ. Gac
regulation of algU occurs during exponential growth and is exerted through the RNA binding proteins RsmA and RsmE but
not RsmI. RNA immunoprecipitation assays have shown that the RsmA protein binds to a polycistronic mRNA encoding
algU, mucA, mucB and mucD, resulting in lower levels of algU. We propose a model for repression of the synthesis of the
flagellar apparatus linking extracellular and intracellular signalling with the levels of AlgU and a new physiological role for
the Gac system in the downregulation of flagella biosynthesis during exponential growth.
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Introduction

The Gac system (GacA/GacS) conforms a conserved [1] global

regulatory system that regulates the production of the majority of

exoproducts and virulence factors in the pseudomonads, indepen-

dently of their life-style [2–6]. In the opportunistic pathogen

Pseudomonas aeruginosa, the Gac system positively regulates the

production of the autoinducer N-butyryl-homoserine lactone and

the formation of the virulence factors pyocyanin, cyanide, lipase [7]

and elastase [8], being necessary for full virulence in animal and

plant hosts [9]. The Gac system also regulates most of the virulence

factors that have been identified in the insect pathogen P. entomophila

[10]. In phytopathogenic pseudomonads, such as P. syringae, the Gac

system has been implicated in lesion formation, production of

protease and the phytotoxin syringomycin [11], swarming motility

[12] and alginate production [13], acting as a master regulator [14].

In saprophytic pseudomonads such as P. fluorescens, P. putida, P.

aureofaciens, and others, the Gac system has been shown to regulate

the production of secondary metabolites such as the fungicide 2,4-

diacetylphloroglucinol (DAPG), cyanide, pyoluteorin, phenazine,

the phytohormone indole-3-acetic acid [15–18], extracellular

enzymes and fluorescent siderophores [19,20], and lipopeptides

such as amphisin [21] and putisolvin [22]. Mutations in the Gac

system often result in the loss of biocontrol ability [17,23].

The Gac system acts as an activator, in the regulation of the

production of most of these exoproducts. This system, in response

to a yet unidentified signal produced during the transition to

stationary phase [24], activates the transcription of several small

regulatory RNAs termed rsmX, rsmY and rsmZ [25,26]. Different

Pseudomonas produce one, two or three of these sRNAs [15,25,27].

In turn, the small RNAs titrate RNA-binding proteins (RsmA,

RsmE and in some strains RsmI) that in the absence of the small

RNAs bind to the 59 regions of target messenger RNAs repressing

their translation [28,29]. However, in a few cases, negative

regulation by the Gac system has been observed. This is the case

for rhamnolipids and lipase production, and swarming motility in

P. aeruginosa PAO1 [30].

We have previously shown that swimming motility of Pseudomo-

nas fluorescens F113 which is important for rhizosphere colonization

and biocontrol ability is also under negative control by the Gac

system, since mutants affected in either of the gac genes produce

larger swimming haloes than the wild-type strain [31,32].We have

also shown that this downregulation occurs through the repression

of the flagellar master regulatory gene fleQ, resulting in reduced

production of proteins of the flagellar apparatus, including the

flagellin FliC [33].

The sadB gene encodes a cytoplasmic signal transduction

protein that was initially characterized as a protein implicated in

surface attachment in the initial steps of biofilm formation [34]

and in repressing swarming motility by rhamnolipid sensing [35].

This protein contains a modified HD(N)-GYP domain although

no phosphodiesterase activity has been demonstrated [35]. SadB
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has also been implicated in downregulation of swimming motility

in F113, and this regulation is also mediated by downregulation of

fleQ [33]. The aim of this work was to investigate the mechanism of

negative regulation of swimming motility by the Gac system and

SadB, and how they converge in the repression of fleQ.

