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Abstract

The acquisition of distinct cell fates is central to the development of multicellular organisms and is largely mediated by gene
expression patterns specific to individual cells and tissues. A spatially and temporally resolved analysis of gene expression
facilitates the elucidation of transcriptional networks linked to cellular identity and function. We present an approach that
allows cell type-specific transcriptional profiling of distinct target cells, which are rare and difficult to access, with
unprecedented sensitivity and resolution. We combined laser-assisted microdissection (LAM), linear amplification starting
from ,1 ng of total RNA, and RNA-sequencing (RNA-Seq). As a model we used the central cell of the Arabidopsis thaliana
female gametophyte, one of the female gametes harbored in the reproductive organs of the flower. We estimated the
number of expressed genes to be more than twice the number reported previously in a study using LAM and ATH1
microarrays, and identified several classes of genes that were systematically underrepresented in the transcriptome
measured with the ATH1 microarray. Among them are many genes that are likely to be important for developmental
processes and specific cellular functions. In addition, we identified several intergenic regions, which are likely to be
transcribed, and describe a considerable fraction of reads mapping to introns and regions flanking annotated loci, which
may represent alternative transcript isoforms. Finally, we performed a de novo assembly of the transcriptome and show that
the method is suitable for studying individual cell types of organisms lacking reference sequence information,
demonstrating that this approach can be applied to most eukaryotic organisms.

Citation: Schmid MW, Schmidt A, Klostermeier UC, Barann M, Rosenstiel P, et al. (2012) A Powerful Method for Transcriptional Profiling of Specific Cell Types in
Eukaryotes: Laser-Assisted Microdissection and RNA Sequencing. PLoS ONE 7(1): e29685. doi:10.1371/journal.pone.0029685

Editor: Shin-Han Shiu, Michigan State University, United States of America

Received August 22, 2011; Accepted December 1, 2011; Published January 26, 2012

Copyright: � 2012 Schmid et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the University of Zurich, and grants of the ‘‘Stiftung fuer wissenschaftliche Forschung’’ (through support by the
‘‘Baumgarten Stiftung’’) and the Swiss National Science Foundation to UG. The study was supported by Life Technologies by contributing, in part, sequencing
reagents, which had no influence on the design of the study. PR is supported by the DFG Clusters of Excellence ‘‘Future Ocean’’ and ‘‘Inflammation at Interfaces’’
and the NGFN Network Genomics of Chronic Inflammatory Diseases. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: grossnik@botinst.uzh.ch

Introduction

The development of multicellular organisms is controlled by

distinct cell fate decisions, which are largely mediated through the

establishment of cell- or tissue-specific gene expression patterns.

Spatially and temporally resolved information on gene expression

patterns facilitate the identification of regulatory networks of gene

activity that underly cell differentiation and functional specifica-

tion. However, transcriptional profiling of specific cell types

requires their isolation from an often heterogenic tissue and the

determination of the transcriptome, preferentially with high

resolution and completeness from ultra-low amounts of RNA

(down to single cell resolution).

One method used successfully for the transcriptional profiling of

distinct cell types is laser-assisted microdissection (LAM) in

combination with DNA microarrays (examples [1,2] in human

and [3–6] in plants). LAM allows the isolation of individual cells

directly from the surrounding tissue based on histological

identification with little cross-contamination (independently vali-

dated in [3]). Cell type-specific markers can assist the identification

but are not required for LAM. During the procedures, alterations

of cellular processes are unlikely because the tissue is rapidly fixed

prior to embedding, sectioning, and LAM [7]. However, only

limited amounts of RNA can be isolated from rare cell types and

obtaining sufficient amounts for transcriptome analysis usually

requires RNA amplification. Several methods for linear RNA

amplification suitable for microarray analysis have been success-

fully established, leading to new insights into the transcriptional

state of specific cell types [1–6]. Nonetheless, microarrays have

several limitations: high background levels due to cross-hybrid-

ization, a lack of sensitivity at low and high expression levels, and

reliance upon existing knowledge about the genome sequence [8].

The recently developed high-throughput sequencing of RNA

using next-generation sequencing platforms (RNA-Seq) has the

potential to overcome these limitations [8,9] and offers a variety of

new possibilities such as the transcriptional profiling of organisms

lacking sequence information [10], or the identification of novel

loci, alternative splicing events [11], and sequence variation [12].
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Given the advantages and opportunities offered by RNA-Seq, a

combination of LAM and RNA-Seq promises to be a valuable tool

for the transcriptional profiling of individual cell types. We

expected that RNA-Seq would provide a more comprehensive

view on the transcriptomes of specific cell types in means of

completeness and complexity. That is, the detection of a larger

number of expressed genes, the identification of transcripts from

previously unannotated loci, and the description of genome-wide

transcriptional patters. We therefore established the combination

of LAM, linear RNA amplification, and RNA-Seq using the Life

Technology SOLiD platform.

