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Abstract

The advent of next generation sequencing (NGS) technologies have revolutionised the way biologists produce, analyse and
interpret data. Although NGS platforms provide a cost-effective way to discover genome-wide variants from a single
experiment, variants discovered by NGS need follow up validation due to the high error rates associated with various
sequencing chemistries. Recently, whole exome sequencing has been proposed as an affordable option compared to whole
genome runs but it still requires follow up validation of all the novel exomic variants. Customarily, a consensus approach is
used to overcome the systematic errors inherent to the sequencing technology, alignment and post alignment variant
detection algorithms. However, the aforementioned approach warrants the use of multiple sequencing chemistry, multiple
alignment tools, multiple variant callers which may not be viable in terms of time and money for individual investigators
with limited informatics know-how. Biologists often lack the requisite training to deal with the huge amount of data
produced by NGS runs and face difficulty in choosing from the list of freely available analytical tools for NGS data analysis.
Hence, there is a need to customise the NGS data analysis pipeline to preferentially retain true variants by minimising the
incidence of false positives and make the choice of right analytical tools easier. To this end, we have sampled different freely
available tools used at the alignment and post alignment stage suggesting the use of the most suitable combination
determined by a simple framework of pre-existing metrics to create significant datasets.
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Introduction

DNA Sequencing has come a long way since its first discovered

more than 30 years back, in terms of speed, throughput and cost. The

commercial availability of second generation sequencing technology

has aided many new discoveries, especially in the field of disease

biology, microbiology and plant biology. As amount of data generated

from the next generation sequencing (NGS) platforms is very large

that requires sophisticated informatics tools and skills in computational

biology to mine, analyse and interpret the data, bulk of the research in

the field has come from a handful of large genome centres that employ

large numbers of computer scientists, computational biologists and

bioinformatics specialists. A small biology lab with limited resources in

informatics, software and hardware usually find it difficult to analyse

NGS data. Additionally, variants discovered with NGS platforms

often need downstream biological validation. In order to get the best

set of variants, one needs to use the right combination of tools to

discover them in the first place, reducing false positive calls due to

amplification bias and sequencing error. In order to make NGS

technology ubiquitous and clinically useful, one needs to come up with

simplified analysis tools that produce more true positive calls and

reduces efforts and money required for downstream validation

experiments. The trajectory between NGS data generation and

biological meaning currently spans multiple known and approximate

landscapes with dimensionality defined grossly by factors like data-

compression, string matching, and consensus building among others.

The approximation seeds mainly from the universal assumption

ingrained in the alignment algorithms that the number of expected

mismatches be governed by the genetic polymorphism rate of the

species/population and the systematic error rate in the sequencing

technology rather than by considerations of evolutionary substitu-

tions/mutations [1]. Also, calculation of alignment maps without

increase in computer hardware requirements for high throughput data

has been the central theme for optimization of most alignment

algorithms necessitating the use of approximate heuristic methods.

These approximations have definitely achieved speed gains by

accommodating low-quality alignments in varying degrees. However,

the speed limits of these algorithms will be challenged more seriously

as the sequence capacity grows and will further test the balance

between speed and accuracy of these processes.

This seemingly complex process of data analysis is dictated by

the ‘‘simplistic’’ ideology of minimising the time and cost of data

generation and interpretation. Driven by this ideology, it is

imperative for researchers to adopt the fastest and the most

accurate yet sensitive combination of prediction methods to

analyse high throughput sequence data for variant discovery. Most

large genome centres, like the ones involved in the 1000 genomes

project [2], currently employ hundreds of informatics researchers
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to mine, analyse and interpret large NGS data sets. Analysis tools

and algorithms developed by researchers working at these large

centres may not always cater to the needs of an individual biologist

who operates at a much lower capacity, scale and magnitude.

Hence, there is a need to assess the existing freely available tools

and algorithms for variant discovery and suggest a best

combination to minimise time, informatics resources and subse-

quently reduce the number of false positives in the validation

experiment. This will allow biologists focus more on their work

rather than on optimising analytical tools for variant discovery

from NGS data sets. Here, we present a comparative study of

different freely available tools for short-read alignment and variant

discovery that will allow individual biologists make a rational

choice in plugging the fastest and accurate tool(s) into their data

analysis pipeline.

