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Abstract

About 30% stage I non-small cell lung cancer (NSCLC) patients undergoing resection will recur. Robust prognostic markers
are required to better manage therapy options. The purpose of this study is to develop and validate a novel gene-
expression signature that can predict tumor recurrence of stage I NSCLC patients. Cox proportional hazards regression
analysis was performed to identify recurrence-related genes and a partial Cox regression model was used to generate a
gene signature of recurrence in the training dataset 2142 stage I lung adenocarcinomas without adjunctive therapy from
the Director’s Challenge Consortium. Four independent validation datasets, including GSE5843, GSE8894, and two other
datasets provided by Mayo Clinic and Washington University, were used to assess the prediction accuracy by calculating the
correlation between risk score estimated from gene expression and real recurrence-free survival time and AUC of time-
dependent ROC analysis. Pathway-based survival analyses were also performed. 104 probesets correlated with recurrence in
the training dataset. They are enriched in cell adhesion, apoptosis and regulation of cell proliferation. A 51-gene expression
signature was identified to distinguish patients likely to develop tumor recurrence (Dxy = 20.83, P,1e-16) and this
signature was validated in four independent datasets with AUC .85%. Multiple pathways including leukocyte
transendothelial migration and cell adhesion were highly correlated with recurrence-free survival. The gene signature is
highly predictive of recurrence in stage I NSCLC patients, which has important prognostic and therapeutic implications for
the future management of these patients.
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Introduction

Lung cancer is still the leading cause of cancer-related death for

both men and women in the United States, though therapeutic

outcomes have gradually improved. In 2010, there were estimated

222,520 new cases of lung cancer diagnosed and only 15% of those

will be alive after 5 years [1]. Non-small cell lung cancer (NSCLC)

constitutes about 85% of all lung cancers, with small cell

carcinoma making up the remaining 15%. About 25% to 30%

of patients with NSCLC have stage I disease and receive surgical

intervention alone. Despite undergoing curative surgery, more

than 25% of patients with stage I NSCLC will die from recurrent

disease within five years [2,3]. Adjuvant cisplatin based chemo-

therapy in stage I–III NSCLC improves survival modestly

following surgical resection [4,5,6]. Cancer and Leukemia Group

B (CALGB) 9633, a phase III study that compared adjuvant

therapy with carboplatin/paclitaxel versus surgery alone for

completely resected stage IB NSCLC, showed a significant

survival benefits to adjuvant therapy after 2.8 years of median

follow-up [7] but not after 4.5 years of follow-up [8]. Reliable

clinical or molecular prognostic factors, as well as guidelines for

treatment of recurrent stage I NSCLC have not been well

elucidated. Because of heterogeneity in recurrence rates among

cancer patients with the same stage, it is critical to isolate a reliable

molecular signature in tumors that could be used to identify those

who are likely to develop recurrent disease and would thus benefit

from adjuvant therapy. Moreover, identification of genes and

molecular pathways critical for development of metastasis could

lead to advances in therapeutics.

Advances in human genomics and proteomics have generated

lists of candidate biomarkers with potential clinical values. Gene

expression profiling has been used to characterize prognosis in

lung cancer, mostly using overall survival (OS) rather than tumor

recurrence as an end point [9,10,11,12,13,14]. However, the

identified survival-related genes lacked consistency among these

studies, likely due to limited patient samples, disease heterogeneity,

and/or technical factors such as differences in microarray

platforms and specimen processing. Integrating microarray data

from multiple studies to increase sample size holds promise for the

development of more robust prognostic tests. We thus conducted a

meta-analysis of seven data sets to search for differentially

expressed genes related to overall survival time [15] and identified
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a 64-gene expression signature that is highly predictive of OS of

stage I NSCLC patients. Our results indicate that gene expression

signatures are useful in predicting survival of stage I lung cancer,

and meta-analysis of microarray datasets increases statistical power

for detecting survival-related differentially expressed genes.

In investigations of the effectiveness of adjuvant therapy, OS is

considered as the gold standard end point. However, the

disadvantage of OS is that it requires an extended follow-up.

