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Abstract

Kernel density estimation is a widely used method for estimating a distribution based on a sample of points drawn from
that distribution. Generally, in practice some form of error contaminates the sample of observed points. Such error can be
the result of imprecise measurements or observation bias. Often this error is negligible and may be disregarded in analysis.
In cases where the error is non-negligible, estimation methods should be adjusted to reduce resulting bias. Several
modifications of kernel density estimation have been developed to address specific forms of errors. One form of error that
has not yet been addressed is the case where observations are nominally placed at the centers of areas from which the
points are assumed to have been drawn, where these areas are of varying sizes. In this scenario, the bias arises because the
size of the error can vary among points and some subset of points can be known to have smaller error than another subset
or the form of the error may change among points. This paper proposes a ‘‘contingent kernel density estimation’’ technique
to address this form of error. This new technique adjusts the standard kernel on a point-by-point basis in an adaptive
response to changing structure and magnitude of error. In this paper, equations for our contingent kernel technique are
derived, the technique is validated using numerical simulations, and an example using the geographic locations of social
networking users is worked to demonstrate the utility of the method.
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Introduction

Kernel density estimation is a popular method for using a sample

of points to estimate the distribution that generated those points.

During application, a probability-related function (i.e. a non-

normalized form with normalization applied at an appropriate point

in the calculation) known as a kernel is applied to each sampled point

and the kernels are summed to obtain an estimate of the original

distribution. This estimation technique is employed in diverse fields

such as signal processing [1], econometrics [2] and ecology [3].

A subcategory of distribution estimation problems occurs when

points are observed with some error. When non-negligible, the

errors can lead to biases in the kernel density estimate. Examples of

errors include observation bias where points are more likely to be

observed in certain regions of the sampling space (independent of

the original distribution) or measurement error where, for instance,

the observed location of a point has been randomly displaced with

known noise statistics from its true location. Methods have been

developed for dealing with both these types of errors [4,5].

One type of error that has not been considered is the case where

points within a defined area are nominally placed at a designated

location within that area. Examples of these sampling regimes

include ecological applications in which observations of species are

mapped to predefined geographic entities, such as the center of the

region in which the observation took place or to the center of

distinct squares of a grid overlaid on that region. Another example

is the analysis of types of location data generated by new social

websites such as Twitter or Facebook.

This article is motivated by the need to extend the kernel density

estimation technique to these forms of sampling. A kernel density

estimation method is presented here in which the shape of the

kernel for a specific observation is contingent on a known,

location-specific ‘‘contingency distribution’’ representing the

potential region and probability of where the observation is

located. The contingency distribution for a given observation

whose precise location is not known, is defined as the set of all

areas that could be the location of that observation and their

associated likelihoods.

In this new ‘‘contingent kernel density estimation’’ method, the

contingent kernel is determined by the convolution of a kernel

function and a contingency distribution function. If the sampling

errors vary among observations, the form of the contingent kernel

will change on an observation-by-observation basis.

This article proceeds in four parts. In the first part we present

background material on kernel density techniques and develop the

contingent kernel method. In the second, we derive contingent

kernels for several common kernel and sampling regime

combinations. In the third, we validate the proposed estimation

technique using simulated data and demonstrate the utility of the

method using location observations gathered from the social-

networking site Twitter. In the fourth, we discuss our findings. Our

results indicate that contingent kernel density estimation can lead

to more accurate density estimates where characterizable error

varies across space.

Background
Assuming a sample of n points X = {X1,…,Xn} drawn from an

unknown, univariate probability density function f . The kernel

density estimate f̂f of f is
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where K is a user-defined kernel function and h is a user-defined

parameter that controls smoothing (often called the bandwidth or

the window width). The kernel function may theoretically be of

any form such that integration across its domain equals one. In

practice, though, kernel functions are typically symmetrical and

unimodal around the origin. A commonly used kernel function

that satisfies these constraints is the Gaussian kernel, a kernel that

is defined as a normal distribution with a mean of zero and a

standard deviation of one.