As a model system we used the highly inaccessible female

gametophyte (embryo sac) of Arabidopsis thaliana (Figure 1). The

embryo sacs develop within the ovules which are themselves

located within the ovary of a flower. The development of an

embryo sac starts with a functional megaspore (meiotic product)

that undergoes three mitotic divisions in a syncytium. Nuclear

migration and concomitant cellularization eventually leads to the

formation of an eight-nucleate, seven-celled female gametophyte.

At maturity, the embryo sac contains three distinct cell types: the

synergids and the two female gametes: the egg and the central cell

[13] that, following fertilization, give rise to the embryo and

endosperm, respectively. These cells are therefore good examples

of rare cell types which are difficult to access. The transcriptomes

of these cell types have only recently been determined using LAM

in combination with Affymetrix ATH1 microarrays [3], making

them an ideal system to establish the combination of LAM and

RNA-Seq and to compare the two transcriptome profiling

techniques.

In this study, we isolated RNA from central cells collected by

LAM, prepared sequencing libraries following a protocol designed

for the transcriptome analysis of a single cell [14], and sequenced

them using the Life Technology SOLiD platform. We estimate the

number of expressed genes (defined by having at least five reads

within one replicate) to be more than twice the number reported

previously in a study using LAM and ATH1 microarrays [3], and

identified several intergenic regions which are likely to be

transcribed. We further describe a considerable fraction of reads

mapping to introns and regions close to the borders of known loci,

indicating extensive alterations during transcription. Finally, we

performed a de novo assembly of the transcriptome and showed that

the workflow could also be used to study organisms lacking a

reference genome. Taken together, the results indicate superior

performance of the workflow presented here over the frequently

used approach that combines LAM with transcriptome micro-

arrays. We believe that the approach established in this study can

be used for the cell type-specific transcriptional profiling of most

eukaryotic organisms, and thus, significantly contributes to the

understanding of the molecular processes underlying the develop-

ment of multicellular organisms.

Results and Discussion

RNA isolation, library preparation and sequencing
We used LAM to dissect the central cells of the mature embryo

sac. After the isolation of the cells, we used larger sections from the

remaining tissue to monitor the RNA integrity with Agilent’s

Bioanalyzer. As a measure for this, the machine provides the RNA

Integrity Number (RIN) with a range of 1 to 10, where 10 stands

for a perfect RNA sample. Using an optimized version of the

protocol in [3] for sample preparation, we obtained a RIN of

around 8 with minor variations between different samples (data

not shown).

We aimed to analyze two biological replicates (termed CC1 and

CC2). Per replicate we pooled sections from approximately 450

cells during RNA extraction. Due to the low amounts of total

RNA obtained with this procedure (estimated 300–1’000 pg)

amplification was required. Therefore, we used the protocol

described in [14], which is designed to generate cDNA libraries

suitable for SOLiD sequencing from RNA isolated from a single

cell. In short, mRNA is reverse transcribed to cDNA with poly(T)-

primers fused to anchor sequences for PCR amplification. After

PCR amplification, cDNA is sheared and amplified again after the

ligation of the sequencing adapters. To monitor the efficiency of

Figure 1. Schematic representation of the flower and the embryo sac of Arabidopsis thaliana. The flower of Arabidopsis thaliana consists of
four whorls of organs: sepals, petals, anthers (male reproductive organs) and carpels (female reproductive organs). The carpels are fused and form the
ovary, which harbors around fifty ovules. During ovule development, one embryo sac is formed within each ovule. The mature embryo sac contains
three distinct cell types: the synergids and the two female gametes: the egg and the central cell [13]. The mature embryo sac of Arabidopsis thaliana,
accession Landsberg erecta, is around 105mm long and 25mm wide [44]. The nuclei of the cells of the embryo sac are drawn as black circles, the
vacuoles as white regions.
doi:10.1371/journal.pone.0029685.g001
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the library preparation we measured the size of the cDNAs prior

to shearing using Agilent’s Bioanalyzer and the approximate

concentration of cDNA from selected genes with qRT-PCR (File

S1). The cDNA of the first replicate (CC1) had a slightly smaller

size range and lower yield than the one from the second replicate

(CC2). The size distributions of around 0.1–1.5 kb indicated

shortening of the RNA fragments as compared to the average full-

length transcripts from Arabidopsis thaliana (1.5 kb). As a conse-

quence, the sequence coverage of longer transcripts was not

uniform but shifted to the 39 ends of the transcripts (39 bias). The

bias was likely due to the oligo-dT primed cDNA generation,

which has been reported to preferentially represent the 39 ends of

transcripts when compared to direct RNA fragmentation [8,15].

However, optimized oligo-dT or direct RNA fragmentation

protocols, such as described in [15], rely on mRNA enrichment

and are therefore not suitable for the low amounts of total RNA

obtained with the methods described here [16].