Recently several studies explored disease-free survival (DFS) as a

possible alternative end point of OS. Some evidences had been

offered for the use of DFS as a surrogate for OS in colorectal

cancer, breast cancer and stomach cancer [16]. In these studies,

the Pearson’s correlation between 5-year OS and 3-year DFS was

0.97 and Spearman’s rank correlation was 0.92; the Pearson’s

correlation between hazard ratios for OS and DFS was 0.85 and

Spearman’s rank correlation was 0.87.

In this study, we conducted a meta-analysis of microarray

datasets from different institutions to develop and validate a novel

gene-expression signature that can accurately predict tumor

recurrence of stage I NSCLC patients. The identified signature

has potential to refine the clinical practice in the management

patients with resected NSCLC.

Methods

Data Collection
The Director’s Challenge Consortium for the Molecular

Classification of Lung Adencarcinoma (‘‘Director’s Challenge

Consortium’’) collected more than 300 lung adenocacinoma

samples from four institutions (HLM, MICH, DFCI, and

MSKCC) along with pertinent clinical data [17]. In our study

we used a total of 142 patient samples with stage I lung

adencarcinoma, which were not given adjunctive chemotherapy

or radiotherapy, as training samples to identify a gene-expression

signature for recurrence free survival. The data were downloaded

from https://array.nci.nih.gov/caarray/project/details.action?

project.experiment.publicIdentifier = jacob-00182.

Other four independent datasets (datasets 2–5) were used as

testing samples for validation of the identified signature. Dataset 2

included 46 stage I lung adenocarcinomas. Dataset 3 included

both adenocarcinomas and squamous cell carcinomas with 64% of

138 samples being stage I tumors. It is important to know whether

our developed signature is applicable to other cancer subtype such

as squamous cell carcinomas or not. Dataset 2 and 3 were

downloaded from GEO database (GSE5843 and GSE8894).

Dataset 4 was generated by Mayo Clinic and included 54 stage I

NSCLC in never smokers, and most of them were adenocarcino-

mas. Dataset 5 was generated by our own group at Washington

University which was used to identify our 64-gene signature for

overall survival (the data was deposited in GEO database as

GSE6253) [15]. All patients in these validation sets were not given

adjuvant chemotherapy or radiotherapy.

PRISMA 2009 flow diagram regarding the dataset selection is

showed in Figure S1. Details of the clinical information for the

subjects in each dataset are described in Table 1. The endpoint

was time to recurrence, defined as the time from surgical resection

to the first evidence of tumor recurrence (local, regional or distant).

Patients were censored from the recurrence analysis at the earliest

of the following time points: death, development of second

primary NSCLC, or last medical contact. The involved micro-

array platforms included Affymetrix Hu133A (dataset 1), Hu133-

plus2 (dataset 3), HG_U95Av2 array (dataset 5), 22 K Operon

Human Genome Oligo Set v2.1 (http://www.operon.com)

(dataset 2) and Illumina DASL assay (dataset 4).

Data Processing
Even though the training dataset is from one study, the samples

were collected and profiled in four different institutions. Systematic

differences in gene expression from these institutions may be

remarkable, which would compromise the integrity of the data

from different labs. The distance-weighted discrimination (DWD)

method (https://genome.unc.edu/pubsup/dwd/index.html) was

used to identify and adjust systematic biases that were present

within this microarray dataset. The DWD method corrects for

Table 1. Clinical summary of patients in the analyzed datasets.

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

Total number of samples 142 46 138 54 36

Mean age (range) 65 (35–85) 63 (36–78) 61 (31–82) 69 (32–89) 66 (48–81)

Sex

male 80 33 104 9 20

female 62 13 34 45 16

Mean follow-up (months)

Total DFS 57 39 35 48 38

No recurred 69 63 54 55 51

Recurred 27 35 16 33 22

Stage

IA 70 16 — 27 0

IB 72 30 — 27 36

Histological type

ADC 142 46 62 49 14

SCC 0 0 76 1 18

Others 0 0 0 4 4

doi:10.1371/journal.pone.0030880.t001
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systematic biases across microarray batches by finding a separating

hyperplane between the two batches and adjusting the data by

projecting the different batches on the DWD plane, finding the

batch mean, and then subtracting out the DWD plane multiplied

by this mean [18].