Kernel density estimation is a challenging problem, not the least

because results are highly sensitive, as illustrated in Figure 1, to the

method used to determine the ‘‘best’’ value for the bandwidth

parameter h [6,7]. Beyond this, problems occur when data points

are missing, but methods compensating for such error have been

developed [5,8].

Another form of error that has been addressed in the literature

is additive measurement error. A number of studies have looked at

the case in which the observations can be modeled as the additive

effects of the original probability density function and some error

probability density function (e.g., [4], [9] and [10]). In this case,

the observed distribution of points is the convolution of the

original probability density function and the error probability

density function. Fourier transformations can be used to develop

deconvolution kernels that compensate for the error. The

deconvolution kernel density estimator D is defined below in

Equation 2 where gK and gZ are the Fourier transforms of the

kernel K and the error distribution Z respectively.

D(x hj ):
1

2p

ð
e
{itx gK (t)

gZ(t=h)
dt ð2Þ

Although conceptually straightforward, the application of

deconvolution kernels can sometimes be difficult in practice. For

instance, given certain kernel forms, Equation 2 is often intractable

to solve analytically. As a result, users may limit kernel choice to

aid the development of analytical solutions or apply numerical

solution techniques [11].

Furthermore, the deconvolution methods are not applicable to

data gathered in certain common sampling schemes – as when

observed points are relocated to the center of the nearest of a set of

predefined geographic entities. An example of such sampling

schemes occurs when observations are assigned to the center of a

Transect-Range-Section grid that has historically been used in the

description of locations in species surveys (Figure 2). If a

deconvolution kernel were applied to this case, it could result in

artificial reductions in density at the centers of the grids, thereby

introducing a new form of bias into the estimate (e.g., see [12]

Fig. 6.5). Since this form of sampling scheme results in artificial

increases in the sharpness of the data, a contingent kernel

convolution approach, as described below, that reduces this

sharpness is conceptually better than a deconvolution approach

which increases sharpness.

In the case of the Transect-Range-Section grid, the geographic

entities are all the same size. However, in other sampling regimes

this is not the case. For instance, given a statewide survey where

observations are assigned to the centers of the nearest county, the

size and shape of each county differ. In other cases, the entities

themselves may overlap.

Another factor that can lead to differences in the forms of errors

is the combination of datasets from multiple surveys. This is

especially true for longitudinal surveys for which the duration

intersects with the development of new technologies and methods.

Figure 1. Kernel density estimation illustration. The dark line
represents the kernel density estimate while the grey lines are scaled
Gaussian kernels for each of ten individual points sampled from the
original probability density function. The original probability density
function is a mixture function defined as an equal combination of two
Gaussian distributions: one with a mean of 0 and standard deviation of 1,
the other with a mean of 10 and a standard deviation of 4. The top panel
uses a bandwidth of 1 while the bottom panel uses a bandwidth of 2.
doi:10.1371/journal.pone.0030549.g001

Figure 2. Contamination of observations. An illustration of
Transect-Range-Section sampling where the locations of observations
within a grid are assigned to the center of enclosing grid squares. Such
cases are not suitable for deconvolution techniques to adjust for bias.
doi:10.1371/journal.pone.0030549.g002
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As an example, take an ecological study that surveys the locations

of individual animals of a particular species. If the species is

surveyed many times over a period spanning decades, the first

surveys may have been carried out using visual identifications, the

later surveys carried out using radio collar triangulation, and the

most recent surveys completed with GPS sensors. Each technique

has its own types of errors. A similar problem arises when

combining data from remote sensing satellite systems with different

levels of resolution (e.g., MODIS has spectral bands with

resolutions ranging from 250–1000 m while Quickbird has a

much finer multispectral resolution of 2.4 m).

Unfortunately, many historical ecological datasets are lost or

misplaced once their primary investigators move on to other

interests. A number of repositories archive these historical studies.

The Museum of Vertebrate Zoology at the University of

California Berkeley is one such facility containing field notebooks,

dating back over one hundred years, that document flora and

fauna distributions [13]. The ability to integrate such historical

observations with more modern ones under a unified framework is

of importance. Such ability would aid in modeling the effects of a

changing environment.