Results

The Gac system regulates motility through the Rsm
pathway

Sequence BLAST analysis of the genomic sequence of P.

fluorescens F113 [36] showed that this bacterium possess genes

encoding three Rsm proteins (rsmA,E and I) and three small RNAs

(rsmX, Y and Z) homologous to their counterparts in other

pseudomonads. Since Rsm proteins and rsm sRNAs have been

shown to be in most cases redundant, we have chosen to analyze

strains overexpresing rsmA, rsmE, rsmI and rsmX, Y and Z. To test

whether negative regulation of motility occurred through the Rsm

pathway, we hypothesized that in this case the overproduction of

either of the Rsm proteins would mimic the phenotype of a gac

mutant. In order to overexpress the P. fluorescens F113 rsmA, rsmE

and rsmI genes, the amplified genes were cloned into vector

pVLT31 (Table S1), under the control of the Ptac promoter and

introduced into P. fluorescens F113 by triparental mating, to

generate strains F113 prsmA, F113 prsmE and F113 prsmI. As

shown in Fig. 1A and 1C, while the wild-type strain F113 showed

normal motility, overexpression of either of the rsmA and E genes

in F113 resulted in enhanced motility, a phenotype identical to the

gacA and gacS mutants. However, overexpression of rsmI did not

result in an increase in swimming motility, but in a slight decrease.

Plasmid overexpression of the rsmZ and rsmX sRNA under the

control of the same promoter (prsmZ and prsmX) resulted in a

reduction of motility in the wild-type strain and suppressed the

swimming phenotype of a gacA mutant (Fig. 1B–1C). Conversely,

overexpression of rsmY did not have an effect on swimming

motility. These results confirm that the Gac and Rsm systems act

in the same pathway in repressing motility in P. fluorescens, although

rsmI and Y do not participate in this regulation.

Negative regulation of motility by the Gac system acts
through downregulation of the fleQ gene transcription
during exponential phase

The fleQ gene encodes the major regulator of flagellar

biosynthesis [37,38] in pseudomonads. We have previously shown

that hypermotile phenotypic variants of P. fluorescens F113 were

Figure 1. The Gac system regulates motility through the Rsm pathway. (A) Analysis of the swimming motility of P. fluorescens F113 wild-
type, F113 gacA mutant, F113 gacS mutant, F113 prsmA, and F113 prsmE. (B) Swimming motility of F113 wild-type strain and its isogenic gacA
mutant harbouring the empty vector pVLT31 or pVLT31-rsmZ (prsmZ). (C) Swimming motility of F113 wild-type strain harbouring the empty vector
pVLT31, pVLT31-rsmX (prsmX), pVLT31-rsmY (prsmY), pVLT31-rsmZ (prsmZ), pVLT31-rsmA (prsmA), pVLT31-rsmE (prsmE) or pVLT31-rsmI (prsmI).
doi:10.1371/journal.pone.0031765.g001

Regulation of Flagella Synthesis in P. fluorescens

PLoS ONE | www.plosone.org 2 February 2012 | Volume 7 | Issue 2 | e31765



characterized by overproduction of flagellin (FliC) and longer

flagella [39]. Furthermore, we have shown that the GacAS

pathway downregulates motility through repression of fleQ

expression [33]. The expression of fleQ and fliC genes was also

higher in the strains that overexpressed the rsmA and rsmE genes

(Fig. 2A). These results clearly show that the negative regulation of

motility by the Gac system acts through the Rsm pathway on the

flagellar filament synthesis, by repressing the expression of the fleQ

gene, resulting on a lower level of expression of genes encoding

structural elements of the flagellum, including the fliC gene, which

encodes flagellin.

Since the Gac system regulates secondary metabolism, espe-

cially at the transition from exponential to stationary growth, we

hypothesized that the role of the Gac system on motility could be

to downregulate flagellar synthesis during exponential growth. To

test this hypothesis, total extracellular proteins from the wild-type

strain, both gac mutants and the strains overexpressing the rsmA/E

genes were precipitated from the growth medium during

exponential phase (O.D.600 = 0.3) and late stationary phase

(O.D.600 = 3.5). These proteins were probed with an anti-FliC

(flagellin) antiserum [40]. As shown in Fig. 2B, during exponential

phase the gac mutants and the strains overexpressing either of the

rsm genes produced a higher amount of flagellin than the wild-type

strain. However, during late stationary phase no differences in

flagellin production were observed with the wild-type strain.

Furthermore, transmission electron microscopy of negatively

stained samples from the gac mutants and the wild-type strain

showed that the percentage of flagellated cells were higher in the

gacS mutant than in the wild-type strain during exponential growth

(8% for wild-type strain, and 37% for gacS mutant) but not during

stationary phase (68% for wild-type strain, and 78% for gacS

mutant) (Fig. 2C). These results support the hypothesis of the role

of the Gac system limiting flagella biosynthesis during exponential

growth phase.