Statistical analysis
Identify differentially expressed genes related to

recurrence. Multivariate Cox proportional hazards regression

analyses (adjusted for age, gender, and cancer stage) with 10,000

bootstrap resampling were performed for each gene using all of the

142 samples in Dataset 1. The proportional hazards assumption

for these variables was investigated by examining the scaled

Schoenfeld residuals. The categorical variables gender and cancer

stage displayed significant deviation from the proportional hazards

assumption and were thus taken as strata in regression models.

The genes were then ranked according to the bootstrap

frequencies of P,0.01 for their gene expression in regression

models. We then performed GO term enrichment analysis on

these differentially expressed genes using the Database for

Annotation, Visualization and Integrated Discovery (DAVID)

bioinformatics resource (http://david.abcc.ncifcrf.gov/home.jsp).

Similar statistical analyses were detailed in a previous study [15].

Define a gene-expression signature for recurrence. The

following survival analyses were also based on all of the 142

samples in Dataset 1. Partial Cox regression method was

performed to construct predictive components [19]. These

components were then used in the Cox model for building

predictive models for recurrence-free survival of cancer patients.

The principle components were chosen in the model to maximize

Somers’ Dxy rank correlation. The risk scores were calculated by

f (x)~
XG

j~1

b�j (Xj{�xx:j), where G represents the number of genes;

b�j represents the estimated coefficient of the jth gene; Xj represent

gene expression levels of the jth gene in all the samples,

�xx:j~1=n
Xn

i~1
xij where n is sample size and xij is the gene

expression level of gene j from sample i. All the samples were

classified into high and low risk groups according to the risk scores.

Patients with risk scores less than zero potentially have long-term

recurrence-free survivals and those larger than zero have short-

term recurrence-free survival after surgical resection. To choose an

appropriate subset of genes for signature, we carried out a forward

selection procedure to optimize a gene-expression signature: 1)

increase one gene each time based on the rank of genes that were

identified in the above bootstrap analyses; 2) perform the partial

Cox regression analysis and obtain the prediction accuracy using

the chosen subset of genes; and 3) repeat steps 1 and 2 until the

prediction accuracy is maximized. The prediction accuracy

(discrimination ability) was assessed by Somers’ Dxy rank

correlation of estimated risk score and real survival time.

Somers’ Dxy is related to the C-index by Dxy = 2(C-0.5). C is

the corresponding receiver operating characteristic (ROC) curve

area, which is a graphical representation of the pairs of false-

positive test results (specificity) and true-positive test results

(sensitivity) for the realizations of a quantitative test.

To identify a gene signature robustly predicting time to

recurrence, leave-one-out cross-validation (LOOCV) was used.

Briefly, 142 iterations of the above forward selection procedure

were performed so that each sample was left out once with a set of

genes in relation to time to recurrence calculated at each iteration.

The frequency of the genes occurring in the signatures were

ranked to identify genes that consistently, and robustly, correlated

with outcome. The genes that passed the set criterion (frequency

.50%) were selected to comprise the final signature.

To evaluate the predictive performance of the proposed gene

signature, we employed time-dependent ROC analysis for censored

data and area under the curve (AUC) as our criteria to assess

recurrence predictions. The time-dependent sensitivity and speci-

ficity functions are defined as: sensitivity(c,t)~PfXwcjD(t)~1g
and specificity(c,t)~PfXwcjD(t)~0g. The corresponding

ROC(t) curve for any time t is defined as the plot of {sensitivity

(c, t)} versus {1 – specificity(c, t)}, with cutoff point c varying. X is

the covariate and D(t) is the event indicator (here, recurrence) at

time t. The area under the curve, AUC(t), is defined as the area

under the ROC(t) curve. A nearest neighbor estimator for the

bivariate distribution function is used for estimating these

conditional probabilities accounting for possible censoring [20].

AUC can be used as an accuracy measure of the diagnostic marker;

the larger the AUC, the better the prediction model. AUC = 0.5

indicates no predictive power, whereas AUC = 1 represents perfect

predictive performance. Kaplan-Meier survival analyses were

implemented after the samples were classified into two risk groups.

Differences of the recurrent risk between the two risk groups were

assessed using the Mantel-Haenszel log rank test. The larger area

between the two risk groups and its associated smaller p value from

the Mantel-Haenszel log rank test implicate a better classification

model. Somers’ Dxy rank correlation of estimated risk score and

real survival time were also calculated.