To address these issues – to compensate for this form of bias and

allow the integration of diverse data sources in a unified analysis

framework – we propose in this paper a contingent kernel density

estimation methodology developed below. This method extends

the application of kernel density estimation to datasets, such as the

Twitter data presented later in this document, that previously were

problematic to analyze using kernel density estimation.

The contingent kernel is derived by replacing each discrete

point location used in standard kernel density estimation with a

contingency distribution that represents a local probability density

estimate of where the point actually lies. Thus the direct analogue

to applying the smoothing kernel to each point as done in standard

kernel density estimation, is to apply the kernel to each con-

tingency distribution by convolving the two. Assuming no

uncertainty about point locations, this is the case of the Dirac

delta function contingency distribution and the contingent kernel

method reduces to standard kernel density estimation.

Formally, a contingent kernel Ci is defined for each point Xi as

the convolution of the kernel function, K , and the probability

density function that describes the contingency distribution, Yi, for

that point. Equation 3 defines this operation. Note that the

denominator term is a normalizing factor to ensure that the area

under the contingent kernel will be one.

Ci(x h,Yij ):

ð
K

x{Q

h

� �
Yi(Q)dQð ð

K
x{Q

h
ÞYi(Q)dQdx ð3Þ

�

Whereas any standard kernel function can be converted into a

contingent kernel through this operation, the contingency

distribution is defined by the sampling regime. For instance, in

the case of a Transect-Range-Section grid study, the contingency

distribution would be a bivariate uniform distribution with the

same dimensions as a single grid square.

Once the contingent kernels have been arrived at, the

contingent kernel density estimate is calculated in much the same

way as the standard kernel density estimate (Equation 4)
.

f̂f (xjh):
1

n

Xn

i

Ci(x{Xijh,Yi) ð4Þ

As a practical matter, the form of Yi may often be constant across

all points. When this is true, a single form of the contingent kernel

function can be derived for all points. This is the case in the Twitter

application presented later in this paper. In that application, Y is a

circular uniform distribution defined by a radius r (where r may

change from point to point). In such cases, a single contingent kernel

C can be derived for the entire dataset, which can then be applied to

each point. Here, the primary change from standard kernel density

estimation when calculating the density estimate is that the

contingent kernel is not based on a one-parameter family of kernels

K(x), but instead also takes parameters that define the shape of the

contingency distribution (r in the case of the Twitter application).

The rest of the analyses in this paper will focus on cases where the

form of Y is constant between points.

Results

Calculation of Demonstrative Contingent Kernels
An example calculation of a one-dimensional contingent kernel

(as defined using Equation 3) derived for a standard Gaussian

kernel and a contingency distribution function (Yi) defined as a

uniform distribution with a half-width of r (the contingent kernel

then depends solely on r) is provided by the equation

C(x h,Yj i)~C(x h,rij )

~

ð
e
{

x{Qffiffi
2
p

h

� �2

ffiffiffiffiffiffi
2p
p :

1=2ri
Qj jƒri

0 Qj jwri

( )
dQ

ð ð
e
{

x{Qffiffi
2
p

h

� �2

ffiffiffiffiffiffi
2p
p :

1=2ri
Qj jƒri

0 Qj jwri

( )
dQdx

~

Erf ri{x

h
ffiffiffi
2
p

� �
zErf rizx

h
ffiffiffi
2
p

� �
4ri

ð5Þ

Additionally, contingent kernels for a number of common usage

cases were calculated. Combinations between three separate

kernels (Gaussian, Epanechnikov, and Uniform) and two types

of contingency distributions (Uniform defined by a half width r and

Gaussian defined by a standard deviation s) were developed. The

resulting contingent kernels are collected in Figure 3.

These contingent kernels directly take the role of the contingent

kernel C in Equation 4 for calculating the contingent kernel

density estimate. In some cases, such as a Gaussian kernel and a

Uniform contingency distribution, the contingent kernel is a

simple function. In other cases, such as the Epanechnikov kernel

and a Uniform contingency distribution, the contingent kernel is a

piecewise function where test conditions should be evaluated

sequentially until one is determined to be true. In either case, the

implementation of these contingent kernels in a mathematical or

programming environment is straightforward.