The freely available short-read aligners sampled in our study

belong to two major fundamental classes of algorithm implemen-

tation [3]. The first major class of aligners are built on hash table–

based approach like; Bfast [4], Ssaha [5], Smalt [6], Stampy [7]

and Novoalign [8] in which the hash is generated with the

reference genome. The second class of aligners sampled are

Burrows Wheeler transform (BWT)-based aligners Bwa [9] and

Bowtie [10], which rely on creating an efficient index of the

reference genome. Although the alignment algorithm plays a

crucial role in variant calling, there are certain SNP callers that

implement base quality and posterior probability calculations to

minimize the false positive rates in the pool of variants called. We

have mainly targeted the following standard and widely used SNP

callers: Samtools [11], Freebayes [12], Bambino [13] and GATK

[14], [15]. The methods section describes these tools in better

detail in the context of our data.

The steps involved in identification of a final set of SNPs from

the whole exome data involves a number of steps (Figure 1)

starting from the raw sequencing output. Each step shown in the

schematic contributes to the accuracy of the final SNP calls. We

decided to use real human whole exome data sets, derived from

three different tissue samples, in both the alignment and SNP

calling steps over simulated data to replicate biological variability

and incorporate genome complexity to the analysis pipeline. The

uncertainties in the resulting calls were treated in the downstream

analysis using a user’s perspective rather than emphasising on the

complexity of the algorithms in practice. In our study, this was

achieved by using a framework of simple pre-existing metrics like

aligner and variant caller-specific base quality plots of the variants

called, transition/transversion (Ti/Tv) ratios, SNP re-discovery

rates using whole genome SNP microarray and run times

associated with each tool. This study is aimed to facilitate

biologists to choosing from the freely available resources for

NGS exome data analysis.

Results

Details on the sequencing platform used, short read aligners and

variant callers assessed and the data sets used is given in Table 1.

We have recorded useful insights centred around time associated

with read alignment, quality of alignment and variant calling

based on their quality scores and variant re-discovery rates from

genotyping microarrays.

Time taken for aligning reads by various aligners is represented

in Figure 2. Bowtie, as expected, has the minimal run time as its

alignment strategy does not accommodate gaps, essentially aligns

only those reads bearing perfect matches and mismatches without

Figure 1. Steps involved in generating highly significant SNP dataset.
doi:10.1371/journal.pone.0030080.g001
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insertions or deletions. Not surprisingly, the percentage of aligned

reads in Bowtie is comparatively lower than any of the other

aligners permitting gaps in calculating alignment maps (see

Mapping Statistics in Text S1). Although not very sensitive in

SNP detection, Bowtie’s accuracy is very high as indicated by the

metrics (Figures 3 and 4). However, earlier studies and preliminary

studies from our group (data not shown) suggest higher SNP

density around indel locations [16], it was not surprising to find

that Bowtie captures only about 1% of SNP events in the vicinity

of indels compared to Novoalign. In comparison to Bowtie, other

aligners use gapped alignment approach but are efficient in time

requirement. BFAST takes substantially more time in comparison

to all other aligners and have a large RAM requirement [4],

especially when 10 indexes are used for human reference genome.

Although Stampy uses BWA algorithm in its first stage of

alignment, the subsequent steps that introduce base-calibration

makes it a relatively time consuming process in generating the

SAM files. However, the ability of Stampy to combine two

fundamentally different algorithms makes it a superior aligner

compared to BWA. It implicates BWA’s Burrows-Wheeler data

structure as a first stage to map highly repetitive reads that include

sequence variation followed by its own algorithm for further

improvement of accuracy and sensitivity [7].

The next metrics used in our study is the average variant base

qualities. We obtained the average base quality score of the

variants directly from the corresponding SAM files thereby

circumventing the possibility of any variant caller related

arbitration in terms of assigning base quality scores. In the first

analysis for sample 02B, we kept the aligner constant and varied

the variant caller (Figure 3A) and in the second, we kept the

variant caller constant and varied the aligner (Figure 3B). The top

two aligners obtained using this metrics are Stampy and Novoalign

(Figure 3). For the other two samples, the base quality plots were

very similar (Figures S1, S2, S3, S4). The base quality plots

indicate the ability of both Novoalign and Stampy to maintain a

consistently high quality score across different variant callers. As

anticipated, due to ungapped alignment and less number of total

reads getting aligned to the reference genome, Bowtie yielded least

number of variants with 390 quality scores across different variant

callers (Figure 3A). The most interesting results came when we

used Novoalign that resulted in equally good variant quality no

matter which downstream variant caller is used. This could be due

to a post-alignment base quality re-calibration method that

Novoalign uses [17]. Smalt, Bwa, Bfast and Ssaha yielded

comparable base quality scores for all variant callers. Stampy,

like Novoalign, also uses post-alignment base-recalibration and

yielded good quality scores for all variant callers, albeit with

varying frequency (Figure 3A).