Gac-mediated downregulation of fleQ expression is
independent of Vfr but dependent on AmrZ and AlgU

Gac regulation through the Rsm pathway takes place at the

translational level since the RsmA and E proteins bind specific

messenger RNAs blocking their translation [41,42]. For negative

regulation of motility, the RNA blocked should encode a repressor

of fleQ transcription. Although several proteins such as MorA,

FleN and AlgU have been shown to modulate fleQ expression in

different pseudomonads [43–45], a direct role in repressing fleQ

transcription by binding to the promoter region has been

suggested for the global regulatory protein Vfr [46] and for AmrZ

[47] in P. aeruginosa. Furthermore, Vfr has been implicated in the

regulation of two Gac-controlled traits in P. aeruginosa: elastase and

pyocyanin production [48]. Since the F113 fleQ promoter region

contains a putative Vfr binding site, we decided to test whether Vfr

was implicated in Gac-mediated fleQ downregulation. For this

purpose, we used primers vfrF and vfrR (Table S2) to amplify an

internal fragment of the vfr gene from F113 genomic DNA and

cloned it into pVIK107 (Table S1). This construct was integrated

Figure 2. Negative regulation of motility by the Gac system
acts through downregulation of the fleQ gene transcription
during exponential phase. (A) RT-PCR expression analysis of fliC
(primers fliCF-R), fleQ (primers fleQF-R), and 16S (primers 16SF-R) genes
of F113 (1), gacA2 (2), gacS2 (3), F113 prsmA (4), and F113 prsmE (5). (B)

Western blot analysis of external proteins from F113 (1), gacA2 (2),
gacS2 (3), F113 prsmA (4), and F113 prsmE (5) during exponential phase
(O.D.600 = 0.3) (a), and stationary phase (O.D.600 = 3.5) (b), reacted with
an anti-flagellin antiserum. The observed band is approximately 35 KDa
and corresponds to FliC. (C) Percentage of flagellated cells of F113 wild-
type (black bar) or gacS2 (grey bar) during exponential phase
(O.D.600 = 0.3) (a), and stationary phase (O.D.600 = 3.5) (b). Statistical
significance is shown.
doi:10.1371/journal.pone.0031765.g002
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into the F113 genome by homologous recombination and the

resulting strain F113 vfr2 was checked by PCR and Southern-blot,

using the amplified vfr fragment as the probe. However, the vfr

mutant did not show significant differences in motility compared

to the wild-type strain (Fig. 3A), indicating that Vfr is not

implicated in this pathway. In order to generate an amrZ mutant,

an internal fragment of the gene was amplified with primers

amrZF and amrZR (Table S2) and cloned into the pK19mobsacB

vector (Table S1). The resulting plasmid was integrated into F113

genome by homologous recombination and the disruption of the

gene was checked by PCR and Southern blot. As shown in Fig. 3A

the amrZ mutant showed enhanced motility with respect to the

wild-type strain and the gac mutants. Expression of fleQ and fliC

was higher in the amrZ mutant than in the wild-type (Fig. 3B–3C).

In order to test whether the Gac system and AmrZ were acting in

the same pathway, a double mutant gacS-amrZ was constructed by

disruption of the gacS gene in an amrZ mutant background (Table

S1). The resulting double mutant had the same motility phenotype

than the gacS mutant (Fig. 3A) showing genetic interaction,

indicating that both genes participate in the same regulatory

pathway. Since AlgU has also been implicated in regulation of

motility in other pseudomonads, and it has been described as the

sigma factor required for the expression of amrZ [47], we

constructed an algU mutant by gene disruption by cloning an

internal fragment of the algU gene into pK19mobsacB vector (Table

S1). This plasmid was integrated into the F113 genome by

homologous recombination and the disruption of algU was

checked by PCR and Southern blot. The algU mutant showed a

similar swimming phenotype than the amrZ mutant (Fig. 3A) and

overexpressed fleQ and fliC (Fig. 3B–3C). A double mutant algU-

amrZ showed the same phenotype than the independent mutants

(Fig. 3A), indicating that both genes act in the same signalling

pathway. Furthermore, ectopic expression of amrZ (pamrZ) in an

algU mutant background, restored wild-type motility (Fig. 3A),

showing that the phenotype of the algU mutant is caused by the

lack of expression of amrZ.