All contingent kernels use the bandwidth as a parameter.

Figure 4 illustrates the effect of the bandwidth parameter on the

shape of the contingent kernel formed from the standard Gaussian

kernel and a Uniform contingency distribution (Equation 5). The

parameters defining the contingency distribution are also param-

eters to the contingent kernels and affect their shape.

It should be noted that not all the contingent kernels are defined

for the Uniform contingency distribution when the width of the

Uniform distribution is equal to 0 (i.e. r = 0). Such a scenario

would correspond to the case of no displacement error. Without

Contingent Kernel Density Estimation
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displacement error, we would wish that the contingent kernel

would reduce to the standard kernel that it was derived from.

Indeed, this is the case. For example, although Equation 5 is not

defined for r = 0, the limit of the equation as r approaches 0

reduces to the equivalent of what would be the standard Gaussian

kernel (Equation 6). Code that implements the contingent kernels

should check for such boundary conditions and adjust calculations

accordingly.

lim
r?0

Erf r{x
h
ffiffi
2
p

h i
zErf rzx

h
ffiffi
2
p

h i
4r

~
e
{x2

2h2

h
ffiffiffiffiffiffi
2p
p ð6Þ

Numerical Validation of Accuracy Improvements
As described in the methods section, a numerical simulation was

constructed to validate the accuracy of contingent kernel density

estimation on synthetic datasets.

In this experiment, the Mean Integrated Square Error (MISE) of

both the standard kernel and contingent kernel estimates fell as the

sample size of points drawn from the original distribution increased

(Figure 5). Furthermore, although the standard and contingent

methods are similar in accuracy for small sample sizes, the

contingent kernel error falls faster compared to the standard kernel,

as the sample size increases. At large sample sizes, the contingent

kernel has approximately one-half the MISE as the standard kernel.

Figure 3. Contingent kernels (C) for combinations of univariate standard kernels (K) and two forms of contingency distributions (Y).
doi:10.1371/journal.pone.0030549.g003
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A better qualitative understanding of the methods is obtained by

looking at the exact estimates produced by the standard and

contingent kernel techniques (Figure 6). The standard kernel

method is more susceptible to overestimation of the density at the

locations where the points are relocated to, due to the sampling

grid filter. The standard method also exhibits higher variability.

The contingent kernel method, on the other hand, reduces

variability at these locations by smoothing the kernels based on

uncertainty. Even as it smooths in these places, the contingent

kernel method still does a better job than the standard kernel

method at identifying the spike in density at location 0. Since that

peak is not associated with high sampling uncertainty, little

contingent smoothing occurs at the peak.

Application: Twitter User Locations
Data from 10,000 Twitter users were analyzed. As discussed in

the methods section, location information for each user was

represented as a disc with the user having equal probability of

being located anywhere in the disc. Figure 7 contains plots of both

the center point for each user and the full disc that defines the

location of the users. Points and discs are jittered and plotted with

slight transparency to allow the estimation of the number of users

at dense locations.

Standard kernel density estimation uses the center of the discs.

As can be seen in panel A of Figure 7, using this criterion there

appears to be a heavy concentration of users directly on the

Kansas-Nebraska border. In reality, there is no such heavy

concentration of Twitter users in that location, instead the heavy

density there is due to users who specified their location as ‘‘USA.’’

The Kansas-Nebraska border is the rough center of the United

States and so Twitter users whose location is only identified as the

country are assigned to that location. When, the discs are viewed

in panel B of Figure 7, the spike on this border disappears as it is

transformed to a set of large discs encompassing most of the

United States. Similar spikes in densities can be seen in panel A at

the center of California or in the center of Texas. When the discs

are plotted instead, these spikes disappear and become discs

approximately encompassing these states.