Validate the signature in four independent microarray

datasets. After the signature was defined, we evaluated it in

four independent datasets (i.e., Datasets 2–5). The expression data

of genes in the signature were used to estimate risk score for each

samples in the independent datasets. Please note that the gene

numbers used to estimate risk score were different because of the

different microarray platforms used in the training dataset and

testing datasets. The Partial Cox regression were redone for each

dataset to get the estimated coefficient of each gene in order to

calculate risk score for each sample. Somers’ Dxy rank correlation

of estimated risk score and real survival time were calculated and

time-dependent ROC analysis were performed for each testing

dataset.

Identify significant pathways related to recurrence. Partial

Cox regression method was also performed for each KEGG pathway.

The risk scores were calculated using the gene sets in each pathway.

All the samples were classified into high and low risk groups

according to the risk scores. Differences in recurrent risk between the

two risk groups were assessed using the Mantel-Haenszel log rank

test. P values less than 1024 were use to define significant pathways.

All of the data analyses were implemented using the R statistical

package (www.r-project.org).

Results

Differentially expressed genes associated with recurrence
To identify a gene expression signature of tumor recurrence, we

analyzed a training set of 142 stage I lung adencarcinomas from

the Director’s Challenge Consortium, including 70 with stage IA

(T1N0M0) disease and 72 with stage IB (T2N0M0). None of

the142 patients in the analysis were given adjuvant chemotherapy

or radiotherapy. Multivariate Cox proportional hazards regression

analyses with bootstrap resampling approaches were performed

for each gene to determine if it was significantly associated with

cancer recurrence. We identified 104 probesets from 98 known

genes with bootstrap frequencies greater than 80% for their gene

expression in regression models (Table S1). Eighteen probesets

were associated with good outcome (hazard ratio ,1.0), that is,

patients with higher expressions of these genes tend to have longer

recurrence free survival. In contrast, the other 86 probesets were
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associated with bad outcome (hazard ratio .1.0), that is, increased

expression of these genes result in shorter recurrence free survival

of stage I patients. GO term enrichment analysis on these

differentially expressed genes indicated one third of the genes we

identified are potentially involved in known cancer-related

pathways. Among them, B4GALT1, CELSR1, CLDN4, CLDN9,

COL2A1, ALCAM, ICAM4, MUC5AC and THBS1 are related to cell

adhesion; NLRP2, CGB, LUC7L3, ELMO2, EIF2AK2, IFI6,

MUC5AC, NFKBIL1, PPT1, PACS2, RHOT1, THBS1 are related

to apoptosis; and CLEC11A, B4GALT1, BMP2, EIF2AK2, FABP3,

FGFR2, ING1, ITCH, MUC5AC, NFKBIL1, THBS1, TCF3 are

related to regulation of cell proliferation.

Identification of a gene signature for recurrence in the
training set

Next, we attempted to identify a manageable, robust set of genes

whose expression could be used to predict primary tumors likely to

recur. We employed a partial Cox regression analysis with leave-

one-out cross-validation in the training dataset of 142 stage I

patients. In each cross-validation, we identified a gene signature

that gives the highest prediction accuracy and recorded genes

entered in the identified signature. We then counted the frequency

of genes present in all of the cross-validation sets. Genes with a

frequency .50% were selected to comprise the final signature

(Table 2). Finally, risk scores were estimated for each of 142

samples in the training dataset using the expression data of these

51 genes. Based on the risk scores, we classified these patients into

high and low risk groups and performed Kaplan-Meier survival

analyses on these stratified samples. As shown in Fig. 1,

recurrence-free survival was significantly different between the

high and low-risk groups as defined by the risk scores using the

expression data (P,1e-16). Kaplan-Meier survival curves could

not distinguish poorer survival among stage IB from stage IA

NSCLC (P = 0.38). To evaluate their predictive performance, we

further calculated the time-dependent area under the ROC curves

based on either stage information or the estimated risk scores of

the patients (Fig. 1C). The expression-based stratified approach

performs much better than the pathological staging method. Our

approach achieves AUCs close to 90% while the Cox model with

stage information results in very low AUCs,60%.