RsmA binds the algUmucABD polycistronic mRNA
In P fluorescens F113 the algU gene is followed by three genes

encoding the antisigma factors MucA and B and the protease

MucD. In order to test whether these four genes form an operon,

an RT-PCR experiment was performed by designing primers for

the co-amplification of adjacent genes. As shown in Fig. 4A,

amplicons of the expected size were obtained for algU-mucA, mucA-

mucB and mucB-mucD indicating that the three genes are encoded

in a polycistronic mRNA. In order to test the hypothesis of RsmA

binding to this mRNA, an RNA immunoprecipitation assay was

performed. For this assay a C-Terminus HA-tagged RsmA protein

was generated by PCR and cloned into expression vector pVLT31

(Table S1). This RsmA-HA protein was functional, since

overexpression of the construct mimics the phenotype of the

overexpression of the rsmA gene (not shown). RNA immunopre-

cipitation showed that the RsmA protein binds to the algUmucABD

mRNA (Fig. 4B). Furthermore, binding of RsmA to this RNA was

stronger than binding to the hcnA mRNA, that has been previously

shown to be post-transcriptionally regulated by binding of RsmA/

RsmE to its 59 region [28,29]. Binding of RsmA seems to be

located in the region upstream of mucA, since the higher amount of

immunoprecipitated RNA is located in this region.

SadB and GacAS regulate algU expression
We have previously shown that not only GacAS but also SadB

downregulates motility through FleQ [33]. In order to test whether

fleQ regulation by SadB was through the AlgU-AmrZ pathway,

double mutants algU-sadB and amrZ-sadB were constructed. As

shown in Fig. 5A, both double mutants presented the same

phenotype than the sadB mutant, indicating that the three genes

act in the same pathway. We have previously shown [33] that a

sadB-gacS mutant presents an additive swimming phenotype,

Figure 3. Gac-mediated downregulation of fleQ expression is
independent of Vfr but dependent on AmrZ and AlgU. (A)
Analysis of the swimming motility of F113 wild-type, mutants in the
Gac-AlgU cascade, and complemented amrZ (pamrZ). Different letters
indicate significant statistical difference (p,0.05). At 18 h, F113 wild-
type strain swimming halo diameter is 1160.55 (mm). (B) Western blot
analysis of extracellular proteins from F113 wild-type strain and its
isogenic mutants amrZ2 and algU2, reacted with an anti-flagellin
antiserum. Loading control corresponds to a Coomassie-stained gel
portion. (C) qRT-PCR expression analysis of the fleQ gene (primers
qfleQF-R) in F113 wild-type, amrZ2 and algU2. 16S gene expression
(primers 16SF-R) was used for normalization. To control for DNA
contamination, PCR of RNA was performed using the same primer pairs.
Different letters indicate significant statistical differences (p,0.05).
doi:10.1371/journal.pone.0031765.g003
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indicating that the Gac and SadB pathways converge on the

regulation of algU. We also analyzed the expression of the algU and

amrZ in the gacS, sadB and gacS-sadB mutant backgrounds.

Expression of both genes was clearly reduced in the individual

mutants and very low in the double mutant (Fig. 5B), confirming

the cooperative regulation of algU by the Gac and SadB pathways.

Furthermore, ectopic expression of the amrZ gene (pamrZ) in the

gacS, sadB and gacS-sadB mutants complemented the swimming

phenotype of the mutants (Fig. 5A).

Discussion

Although for most traits the Gac system acts as a positive

regulator, for some traits such as swarming motility and

rhamnolipids and lipase production it may function as a negative

regulator [30]. This negative role of the Gac system is especially

clear for swimming motility in P. fluorescens F113, since mutations

in the gacA or gacS genes results in increased motility [31,32]. The

relevance of this trait and of the Gac system for rhizosphere

colonization is highlighted by the fact that phenotypic variants

arising during rhizosphere colonization harbour mutations in the

gac genes, being more motile than the wild-type strain. Further-

more, several of these variants, selected because of their increased

motility, were more competitive for rhizosphere colonization than

the wild-type strain [32]. The finding that the FliC and FliD

proteins are among the most highly overproduced proteins in gac

mutants, in P. aeruginosa [27] and P. fluorescens [3], suggests that

negative regulation of motility by the Gac system may be a general

feature in pseudomonads.