The third metrics that we looked at is the Transition (Ti)/

Transversion (Tv) ratio [15]. Ti/Tv ratio is generally used to

evaluate the quality of SNP calls and is reported to be between 2–

2.2 and 2.8–3.0 for SNPs anywhere in the genome and in the

coding region respectively [15], [18], [19]. The data on Ti/Tv

ratio depict the consistency of Novoalign and Stampy across all the

variant callers (Table 2). GATK performed the best in terms of

Ti/Tv ratio followed by Bambino across all variant callers. This

perhaps is due to the fact that GATK is known to perform

recalibration of base quality for variant calling [14], [15]. Bambino

[13] assigns a Bayesian quality score [20] to each variant call that

it calculates by converting the Phred-scaled scores of the aligned

SAM file to probability of error value [21]. Freebayes fared poorly

across all aligners except for Novoalign and Stampy. This could

have been due to post-alignment base quality recalibration process

that both Novoalign and Stampy employs.

GATK produced the most high quality variants as depicted by

the Ti/Tv ratios and the base quality plot metrics. Although, the

number of steps involved in running GATK makes it a time

intensive process, the steps for base call recalibration and local

Table 1. The different NGS aligners and variant callers sampled in our study.

Sequencing platform Aligners SNP callers Datasets

Illumina GAIIx, paired-end short-insert
library of read length 76

Bowtie, Smalt, Stampy, Ssaha,
Novoalign, Bwa, Bfast

Samtools,GATK, Freebayes,
Bambino

Sureselect enriched Exome
data: 02B, 12L, 20T

doi:10.1371/journal.pone.0030080.t001

Figure 2. The real time elapsed in calculating alignment maps.
doi:10.1371/journal.pone.0030080.g002

Customisation of Exome Data Analysis Pipeline

PLoS ONE | www.plosone.org 3 January 2012 | Volume 7 | Issue 1 | e30080



Figure 3. Base quality plots of sample 02B. (A) Depicting the effect of seven aligners. (B) Depicting the effect of four variant callers.
doi:10.1371/journal.pone.0030080.g003
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realignment [14] greatly improve the quality of call sets even in

average quality alignment data. However, in our hands, Bambino

proved to be faster yet accurate option for SNP calling with the

quality of SNPs comparable to the GATK. Samtools resulted in a

slightly higher (.3.0) Ti/Tv ratio suggesting a bias towards

identifying transition events (Table 2). The pitfall of Samtools is

that it uses very stringent quality filters and hence the probability

of losing true positives in samtools is higher than the rest. The false

detection fraction of variants in the call set has been deduced from

the expected Ti/Tv ratio and an observed Ti/Tv from each call

set (Table S1). A recent paper by Asan et al, suggests that in exome

data the false positive rate is higher than false negative. Hence, we

anticipate the discrepancy between the true positives and the

variants discovered in our study could be primarily due to false

positive rates [22].

The last metrics that we look into is the SNP re-discovery rate

using whole-genome genotyping microarrays. We used whole

genome SNP microarray from Illumina with 2.5 million SNPs

(Omni 2.5 arrays). The number of variants re-discovered by SNP

arrays and the overlap between the exome sequencing and SNP

arrays is presented in Figure 4. SNP-rediscovery using microarray

corroborated our earlier findings from previous metrics of average

variant base quality and Ti/Tv ratio suggesting that both

Novoalign and Stampy provide with the best rate of SNP re-

discovery across all the variant callers (Figure 4A). The DNA

microarray used in our study interrogates the unique regions of the

genome. In order to validate the pipeline for novel variants, in

addition to all the exonic SNPS, we calculated the variant re-

discovery rates for the dbSNP positive variants from the whole

genome SNP microarrays. As presented in Figure 4B, both

Novoalign and Stampy provided the best rate of SNP re-discovery

across all variant callers suggesting these aligners are equally useful

to detect novel true positive variants.

Discussion

In high-throughput sequencing, the most critical step, post

sample/library preparation, involves accurate calculation of the

alignment maps for reads with inexact matches to facilitate

sensitive detection of biological variants by filtering out sequencing

errors by a coverage based filter. Also, an inherent read mapping

bias favoring the reference allele reduces the detection sensitivity of

heterogeneous SNPs. The SNP masking approaches to limit the

allele specific mapping bias are also not full proof [23]. Most of the

aligners are challenged by the above limitation wherein the

algorithms tend to lose true positives due to under mapping of

reads with inexact matches and allele specific mapping bias. Read

mapping biases resulted by aligning reads to a genome without

masking the dbSNP variants is known to affect allele-specific

expression [23] but its effect on variant calling remains to be

established.