Standard and contingent kernel density estimates were carried

out for these data using a bivariate Gaussian standard kernel and

its contingent kernel equivalent (a circular rotation of Equation 5

normalized so the volume under the kernel is one). The standard

Figure 4. Example contingent kernel. The contingent kernel for a
standard Gaussian kernel applied to a uniform half-width of radius 0.5.
Contingent kernels for three different bandwidths (h) are plotted.
doi:10.1371/journal.pone.0030549.g004

Figure 5. Error for standard and contingent kernels for different sampling sizes from test distribution. Test distribution is a mixture
function of three normal distributions. Each normal distribution was sampled with a different frequency. From left to right (2-unit bins, 1-unit bins,
and 0.5-unit bins). Mean Integrated Square Error and 95% confidence intervals for the standard and contingent kernels are plotted. 20 Monte Carlo
simulations were carried out for each sampling size.
doi:10.1371/journal.pone.0030549.g005

Contingent Kernel Density Estimation
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kernel density estimate clearly demonstrates strong bias and

inaccuracy in that the spike of users who select the United States as

their location is represented in the standard kernel density estimate

as a large increase in density on the Kansas-Nebraska border

(Figure 8). This density spike is approximately equivalent to the

spike in density located at the San Francisco Bay Area, a region

that is the headquarters of Twitter and that is known for its relative

high population of technologically savvy Twitter users. Clearly this

is quite unrealistic and is just an artifact of the sampling regime.

In the contingent kernel density estimate, this sampling artifact

completely disappears. In addition, population densities and cities

with an expected high number of Twitter users such as Denver,

Colorado, are better identified in the contingent kernel density

estimate than in the standard kernel density estimate.

Discussion

The contingent kernel density estimation technique has been

shown to be effective in compensating for certain forms of errors

such as those observed in the Twitter location dataset or those

associated with Transect, Range and Section grids. The proposed

method allows the integration of diverse data sources, each

generated with various levels of measurement confidence and

potentially different types and structures of uncertainty. Further-

more, it is more straightforward to analytically derive contingent

kernels for standard kernels and elementary contingency distribu-

tions than it is to derive some other adjustment methods such as

deconvolution kernels. As contingency distributions become more

complex (for instance when the contingency region is defined using

an arbitrary geographic boundary such as a country border),

deriving contingent kernels analytically may be infeasible but

numerical approximations can be used to estimate the contingent

kernel.

A primary limitation of this method now needs to be addressed:

the contingent kernel is dependent upon the contingency

distribution Y, but this distribution is often not known. In the

examples presented here, the contingency distribution was taken

as uniform function (the computer simulation validation experi-

ment) and as a uniform disc (the applied Twitter analysis). Given

the respective displacement functions, these are the best guesses of

the contingency distribution prior to analysis of the data or

knowledge of f . However, if we denote these uniform contingency

distributions as ŶY the contingency distributions that appear in

Equation 3 are given by

Yi(x)~
ŶYi(x)f (x{Xi)ð
ŶYi(x)f (x{Xi)dx

: ð7Þ

Since f is unknown, Yi cannot be directly calculated. By using

ŶYi in place of Yi, the results are biased. The significance of this

bias depends on both ŶYi and f . As shown in the computer

simulation and in the applied Twitter application, even given the

use of ŶYi, the contingent kernel density estimation can still result in

superior density estimates as compared to standard kernel density

estimation. This is because in these cases f has a relatively small

effect on Yi so ŶYi and Yi are quite similar. However, as f becomes

more aggregated relative to ŶYi, the quality of substituting ŶYi for Yi

is reduced.

A subsequent goal is the determination of better approximations

of Yi from ŶYi and the data. One possible method that this paper

has not explored, but which is widely used in problems without

closed form solutions, is to carry out an iterative analysis. For

instance, we suggest one possible smoothing technique in Equation

8. Here we denote Yi,0(x) the first guess of the contingency

distribution for a given point Xi (which can be uniform or not) and

f0(x) as the resulting estimate of the true f (x). We define the

parameter a as a real-valued number between 0 and 1 that

determines the magnitude of the effect of iteration. When a is 0, no

iteration is carried out. When a is 1, the iteration has maximum

effect (and the final form of f may never converge).

Equation 8 is initially used with j = 1 to obtain Yi,1 and then use

the set of Yi,1 to obtain the next estimate f1 of f . Now repeat using

Equation 8 to iteratively obtain a sequence of estimates (Yi,j(x),

fj(x)), j = 1,2,3,… .