Activation through the Gac system occurs post-transcriptionally.

Briefly, an unidentified signal stimulates autophosphorylation of

the GacS sensor [24]. The phosphate group is then transferred to

the response regulator GacA by a phospho-relay mechanism,

activating directly or indirectly the transcription of genes encoding

small RNAs, termed rsmX, Y and Z [49]. These riboregulators bind

to RNA-binding proteins such as RsmA, E and I, which have the

ability to bind specific mRNAs blocking their translation [28,50].

In such system, an active Gac system results in the Rsm proteins

bound to the small regulatory RNAs and therefore the target

mRNAs are translated. Conversely, in the absence of a functional

Gac system (for instance strains harbouring a gac mutation), the

Rsm proteins would be bound to their target mRNAs that would

not be translated [51]. This model easily explains positive

regulation, since translation of the target mRNAs is required for

the production of the trait. Here we show that the Rsm pathway

(excluding rsmI and Y) is also used for negative regulation of

motility in P. fluorescens, since overexpression of either of the rsmA

or E genes mimics the phenotypes of the gac mutants. Our results

also show that for repression of swimming motility, the RsmA and

RsmE proteins are functionally equivalent (Fig. 1A). This

functional equivalence has also been shown for other positively

regulated traits such as exoprotease, hydrogen cyanide, and 2,4-

diacetylphloroglucinol in P. fluorescens CHAO [42]. However, it is

not true for all Rsm-controlled traits. We have shown here that

neither rsmI nor rsmY participate in negative regulation of motility

in strain F113. It has also been shown that in P. aeruginosa, the

BfiSR two-component system regulates biofilm formation through

rsmZ but not through rsmY [52]. It is interesting to note that several

pseudomonads, such as P. aeruginosa, produce a single Rsm protein

[53] whereas other as it is the case for P. fluorescens F113, produce

more than two Rsm-like proteins [42].

We have previously shown that hypermotile phenotypic variants

of strain F113 isolated from the rhizosphere harboured gac

mutations, produced higher amounts of the FliC protein and

possessed longer flagella than the wild-type strain [39]. Since the

major activator of flagellar synthesis is the FleQ protein [38], we

decided to test whether the Gac system acted through the fleQ gene

to regulate swimming motility. Our results clearly show that the

Gac system dramatically influences the level of transcription of the

fleQ and fliC genes and that this influence is enforced through the

RsmA and RsmE proteins (Fig. 2A). These results are consistent

with those reported in P. aeruginosa that showed that in a gacA and

rsmYZ mutants, FliC and FliD (the flagellar cap protein) had

increased expression (between 7.5 and 10.2-fold) when compared

to wild-type strain, being the most overproduced proteins in both

mutants [27].

Since Gac regulation of motility occurs through the Rsm

pathway, a direct effect on the transcription of activators such as

fleQ can be discarded. Two alternative ways are possible. The

RsmA and E proteins could bind to the mRNA of the

transcriptional activators stabilizing them or the Rsm proteins

would bind to the mRNAs encoding transcriptional repressors of

Figure 4. RsmA binds the algUmucABD polycistronic mRNA. (A)
RT-PCR of adjacent genes in the polycistronic mRNA algU-mucA-mucB-
mucD. PCR of cDNA using the primer pairs qalgUF-qmucAR (lane 1),
qmucAF-qmucBR (lane 2) and qmucBF2-qmucDR (lane 3) or PCR of RNA
using the same primer pairs qalgUF-mucAR (lane 4), qmucAF-qmucBR
(lane 5) and qmucBF2-qmucDR (lane 6), M marker. (B) RNA-IP assay of
F113 wild-type strain harbouring the pVLT31-rsmAHA plasmid. qRT-PCR
of HA-immunoprecipitated RNA (black bar) or IgG-immunoprecipitated
RNA (mock, grey bar) using the primer pairs qalgUF-R (algU), qmucAF-R
(mucA), qmucBF-R (mucB), qmucDF-R (mucD), qhcnAF-R (hcnA) and
qfliCF-R (fliC). The fliC gene was used for normalization.
doi:10.1371/journal.pone.0031765.g004
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the activator genes. The former possibility has been shown to

occur with the RsmA homologue CsrA in Escherichia coli [54]. In

this bacterium, CsrA binds the mRNA of the flhDC genes, which

encode the master operon regulating flagellar biosynthesis. The

second possibility, i.e. the RsmA and E binding of a mRNAs

encoding a transcriptional repressor of fleQ could explain the

observed phenotype of gac mutants. We have tested two putative

repressors, Vfr and AmrZ [46,47]. Our results discard the

implication of Vfr in Gac regulation of swimming motility

(Fig. 3A). Conversely, we have shown that Gac-mediated

regulation occurs through the AmrZ repressor. This repressor

has been shown to mediate the transition from motile P. aeruginosa

cells to the non-motile (aflagellated) mucoid phenotype [47]. In P.