From a practical point of view, considering the cost, complexity

of analysis, informatics load and the fact that the majority of

disease-causing variants will remain within the coding region, it

makes sense to utilize the whole-exome data sets over the whole

genome ones. Although results presented here use whole exome

data sets, we believe that the trend will hold good even for whole

genome data sets.

From the data presented here, it is apparent that not the

alignment per se but the post-alignment base quality recalibra-

tion plays an important role in true positive variant discovery.

Both Novoalign and Stampy use this feature and hence yield a

much better true-positive variant re-discovery rate, Ti/Tv ratio

of variants called and higher base quality scores. In aligners

where this feature is not enabled, we have got lower scores in all

the three above metrics. Although, the post-alignment recali-

bration step has a predominant effect on the downstream

analysis of aligned data, variant callers like GATK and

Bambino have the ability to independently lower the false

detection substantially. In our analyses, the deviation from the

expected Ti/Tv ratio might be more of a reflection of false

positive calls rather than false negative calls [15], [22]. The base

quality plots (Figure 3B) are a graphic description of the prowess

of the above tools in their ability to independently identify high

quality variations.

In summary, we sampled 28 different combinations of aligners

and variant callers in order to assess their ability to align sequence

reads, obtain useful variant information, save time and cost of

analysis and to come up with an optimised set of tools that can be

used with minimum informatics support and resources. Among the

tools tested, we funnelled down to four combinations involving two

aligners Novoalign, Stampy, and two variant callers GATK and

Bambino that provided the best variant quality and variant-

rediscovery rates.

Table 2. The Ti/Tv ratios of 28 different aligner-caller combinations for samples 02B, 12L and 20T.

Ti/Tv for Exonic SNPs BWA BFAST BOWTIE STAMPY NovoMPI SMALT SSAHA

02B Samtools 3.78 3.59 4.12 3.28 3.22 3.49 3.53

GATK 2.73 2.73 2.86 2.77 2.77 2.79 2.75

Freebayes 0.32 0.402 0.62 2.37 2.70 0.29 0.30

Bambino 2.56 2.55 2.89 2.8 2.87 2.62 2.59

12L Samtools 3.52 3.46 4.08 3.29 3.24 3.41 3.46

GATK 2.69 2.72 2.90 2.76 2.75 2.78 2.74

Freebayes 0.25 0.34 0.525 2.26 2.63 0.22 0.23

Bambino 2.27 2.43 2.86 2.71 2.85 2.52 2.47

20T Samtools 3.80 3.45 3.99 3.30 3.30 3.38 3.47

GATK 2.74 2.73 2.85 2.75 2.77 2.78 2.75

Freebayes 0.32 0.402 0.62 2.37 2.70 0.29 0.30

Bambino 2.24 2.33 2.72 2.70 2.82 2.31 2.26

doi:10.1371/journal.pone.0030080.t002
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There are a wide variety of freely available tools for NGS short-

read alignment and variant calling and we have sampled the most-

common ones in order to identify the tangible combination under

realistic computer hardware configurations and with reasonable

time and cost required for follow-up validation. The metrics used

in our study have independently and corroboratively suggest the

accuracy and sensitivity of the above four combinations of tools at

alignment and post alignment stage to reduce the number of false

positive variants that can be taken for experimental validation in

real whole exome data sets.

Methods

Generation of sequence data
Human samples were obtained after ethics committee approval

from Mazumdar Shaw Cancer Centre, Narayana Hrudayalaya,

Bangalore, India and after obtaining written informed consent

from all participants involved in this study.

Illumina GAIIx was used to sequence three independent human

samples. We decided to use GAIIx as it is by far the most popular

NGS platform used in high-throughput sequencing studies.

Although, most of the larger laboratories are migrating towards

the newer HiSeq instruments, most small labs will remain with the

GAIIx system for a foreseeable future as the amount of data from

HiSeq is overwhelming to a biologist with limited hardware and

informatics resources and support. Also, the quality of data

generated from the GAIIx are comparable with that from the

HiSeq systems, making our study relevant for data sets generated

using other Illumina instruments using sequencing-by-synthesis

chemistry. Additionally, if the error-associated with upstream

sample/library preparation and the source of error remain same,

then the conclusions also should hold good for other sequencing

platforms.

Whole exome Sureselect enrichment kits (38MB) from Agilent

Technology were used to enrich exonic regions from all the three

samples. Sequencing libraries were prepared following standard

Illumina library preparation protocol for paired-end 76 bp reads.

Raw fastq files for both reads were generated and used for

alignment process.