Yi,j(x)~a
Yi,0(x)fj{1(x{Xi)ð
Yi,0(x)fj{1(x{Xi)dx

z(1{a)Yi,0(x) ð8Þ

Equation 8 can be decomposed into roughly three conceptual

steps. The first step (Yi,0(x)fj{1(x{Xi)) takes the estimate of a

contingency distribution and scales it by the estimate of f (x). The

second step is to normalize the resulting function so it is a

distribution with an area of one. Conceptually we can think of this

operation as follows: imagine that we had a country with one

major city in it. People may either identify themselves as coming

from the city or coming from the country. Everyone outside of the

city will list the country as their location, while people inside the

city will split in listing their locations. Some list the city and some

list the country. If we do not take this into account, our estimates

will be biased to overpredict the number of individuals outside of

the city and underpredict the number within the city. The scaling

of the contingency estimates in Equation 8 is one way to approach

this issue. The third and final step in Equation 8 is to combine our

scaled contingency distribution with the original contingency

distribution using a ratio of a. As demonstrated numerically in

Figure S1, selecting a.0 allows the iterative process to converge in

some cases while a = 0 does not converge.

It should be noted that Equation 8 is presented solely as an

illustrative method, its consequences have not been thoroughly

explored. One key aspect of this iterative method is the choice of a.

In practice a might be found using some form of cross validation

technique. Whether or not this sequence converges to the true

Figure 6. Sample standard and contingent kernel density
estimates of test distribution. The distribution is the same as in
Figure 5. Sample size is 600 points. The contingent kernel has
significantly lower error compared to the standard kernel.
doi:10.1371/journal.pone.0030549.g006
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Figure 7. Plots of a subsample of 10,000 Twitter user locations. Panel A is the plot of just the center of the locations. This is what a standard
kernel estimate would use to estimate distribution. Panel B is a plot of the discs defined by the center and the radius of uncertainty. This is what the
contingent kernels use to estimate distribution. In panel A, note the high concentration of users on the Kansas-Nebraska border. This is due to users
entering ‘‘USA’’ as their location and should be paired with high uncertainty. It is converted to the large ring shown in panel B. Points and discs are
jittered by up to 2 degrees to improve the readability of the results.
doi:10.1371/journal.pone.0030549.g007

Contingent Kernel Density Estimation
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Figure 8. Standard and contingent kernel density estimates of the distribution of 10,000 Twitter users in the United States. Note the
high-level of density on the Nebraska-Kansas border found in the standard kernel estimate. In the standard kernel, this level of density is equivalent to
the level of density in the San Francisco Bay Area: an area with a known high-level of Twitter use. This is an artifact caused as a result of failing to take
the uncertainty of users locations into account. The artifact disappears in the contingent kernel estimate.
doi:10.1371/journal.pone.0030549.g008

Contingent Kernel Density Estimation
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contingency and population distributions will generally depend

both on the starting distribution Yi,0(x) and the true contingency

and population distributions.

In general, it can be assumed that any reported measurement

was made with some error. Sometimes these errors are purely

additive such as when observations were displaced using a normal

error distribution from their original location. Other times, errors

are a result of a procedure where observations have been aligned

to a grid such as in the computer validation example developed in

this paper. In other cases, errors may be due to selected effort or

observation bias leading points to be detected with different

frequency in different regions. Whatever the form, whether or not

these errors have a significant result on any analysis must be

evaluated on a case-by-case basis. If it is determined that the errors

could significantly impact the analysis, the choice of analytical

tools must be adjusted to account for this impact. This paper

develops one such tool: a new method for adjusting for errors that

are found in certain types of sampling regimes. Studies that use

such sampling regimes can make use of this technique to improve

the accuracy of their analyses.

Methods

The methods consists of three sections: the calculation of

example contingent kernels, numerical validation of accuracy

improvements, and an application to the location of Twitter users.

Calculation of the Demonstrative Contingent Kernels
Mathematical analyses were carried out both by hand and with

the use of computer software. Specifically, the software program

Mathematica version 8.0.1 was used as an aid to the symbolic

analyses and the calculation of contingent kernels for common

usage cases [14].