aeruginosa, this transition occurs during chronic infections and the

expression of amrZ requires the AlgU sigma factor. Similarly, in P.

fluorescens F113 we have shown here a similar regulatory cascade. A

functional algU gene is required for the expression of amrZ and

repression of fleQ, resulting in reduced flagellar production.

We have also extended this regulatory network by showing that

the expression of algU and possibly its translation, is co-ordinately

regulated by the Gac system and the sadB gene. This has allowed

us to propose a model for the environmental regulation of motility

through repression of the synthesis of components of the flagellar

apparatus (Fig. 6). According to this model, a yet unidentified

environmental signal is perceived by the GacS protein that

autophosphorilates and phosphorilates the GacA protein [49].

Phosphorilated GacA is responsible for the expression of small

regulatory RNAs, able to titrate the Rsm proteins [5,26]. The Rsm

proteins are also able to bind a polycistronic mRNA, encoding the

algU, mucA, mucB and mucD genes (Fig. 4) in competition with the

rsmX/Z sRNAs, resulting in a decrease in the transcription/

translation of the algU gene. The algU gene is also transcriptionally

regulated by SadB in response to a cytoplasmatic signal, possibly c-

diGMP [55]. AlgU is the sigma factor required for amrZ expression

and AmrZ downregulates fleQ expression, resulting in a lower

production of flagellar components, including the flagellin FliC.

This model links signal perception by a membrane receptor (GacS)

and a cytoplasmic receptor (SadB) with the production of the

components of the flagellar apparatus activated by FleQ and

identifies AlgU as an important node for the environmental

regulation of motility. In this sense, the kinB gene which requires

AlgU for expression [56–58], is also implicated in motility

regulation in P. fluorescens F113, since a kinB mutant shows

hypermotility [33]. It has been also shown that in P. syringae, AlgW

a periplasmic protease that controls the levels of AlgU, is a key

negative regulator of flagellin abundance [59].

Figure 6. Hypothetical model for the environmental regulation
of flagellar synthesis in P. fluorescens F113 through the Gac-
SadB cascades. Arrows indicate positive control and perpendicular
lines negative control.
doi:10.1371/journal.pone.0031765.g006

Figure 5. SadB and GacAS regulate algU expression. (A) Analysis of the swimming motility of F113 wild-type, mutants in the Gac-SadB-AlgU
cascade, and amrZ complementation (pamrZ). Different letters indicate significant statistical differences (p,0.05). At 18 h, F113 wild-type strain
swimming halo diameter is 1160.55 (mm). (B) qRT-PCR expression analysis of algU (black) and amrZ (grey) genes (primers qalgUF-R and qamrZF-R,
respectively) in F113 wild-type, gacS2, sadB2, and double mutant gacS-sadB. 16S gene expression (primers 16SF-R) was used for normalization.
Different letters indicate significant statistical differences (p,0.05).
doi:10.1371/journal.pone.0031765.g005
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Gac-mediated positive regulation typically occurs in the

transition from exponential to stationary phase. In this sense, the

Gac system has been defined as a global activator of secondary

metabolism in stationary phase. Furthermore, a relation between

the Gac system and RpoS, the stationary phase sigma factor, has

been described [14,60,61]. Here, we present evidence showing

that in P. fluorescens the Gac system is also active during exponential

phase, being able to repress flagellar synthesis at this stage. This

role is also supported by the finding of gacS expression being

maximal at mid-exponential phase [62]. Therefore, we propose a

second physiological role for the Gac system: the repression or

downregulation of specific traits like flagella synthesis during

exponential phase.