Validation of the recurrence signature in independent
test sets

To determine if the 51-gene signature could predict patients

likely to develop tumor recurrence in independent samples, we

applied it to four independent datasets (Table 1). Specifically, a

risk score for each patient was calculated based on the expression

levels of the 51-gene signature; poor outcome was defined as risk

score .0 and good outcome was defined as risk score ,0. Cox

proportional hazards modeling was used to classify patients in each

Table 2. Genes related to tumor recurrence of stage I NSCLC.

Genes Function HR Genes Function HR

AU148154 0.5792 NM_018600 1.5353

B4GALT1 Cell adhesion 1.8344 OCA2 cell differentiation 1.4181

CGB cell death 1.3312 PADI3 terminal differentiation of the epidermis 1.5470

CHST12 1.4697 RPRM negative regulation of progression through cell cycle 1.4748

CLEC11A positive regulation of cell proliferation 1.6334 SH3YL1 1.5522

COL2A1 negative regulation of apoptosis, Cell adhesion 1.5701 SLC27A2 PPAR signaling pathway 1.4456

CYP2A6 nicotine metabolism 1.2751 SLC35F5 1.4836

DENND1A synaptic vesicle endocytosis 1.4545 SNAPC2 transcription from RNA polymerase II promoter 1.5725

DIO1 1.5142 SPTBN2 cell death 1.6520

DOCK6 1.6545 STRN3 1.3969

EPHB6 Loss of expression in metastatic melanoma 1.4146 SUSD4 1.4464

FZD9 G-protein coupled receptor protein signaling pathway 1.2810 TCF3 transcription factor activity 1.5250

GLE1 export mRNA from nucleus to cytoplasm 1.4920 TET3 tet oncogene family member 3 1.6322

GTF3C2 transcription factor 1.6350 THBS1 Cell adhesion, blood vessel development 1.3397

INF2 Rho GTPase binding 1.4114 TRIM34 1.4886

KDM4B transcriptional target of hypoxia-inducible factor 1.7967 TRIM46 1.4355

SIK3 protein phosphorylation 0.5875 TRIP11 transcription from RNA polymerase II promoter 1.4917

GREB1L 1.4917 CELSR1 Cell adhesion 1.5144

KLK5 epidermis development 1.4736 UBE2D4 ubiquitination 1.4669

KRT81 keratin filament 1.3167 UBXN4 response to unfolded protein 1.4742

LENEP cell differentiation 1.5902 VKORC1 oxidoreductase activity 1.5498

MYOG cell differentiation 1.6048 ZBTB7B cell differentiation 1.5783

NFKBIL1 member of the I-kappa-B family 1.5875 ZNF365 1.5436

NLRP2 cell death 1.4080 MUC5AC induction of apoptosis, Cell adhesion 1.4135

NM_004876 FGFR2 cell growth 1.5516

FEZ2 cell projection organization and biogenesis 1.6395

doi:10.1371/journal.pone.0030880.t002
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of the testing datasets. The predictive accuracy of the recurrence

signature was determined by AUC of time-dependent ROC

analysis and Somers’ Dxy rank correlation between estimated risk

score and real survival time.

Mayo Clinic dataset included 54 never smokers with stage I

NSCLC, and most of which were adenocarcinomas. The risk

scores estimated by expression of 46 genes presented on Illumina

DASL assay have high correlation with the real survival time

(Dxy = 20.853). AUC from time-dependent ROC analysis is

about 88% using the risk scores and 57% using stage information.

Predicted poor-outcome patients had a significantly worse

recurrence-free survival (log-rank P = 4.37e26) (Fig. 2A). In the

testing dataset GSE5843 with 46 stage I adenocarcinoma, the gene

signature has an overall accuracy of 86% and the predicted high

risk scores are significantly associated with shorter observed time

to recurrence (log-rank P = 7e29; Fig. 2B). In contrast, the

accuracy of predicting recurrence using stage information alone is

66%.

Only 32 of 51 genes in the recurrence signature are available on

the early-generation Affymetrix U95A microarray used in the

WUSTL testing dataset. Despite incomplete representation, the

signature we identified still has a good performance with the AUCs

around 85% in predicting recurrence. Kaplan-Meier analysis

confirmed that the predicted high-risk group have a significantly

shorter time to recurrence than the low-risk group (P = 7.36e25)

(Fig. 2C).