Numerical Validation of Accuracy Improvements
Computer simulations were carried out to numerically validate

the improvement of the contingent kernel method as compared to

standard kernel methods. The programming environment R

version 2.13.0 was used to develop the analyses [15].

The validation process required four components:

1. the original probability density function f that the two methods

attempted to estimate,

2. the sampling protocol which introduced errors into the

observed locations of points,

3. the implementation of the standard and contingent kernel

density estimation methods including the selection of a kernel

and bandwidth, and

4. an error criterion to compare the accuracy of the original

probability density function to the estimates f̂f .

With respect to point (1), an equal mixture function of three

Gaussian kernels N(m,s) was used with the following means m, and

standard deviations s: N(24,2), N(3,1) and N(0,0.75) (see

Reference curve in Figure 6). Other studies assessing the accuracy

of kernel density estimation have looked at mixture functions of

Gaussians [16–18] and experimentation with several other forms

of functions did not change the results.

With respect to point (2), a filter was applied to the sampled

observations in order to recreate the type of sampling behavior

associated with Transect-Range-Grid sampling and other types of

sampling with similar effects. A grid of equally spaced locations was

overlaid on the range of the mixture function and the observations

drawn from the mixture function were relocated to the nearest grid

location. In order to simulate heterogeneous sampling behavior

(e.g., if some data are assigned to the county level, while other data

are assigned to the state level), three different resolutions of grids

were used: the first with a spacing of 0.5, the second with a spacing

of 1, and the third with a spacing of 2.

With respect to point (3), the kernel density estimation methods

were implemented in the R programming environment. To apply

the methods, both the kernel form and the bandwidth value had to

be specified. The Gaussian kernel, as it is commonly used, was

selected for the analyses. The selection of the kernel bandwidth is a

critical issue (see Figure 1) and since the task is a somewhat

subjective choice it has received considerable attention in the

literature (e.g., see [19] and [20]). In our analysis, for consistency,

we selected the bandwidths that minimized in each case the error

between the original distribution f (which we know by

construction of our artificial dataset) and its estimate f̂f , thereby

resulting in different bandwidths for the different cases.

Finally, with respect to point (4), errors were assessed quantita-

tively and qualitatively. Several methods for quantifying errors have

been proposed [21,22]. A common method is to take the squared

deviation between the original and estimated distributions. To

assess deviations, errors were calculated using the Integrated

Squared Error (ISE) (Equation 9 below) between the original and

estimated probability density functions for a given dataset X.

ISE(f ,f̂f hj ,X)~

ð
f (x){f̂f (x hj )
h i2

dx ð9Þ

Sensitivity tests compared the error to the sampling size for

sample sizes of different datasets X ranging from 15 to

600 points. Mean Integrated Squared Error (MISE) over all

datasets X (i.e. MISE(f ,f̂f hj ,X)~E½ISE(f ,f̂f hj ,X)�) and the 95%

confidence interval for this estimate were calculated for each

sample size with 20 replicates. Plots comparing the resulting

estimates are also shown to provide a more qualitative

understanding of the form of these errors.

Application: Twitter User Locations
To demonstrate the utility of our contingent kernel density

estimation procedure, we applied it to location data gathered from

the social networking site, Twitter. Location data were collected

for 10,000 Twitter users using Twitter’s publically accessible

Streaming API. Only data that users chose to be publically accessible

to third party companies and researchers were collected and

identifying information was deleted prior to analysis.

Twitter provides two forms of location information from those

users who choose to make it publically accessible. The first is precise

geolocation data obtained using a GPS device. The majority of

Twitter users either do not have such devices or do not choose to

make those data public. The more common form of location data is

a free form, user-enterable text string describing a user’s location.

This location string is definable by the users with little to no

restrictions and thus there are high variations in the strings’

precisions. For instance, take three hypothetical users living in San

Francisco; one user might enter ‘‘San Francisco, California,’’

another ‘‘California,’’ and the third simply ‘‘USA.’’