Methods

Bacterial strains, plasmids, and growth conditions
Bacterial strains, plasmids and primers used in this study are

shown in Table S1 and S2. All the Pseudomonas fluorescens strains

used here are derivatives of the biocontrol strain F113 [63]. All the

PCR fragments obtained in this study were initially cloned in the

pGEMH-T Easy vector according to manufacturer’s instructions

(Promega). Mutants were obtained by single homologous recom-

bination of amplified internal fragment from the gene using primer

pairs vfrF-vfrR, amrZF-amrZR and algUF-algUR (Table S2) and

cloned into the suicide vector pVIK107 [64], pK19mobsadB [65] or

pG18mob2 [66]. Mutants were checked by Southern blotting and

by PCR. Overexpression of rsmA, rsmE, rsmI, rsmX, rsmY, rsmZ and

amrZ genes was achieved by cloning them under the control of the

IPTG-inducible promoter present in the pVLT31 plasmid [67],

for this purpose primers rsmAextF-rsmAextR, rsmEextF-

rsmEextR, rsmIextF-rsmIextR, rsmXextF-rsmXextR, rsmYextF-

rsmYextR, rsmZextF-rsmZextR and amrZextF-amrZextR were

used (Table S2). Hemagglutinin peptide (HA) was fused in-frame

to RsmA protein at the C-terminal by PCR using primers

rsmAextF and HArsmAR (Table S2), and the PCR product was

ligated to pVLT31 vector. Plasmids were mobilized into P.

fluorescens by triparental mating, using pRK600 as the helper

plasmid [68]. P. fluorescens strains were grown in SA medium [69]

overnight at 28uC; solid growth medium contained 1.5% (w/v)

purified agar. Escherichia coli strains were grown overnight in Luria-

Bertani (LB) medium [70] at 37uC. The following antibiotics were

used, when required, at the indicated concentrations: rifampicin

(Rif), 100 mg/mL; ampicillin (Amp), 100 mg/mL; tetracycline

(Tet), 10 mg/mL for E. coli or 70 mg/mL for P. fluorescens;

kanamycin (Km), 25 mg/mL for E. coli or 50 mg/mL for P.

fluorescens; and gentamicin (Gm), 10 mg/mL for E. coli or 4 mg/mL

for P. fluorescens.

Transmission electron microscopy
Formvar-coated grids were placed on the top of a drop of

bacterial culture either at 0.3 or 3.5 O.D.600 for 30 s to allow

bacterial adhesion. Liquid was eliminated with filter paper and

grids were stained for 1 min with a 1% solution of potassium

phosphotungstate and washed 3 times for 1 min with a drop of

water. Grids were air-dried and observed in a Jeol JEM1010

microscope.

DNA techniques
Standard methods [71] were used for DNA extraction, gene

cloning, plasmid preparation and agarose gel electrophoresis.

Southern blots were performed with a non-radioactive detection

kit (DIG Luminescent Detection Kit for Nucleic Acids), and a

chemiluminescence method was used to detect hybridization

signals according to the instructions of the manufacturer (Roche

Boehringer Mannheim). PCR reactions were performed using the

Tth enzyme (Biotools) under standard conditions. DNA sequencing

was done by chain-termination method using DyeDeoxy termi-

nator cycle sequencing kit as described by the manufacturer

(Applied Biosystems).

The sequences of the P. fluorescens F113 rsmA, rsmE, rsmI, rsmX,

rsmY, gacS, sadB, vfr, amrZ, algU-mucA-mucB has been deposited in

GenBank under accession numbers: rsmA EU165536, rsmE

EU165537, rsmI JN382566, rsmX JN382569, rsmY JN382570, gacS

JN382567, sadB JN382568, vfr JN382563, amrZ JN382562, algU-

mucA-mucB JN382565. The complete genomic sequence of

Pseudomonas fluorescens F113 has been deposited in GenBank under

accession number CP003150

Swimming assays
SA medium plates containing 0.3% purified agar were used to

test swimming abilities. The cells from exponentially growing

cultures were inoculated into the plates using a toothpick.

Swimming haloes were measured after 18 h of inoculation. Every

assay was performed three times with three replicates each time.