Alignment
To assess the time required to align equal number of raw

sequence reads, we used a single core of the node in our HPC

(IBM iDataPlex HPC with 48gb RAM) to perform alignment

using all the aligners (this is to ensure that there is no difference

between the tools tested that can multithread and the ones that

can’t, details on the command line arguments is given in Table

S2). For all other analysis purpose, the alignment was carried out

in a cluster environment exploiting the multi-threading feature

(where available). In the case of those aligners wherein the multi/

hyperthreading capacity was absent, we used in-house scripts to

parallelise the input fastq file streams by splitting them into smaller

chunks of size 0.5 GB and running them on individual cores to

reduce time. This process of parallelization significantly improved

speed of alignment. The smaller individual aligned SAM files

spawned from the latter approach were merged to build the final

aligned SAM file. All the aligners were instructed to generate

aligned data in SAM format to facilitate downstream processing by

multiple variant callers. The alignment statistics from different

aligners are depicted by the graphs in Figure 5 (for details on the

scripts and run parameters along with command line arguments

used for each aligner, please see Alignment section under Text S1).

SNP calling
Variant detection was done with Samtools, GATK, Freebayes

and Bambino. Varying numbers of SNPs were detected by each

caller (Tables S3, S4, and S5), which were filtered using exonic

boundary limits to concentrate the SNPs in the exome region. As

observed earlier in Figure 5, the percentage of reads aligned to the

exome is lower than the percentage of total number of aligned

reads indicating contamination/bleed over of reads generating

from the non-coding region of the genome. The SNP data was

generated using default parameters for each SNP caller. The

workflow to call and filter variants involved in creating the final

variant call set are reported in the supplementary section (see

under SNP calling in Text S1). In-house Perl scripts were used to

extract the corresponding average base qualities of the filtered

SNPs and plotted using R script. The plots in Figure 3A and 3B

depict the effect of aligner and variant caller in modulating the

base quality of the variant call set.

Transition/Transversion ratio (Ti/Tv)
A transition mutation involves a change from purine to purine

or pyrimidine to pyrimidine and a tranversion mutation involves a

change from pyrimidine to purine or vice versa. This makes a

transversion event twice as favourable as a transition event for any

random mutation event. Hence, the Ti/Tv ratio for a random

Figure 5. The alignment statistics of the percentage of reads aligned by different aligners.
doi:10.1371/journal.pone.0030080.g005

Figure 4. The variant rediscovery percentages determined using whole genome SNP array. (A) All exonic variants. (B) dbSNP positive
variants. The Y axis represents the percent re-discovery rate in relation to the aligner that performed the best (taken as 100%).
doi:10.1371/journal.pone.0030080.g004
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variation resulting from systematic errors in the sequencing

technology, alignment artefacts and data processing failures should

be close to 0.5.

In our study, which involves targeted resequencing of the exonic

regions of the genome, the expected range of Ti/Tv ratio is

between 2.8–3.0 [19], [20]. The observed Ti/Tv ratios for each

aligner-caller combination are tabulated/plotted in Table 2.

Whole genome SNP microarray validation
Illumina OMNI2.5 whole genome SNP array was used to

validate the SNP re-discovery rates from the whole exome

sequencing experiments. The rediscovered SNPs are an experi-

mental validation of the prowess of the NGS tools in contention.

The use of SNP microarray allowed us to ascertain the percentage

of true positives associated with each aligner and variant caller.

The SNP sets compared here were filtered using exonic

boundaries used for the sequencing experiment. The different

percentages of overlap in all the 28 different combinations are

shown in Figure 4.

Note added to the proof
When this manuscript was under review, a report on

comparative analysis of various mapping programs on read

alignment was published [24]. Based on this, we extended our

study using MAPQ filter cutoff of . = 30 and assessed its effect on

the quality of the variant calls. The results obtained post MAPQ

filtering did not change the overall results obtained earlier. Details

of this analysis are provided in Table 6.
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Figure S1 Base quality plots of sample 12L depicting the
effect of seven aligners.
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Figure S2 Base quality plots of sample 12L depicting the
effect of four variant callers.
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Figure S4 Base quality plots of sample 20T depicting
the effect of four variant callers.
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Table S4 Number of raw SNP calls, filtered SNP calls
(based on variant quality and depth) and the constituent
exonic SNPs after applying Agilent SureSelect boundary
filter for sample 12L.
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Table S5 Number of raw SNP calls, filtered SNP calls
(based on variant quality and depth) and the constituent
exonic SNPs after applying Agilent SureSelect boundary
filter for sample 20T.
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Table S6 Metrics after applying the filter of MAPQ
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Freebayes. (D) With Bambino.
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