GSE8894 is the largest testing dataset, including 62 adenocar-

cinomas and 76 squamous cell carcinomas. We evaluated the

performance of our signatures in predicting recurrence-free

survival in adenocarcinomas and squamous cell carcinomas

separately. Cox model with risk scores estimated by expression

data give a good predictive performance (Dxy = 20.706) with the

AUCs of more than 85% for adenocarcinoma (Fig. 2D). In

squamous cell carcinomas, we obtained a little less predictive

AUCs, but the predicted high-risk group still had a significantly

shorter time to recurrence (Dxy = 20.678 and P = 3.48e27, Fig.

S2).

Significant pathways related to recurrence
Pathway-based survival analyses identified 97 significant

prognostic KEGG pathways related to recurrence (p,1025,

Table S2). Table 3 listed the top 30 important pathways, including

multiple important cancer-related pathways such as cell adhesion

molecules, the Jak-STAT signaling pathway, p53 signaling

pathway, MAPK signaling pathway, Wnt signaling pathway,

mTOR signaling pathway and ErbB signaling pathway. The

differentially expressed genes associated with recurrence identified

by our survival analysis were also enriched in biological process of

cell adhesion.

Discussion

A major limitation of current clinical prognostic indicators is

their inability to predict which patients with early-stage disease will

develop disease recurrence. We previously described a 64-gene

signature of overall survival in stage I NSCLC capable of

predicting outcome in independent samples [15]. In this study,

we sought to determine if a comparable signature existed in stage I

adenocarcinomas to predict recurrence-free survival in lung

cancer. Using microarray datasets of stage I lung cancer from

the Director’s Challenge Consortium, we further developed a new

gene-expression signature predictive of recurrence of stage I

NSCLC patients. We used samples from four institutions in the

Director’s Challenge Consortium as the training dataset to identify

Figure 1. Survival analyses of the training set of 142 stage I
denocarcinomas. (A) Kaplan-Meier survival curves for two groups of
patients with stage IA or IB. (B) Kaplan-Meier survival curves for the two
groups of patients defined by having positive (high risk) or negative
(low risk) risk scores of recurrence-free survival. The risk scores were
estimated with 15 principle components based on the model using 51
recurrence-free survival-related genes. (C) The area under the curve
(AUC) of time-dependent ROC analysis for survival models based on
stage information or 51-gene expression data respectively. Time is
indicated in months on the x-axis, cumulative survival is indicated on
the y-axis. Tick marks, patients whose data were censored at last follow-
up.
doi:10.1371/journal.pone.0030880.g001
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a gene-expression signature for lung cancer recurrence. To reduce

disease heterogeneity and confounding effects from treatments, we

used a total of 142 stage I lung adencarcinomas patients without

adjunctive chemo- or radiation-therapy as the training samples

(Table 1). To integrate the gene expression data from the four

institutions, we applied DWD method to remove systematic

differences that were present within this dataset. Subsequently, we

identified 104 genes whose expression was correlated with

recurrence-free survival. As expected, the gene ontology compo-

sition of these genes has biological relevance to disease recurrence,

such as cell adhesion, apoptosis, and cell proliferation.

Using a partial Cox regression model-based forward selection

procedure, we identified a 51-gene signature from 104 differen-

tially expressed genes. The identified signature is highly predictive

of tumor recurrence in patients with stage I lung adenocarcino-

mas. One of the potential issues in developing a predictive

signature is model overfitting to the training dataset. This may

result in a signature that reflects the characteristics of the training

samples and cannot accurately predict outcome in independent

samples. To avoid model overfitting, we further used leave-one-out

cross-validation procedure to generate the gene signature of

recurrence in the training dataset. Consequently, it is also critical

to validate the prediction signature in independent datasets. We

therefore applied our signature in four independent datasets to

evaluate its prediction performance. In general, our signature is

highly predictive of which patients with stage I lung adenocarci-

nomas will develop recurrence disease and it achieves more than

85% in AUC across different independent datasets. The test set

GSE8894 included both adenocarcinomas and squamous cell

carcinomas; 36% of samples were advanced stage patients. A

recent study showed that lung cancer recurrence depends on

histological subtype in the stage IA non-small cell lung cancer,

with higher rates occurring among patients with non-squamous

carcinomas [21]. Interestingly, the 51-gene signature was also

highly predictive of recurrence free survival of squamous cell

carcinomas in the dataset GSE8894 although it was initially

derived from stage I adenocarcinoma.