Protein extraction and Western blots
Proteins were extracted from 200 mL exponential (O.D.600 = 0.3)

and stationary (O.D.600 = 3.5) phase grown cultures. In order to

detach the flagella, the cultures were agitated by vortexing for 2 min

and then centrifuged for 20 min at 12,000 r.p.m and extracellular

proteins were extracted from the supernatant by precipitation for

2 h at 4uC with 10% (w/v) trichloroacetic acid, followed by two

washes with chilled acetone, and were finally resuspended in

Laemmli buffer [72]. Proteins were resolved by 12% SDS-PAGE

and stained with Coomassie blue. The same electrophoretic

conditions were used for Western blotting. Acrylamide gels were

transferred onto nitrocellulose membranes for 1 h under standard

conditions. The membranes were incubated with a 1:10,000

dilution of an anti-flagellin antiserum [40] for 16 h at 4uC and

then with a peroxidase-tagged secondary antibody (anti-rabbit

immunoglobulin) for 1 h at room temperature. The enhanced

chemiluminescence (ECL) method and Hyperfilm ECL (Amersham

Biosciences) were used for development.

Gene expression analysis
Total RNA was extracted using TrizolH according to manufac-

turer’s specifications (Invitrogen) from P. fluorescens strains grown at

0.8 O.D.600 in LB medium. Genomic DNA remains were

removed by RQ1 RNase-Free DNase treatment (Promega) for

30 minutes at 37uC. After that, RNA was purified using TrizolH.

The concentration of RNA was spectrophotometrically deter-

mined in a NanodropH and integrity was verified in denaturing

agarose gels. All RNA samples were stored at 280uC.

RT-PCRs were carried out using Illustra Ready-To-GoTM RT-

PCR Beads kit from Amersham GE Healthcare. qRT-PCRs were

performed in two steps: a first step of cDNA synthesis using the

SuperScriptHIII First-Strand Synthesis System from Invitrogen

and a second step of qPCR using the Power SYBRHGreen PCR

Master Mix from Applied Biosystems. In both cases, gene

expression was measured into different backgrounds and normal-

ized by using 16S RNA as internal control. Every assay was

performed three times with three replicates each time.

RNA immunoprecipitation
RNA immunoprecipitation (RNA-IP) was performed using the

same procedure as that described by Lin et al. [73] with some

Regulation of Flagella Synthesis in P. fluorescens

PLoS ONE | www.plosone.org 7 February 2012 | Volume 7 | Issue 2 | e31765



modifications. Briefly, 3 h post-induction with 1 mM IPTG, F113

strain harbouring the pVLT31-rsmAHA plasmid (Table S1) was

fixed with 1% formaldehyde for 10 min at room temperature.

Cross-linking was quenched by adding glycine to a final

concentration of 120 mM, and then cells were sedimented by

centrifugation at 5,000 rpm for 15 min at 4uC and washed twice

with ice-cold Phosphate-buffered saline (PBS). The cells were lysed

in a non-ionic sonication buffer (50 mM Tris-HCl pH 8, 150 mM

NaCl, 5 mM EDTA, 1% Triton X-100, 0.5% NP-40, 1 mM

DTT) containing protease inhibitor cocktail (Roche) and RNase-

OUTTM (Invitrogen) and sonicated in a BioruptorTM UCD-200

TM (conditions: power H, 30 sec ON-30 sec OFF, 10 min).

Debris was removed by centrifugation, and lysate was divided and

immunoprecipitated with 5 mg of either anti-HA antibody

(12CA5, Roche) or appropriate control IgG (sc-2025, Santa Cruz

Biotechnology) and 30 mL of DynabeadsH protein G (Invitrogen).

After washing with sonication buffer four times and with TE twice

at 4uC, samples were treated with RQ1 RNase-Free DNase

(Promega) for 30 min at 37uC. Reverse transcription (RT) was

carried out directly on magnetic bead-bound complexes with

random hexanucleotide primers using SuperScriptHIII First-

Strand Synthesis System (Invitrogen) according to the manufac-

turer’s protocol. The cDNAs from pulled down fractions were

quantified by qPCR as above using the primer pairs shown in

Table S2. Every assay was performed three times with three

replicates each time.

Statistical methods
SPSS program was used for all statistical analyses. The data in

Figs. 3A, 3C, 5A and 5B were compared using one way analysis of

variance (ANOVA) followed by Bonferroni’s multiple comparison

test (set at 0.05) and in Fig. 2C using Student’s t-test for

independent samples (p,0.05).

Supporting Information
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(PDF)
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