Regardless of users’ choice of precision, the first challenge in

processing the data was to convert the strings to geolocation

coordinates that could be mapped and compared. Such a task is

non-trivial and either requires extensive manual labor or a large

database of place names along with flexible text parsing software

(e.g., the software needs to be able to determine that ‘‘SanFran,

California’’ and ‘‘USA, San Francisco’’ refer to the same place).
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To convert Twitter location strings to geolocated entities, Yahoo

PlaceFinder, a free service provided by Yahoo, was used. Researchers

can send Yahoo PlaceFinder free-form location strings, such as those

strings entered by Twitter users. The service then processes the

information and returns geolocation data for that string. The

geolocation information is returned in the form of a disc defined by

its center (as a latitude and longitude) and a radius (in meters). For

example, if the user entered ‘‘San Francisco,’’ the center of the city

and the approximate radius of the city would be returned. If, on the

other hand, the user entered ‘‘USA,’’ the center of the country

would be returned along with a much larger radius representing and

average radius of the country. It is assumed that there is equal

probability of the user being anywhere within that resulting disc. A

more refined approach could use actual normalized density maps

(i.e. converted to the probability of locating individuals in named

region at a particular point x in that region), when available for the

different localities, as the underlying kernels. For purposes of

demonstration of our contingent estimation method, though, we

simply used a Gaussian kernel basis for the estimation process. We

implemented in R both bivariate standard and contingent kernel

density estimation techniques for the sample of 10,000 Twitter

users. In comparing the results, as discussed below, we identified

some critical differences.

Several critiques can be made of using one of the standard

family rather than special sets of kernels that conform to regional

boundary constraints in our contingent kernel density estimation,

as would be the case if kernels were normalized population density

maps used for each named region. Even if density maps were not

available, it would still be better to use a compact kernel that

coincides with the boundaries of the named region in place of a

disc that is maybe a very poor approximation to this boundary.

Currently the boundaries for certain classes of regions, such as

municipalities, are difficult to obtain and identify from the user

strings. Also, the use of a set of special but irregular kernels would

require a numeric approach, instead of an analytical one, which

would greatly slow down computation of a contingent kernel

estimate using Equation 4.

Another potential critique is that instead of assuming an equal

probability of a user within a region, census or other demographic

data could be used to create more accurate predictions of the

distribution of users within these regions. This modified approach

has two primary potential weaknesses. One is that the distribution

of Twitter users could be fundamentally different from the

distribution obtained by a census. Factors that result in an

individual using Twitter could potentially also result in them

having a different geographic distribution than general surveys

report for the population at large. Secondly, it can be hypothesized

that the level of specificity with which a user enters their location

depends on that location itself. For instance, take two hypothetical

users living in California. One lives in San Francisco while the

other lives in a small town in the Central Valley. A priori, one

could hypothesize that the user living in San Francisco would be

more likely to specify their city (because they know other Twitter

users will have heard of it and so it would then be meaningful to

them) while the user living in the small town would be less likely to

specify their town (because they know it would likely not have

meaning to other Twitter users). If this hypothesis were true, the

usage of demographic data could result in bias towards large and

popular cities and regions to a greater extent then the assumption

of a uniform distribution throughout a region.

Supporting Information

Figure S1 Numerical demonstration of convergence of
equation (9). A simple sample set 1-D of points was created with

the following locations: 21, 1, 1, 2 and 3. A uniform contingency

distribution was assumed for each point with radiuses of,

respectively, 1, 2, 0.3, 4 and 2.5. The analytical method may only

be used for the first estimate of f (i.e. f0(x)) as after that the contingent

kernel estimates take on forms not tractable for analytical solutions.

The initial contingent kernel density estimate is shown. Iterations

were then carried out using different values of a. Values of 0.10,

0.50, and 0.75 are shown. Up to 10 iterations were carried out. Plots

of iteration estimates of f are shown. Iterations are not shown if no

significant visible changes were made between iterations. An ellipses

sign marks these gaps. As is demonstrated, small values of a led to

rapid convergence while values closer to 1 led to slower

convergence. During iterations regions of high density increase in

density while regions of low density generally decrease.
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