The identified differentially expressed genes in the present study

may provide new insights into therapeutic targets and treatment of

recurrence disease in stage I lung tumors. Among them, FBXW7

targets mTOR for degradation and cooperates with PTEN in

tumor suppression [22]. The low FBXW7 expression group

showed a significantly poorer prognosis than in the high expression

group in patients with colorectal cancer [23]. Its lower expression

were also associated with decreased recurrence-free survival in

stage I lung adenocarcinomas (Table S1). Another interesting

candidate is FGFR2, which is one of transmembrane tyrosine

kinase receptors involved in signaling via interaction with the

fibroblast growth factor (FGF) family. The fibroblast growth factor

(FGF) family, which includes important regulatory factors of cell

growth and differentiation, has been found to be involved in

embryonic development, angiogenesis and tumorigenesis. It has

been suggested that FGFR2 plays an important role in the

tumorigenesis of gastric cancer. We found the increased expression

in FGFR2 is associated with poor outcome of stage I lung cancer

patients. A newly developed small-molecule-acting FGFR inhib-

itor, Ki23057, can compete with ATP for the binding site in the

kinase [24]. It will be interesting to see if such an inhibitor can

improve the outcome of patients who are predicted to be at a high-

risk of recurrence with the gene-expression signature. In addition,

we also identified three splicing factors SFRS2IP, SFRS14 and

SFRS18 associated with disease outcome. All three splicing factors

are members of the arginine/serine-rich family and worthy of

further study.

Our pathway-based survival analyses found that leukocyte

transendothelial migration, protein processing in endoplasmic

reticulum and cell adhesion molecules (CAMs) are the top three

KEGG pathways highly correlated with recurrence-free survival

Figure 2. Validation of the 51-gene signature in four independent datasets. Kaplan-Meier survival analysis was performed in low (full red
line) and high (dashed blue line) risk patient groups defined by the 51-gene classifier. AUC for survival models based on stage (dashed red line) or 51-
gene classifier (full black line) was also compared. The testing dataset GSE8894 do not have available stage information and all patients in the WUSTL
dataset are stage IB. So the time dependent ROC using stage information in these two datasets could not be calculated; all set at 0.5 instead. Tick
marks, patients whose data were censored at last follow-up.
doi:10.1371/journal.pone.0030880.g002

Table 3. Top 30 significant prognostic KEGG pathways
related to recurrence.

KEGG
pathway Pathway annotation

Gene
number P value

hsa04670 Leukocyte transendothelial migration 116 1.01E-13

hsa04141 Protein processing in endoplasmic reticulum 166 3.99E-13

hsa04514 Cell adhesion molecules (CAMs) 113 7.23E-12

hsa00230 Purine metabolism 161 1.44E-11

hsa03013 RNA transport 151 2.77E-11

hsa04630 Jak-STAT signaling pathway 155 3.14E-11

hsa03040 Spliceosome 127 3.82E-11

hsa04660 T cell receptor signaling pathway 108 6.73E-11

hsa04722 Neurotrophin signaling pathway 127 1.11E-10

hsa04144 Endocytosis 195 1.24E-10

hsa04380 Osteoclast differentiation 128 1.29E-10

hsa04730 Long-term depression 69 1.68E-10

hsa04115 p53 signaling pathway 68 2.96E-10

hsa00190 Oxidative phosphorylation 132 3.62E-10

hsa04010 MAPK signaling pathway 267 4.65E-10

hsa04910 Insulin signaling pathway 138 7.16E-10

hsa04930 Type II diabetes mellitus 48 8.82E-10

hsa04060 Cytokine-cytokine receptor interaction 264 1.10E-09

hsa04530 Tight junction 132 2.48E-09

hsa04666 Fc gamma R-mediated phagocytosis 92 3.75E-09

hsa04310 Wnt signaling pathway 150 4.61E-09

hsa04020 Calcium signaling pathway 177 4.84E-09

hsa04150 mTOR signaling pathway 52 5.24E-09

hsa03008 Ribosome biogenesis in eukaryotes 77 5.49E-09

hsa03015 mRNA surveillance pathway 83 5.62E-09

hsa03010 Ribosome 91 5.78E-09

hsa04914 Progesterone-mediated oocyte maturation 86 7.37E-09

hsa05322 Systemic lupus erythematosus 122 9.24E-09

hsa04120 Ubiquitin mediated proteolysis 135 9.66E-09

hsa04012 ErbB signaling pathway 87 1.08E-08

doi:10.1371/journal.pone.0030880.t003
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(Fig. S3). It’s not a surprise that these three pathways are all

significantly related to recurrence. Leukocytes cross the endothe-

lium lining the vasculature initiated by chemokine- and adhesion

molecule-induced intracellular signaling that controls adhesion,

spreading, and motility. At the same time, adherent leukocytes

trigger the endothelium, manipulating the barrier to promote their

transmigration into the underlying tissues [25]. CAMs are

gatekeepers for leukocyte transendothelial migration. Endothelial

cell intercellular CAMs expression is negatively correlated with

metastatic potential in lung cancer [26]. L1 cell adhesion molecule

(L1CAM) has potential prognostic value in pulmonary neuroen-

docrine tumors. Patients with high L1 expression have a higher

risk for recurrence compared with those with low L1 expression

[27]. The endoplasmic reticulum (ER) is an essential organelle

involved in many cellular functions including protein folding and

secretion. The ER plays a vital role in cellular protein quality

control by extracting and degrading proteins that are not correctly

folded or assembled into native complexes, i.e. ER-associated

degradation (ERAD) to ensure that only properly folded and

assembled proteins are transported to their final destinations. The

ER is also a major organelle for oxygen and nutrient sensing as

cells adapt to their microenvironment. The unfolded protein

response (UPR) is a cellular stress response related to the ER. It is

activated in response to an accumulation of unfolded or misfolded

proteins in the lumen of the ER. In this scenario, the UPR has two

primary aims: initially to restore normal function of the cell by

halting protein translation and activate the signaling pathways that

lead to increased production of molecular chaperones involved in

protein folding. If these objectives are not achieved within a

certain time lapse or the disruption is prolonged, the UPR leads to

apoptosis [28]. Cell adhesion molecules (CAMs) pathway is much

more important than cell cycle and apoptosis in prognosis of

recurrence according to our results (Table 3). Determination of

CAMs expression as biomarker in future clinical trials may be

widely realized for cancer therapy.

In summary, we identified a 51-gene expression signature highly

predictive of tumor recurrence in stage I NSCLC and validated it

in four independent data sets. This gene expression signature has

the potential of the identification of high-risk individuals who

would perhaps benefit most from adjuvant treatment in early-stage

lung cancers. If patients predicted to be at high risk of recurrent

disease by genomic signatures are shown in clinical trials to be

those who benefit most from adjuvant treatment, the clinical pay-

off for genomic tumor analyses will have been realized.

Supporting Information

Figure S1 PRISMA flow diagram. PRISMA 2009 flow

diagram regarding the data selection. The databases used for the

search of microarray data were GEO, ArrayExpress and

caARRAY. In the research, we used the keywords: ‘‘lung’’,

‘‘cancer’’, ‘‘gene’’ and ‘‘survival’’.

(EPS)

Figure S2 Validation of the 51-gene signature in the
subset of squamous cell carcinomas in GSE8894.
Comparison of survival estimates in low ( full red line) and high

(dashed blue line) risk patient groups defined by the 51-gene classifier

is shown in the left panel. AUC for survival models based on 51-

gene classifier ( full black line) is shown in the right panel. The stage

information is not available in GSE8894, and the AUC was set at

0.5. Tick marks, patients whose data were censored at last follow-

up.

(EPS)

Figure S3 KEGG pathway-based survival analyses in
the training set of 142 stage I adenocarcinomas. Kaplan-

Meier survival analysis was performed in low and high risk patient

groups stratified by the risk scores that were estimated from the

expression of genes in each pathway. (A) Leukocyte transendothe-

lial migration, (B) Protein processing in endoplasmic reticulum,

and (C) Cell adhesion molecules. Time is indicated in months on

the x-axis, cumulative survival is indicated on the y-axis. Tick

marks, patients whose data were censored at last follow-up.

(EPS)

Table S1 Differentially expressed genes related to
recurrence.

(DOCX)

Table S2 Significant KEGG pathways related to recur-
rence.

(DOCX)
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