The libraries were sequenced using the SOLiD platform

(version 3, Life Technology, Foster City). Each library was

sequenced on one eighth of a slide resulting in a total number of

43’740’114 and 43’987’011 reads (50 bp) for the first (CC1) and

the second (CC2) replicate, respectively. Potential sequencing

errors were corrected using the SOLiD Accuracy Enhancement

Tool (solidsoftwaretools.com/gt/project/saet). We first analyzed

the data using an approach that is based on the alignment of reads

to the Arabidopsis thaliana reference genome.

Data analysis using a reference genome
The corrected reads were aligned to the Arabidopsis thaliana

reference genome (www.arabidopsis.org) using TopHat [17],

which is designed to identify previously undescribed splice

junctions. To avoid a potential underestimation of expression

levels of gene family members with similar transcript sequences we

allowed up to ten alignments per read. The alignments of those

reads were then weighted based on the number of uniquely

aligned reads in the neighborhood. By these criteria, around 42%

of the reads had at least one valid alignment, corresponding to

18’907’766 (CC1) and 18’038’960 (CC2) weighted alignments (in

the following sections we use ‘‘hits’’ as a synonym for an alignment

that was weighted).

Genome-wide patterns. To get a genome-wide overview of

the results, we classified the hits based on their location in the

genome (Table 1). The majority of the hits was found within exons

and across splice junctions (82.6%). The other hits could be

divided into four groups with hits (i) mapping to intronic regions

(8.5%), (ii) located at or very close (distance below 200 bp) to the

borders of known loci (4.8%), (iii) overlapping with known

transposable elements in the intergenic regions (1%) and (iv),

isolated from any known genomic feature (3.1%). For each group

we then obtained the genomic regions which were sequenced in

both replicates and calculated the number of hits overlapping with

these ‘‘reproducibly sequenced’’ regions (Table 1). Overall, the

sequence coverage between the replicates was highly similar with

around 97.1% of all hits overlapping with a reproducibly

sequenced region. Hits specific to one replicate were likely

caused by a slightly differential amplification efficiency between

the replicates. Furthermore, it is also possible that a higher

sequencing depth would improve the similarity between the

replicates in terms of sequence coverage. Nonetheless, the high

percentages clearly indicate a good reproducibility of sequence

coverage on a genome-wide scale.

Overall, the percentage of non-exonic hits (in total 17.4% of all

hits) is well above the percentages reported in other RNA-Seq

studies on Arabidopsis thaliana (pool of organs and seedlings in [18]:

7%; unopened flower buds in [19]: 3.5%). An explanation for this

difference may be that the annotation of the Arabidopsis thaliana

genome is widely based on sequencing of cDNAs and expressed

sequence tags (ESTs) originating from larger plant structures or

whole plants. Transcripts uniquely expressed in small structures or

rare cell types, such as the female gametophytic cells, were

therefore less likely to be detected due to a dilution effect. Thus,

the high percentage of intergenic hits in the data presented here

may partly reflect transcripts or transcript isoforms specific to the

central cell. Detailed analysis of transcript isoforms from known

loci is, however, difficult due to the non-uniform sequence

coverage. Nonetheless, we used the intergenic hits which were

isolated from any known genomic feature to search for (fragments)

of transcripts from previously unannotated loci. To identify these

loci we used cufflinks [11], which is designed to assemble

transcripts from reads which were aligned to a reference genome

(with the focus on paired-end read libraries). Using single-end and

unstranded reads, the program assumes uniform coverage along a

transcript. It is therefore not well suited for an in-depth analysis of

data generated with the methods presented here. Nonetheless, we

could identify 78 (CC1) and 115 (CC2) potentially new transcripts,

which were supported by one or more splice junctions (Table S1).

Many of them showed a coverage pattern similar to the one

observed for annotated transcripts (example in Figure 2B). These

transcripts corresponded to 75 (CC1) and 112 (CC2) putative loci,

in the following termed ‘‘splice-loci’’. To compare their genomic

location between the two replicates, we calculated for each of them

the overlap with a splice-locus/loci from the other replicate and

counted the number of splice-loci with an overlap above a certain

threshold (Figure S1). Splice-loci with very low expression values

(less than 25 hits) showed a poor overlap between the two

replicates, irrespective of the threshold (11% with perfect overlap

Table 1. Classification of alignments.

genomic region CC1 CC2

genome and splice junctions (total) 18’907’766.00 (97.93%) 18’038’960.00 (96.22%)

exons and splice junctions 15’456’413.54 (98.50%) 15’069’463.75 (96.65%)

introns 1’652’728.54 (93.66%) 1’485’453.60 (92.67%)

regions flanking loci 977’004.27 (95.66%) 797’708.77 (94.22%)

transposable elements outside of loci 200’268.10 (94.34%) 166’855.87 (94.39%)

remaining intergenic regions 621’351.56 (93.23%) 519’478.01 (91.56%)

The table summarizes the number of hits found in a certain genomic region. The percentage of these hits which were overlapping with regions sequenced in both
replicates are given in parentheses.
doi:10.1371/journal.pone.0029685.t001
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and 16% with an overlap of at least 10%). Reasons for this may be

a higher variability between the two replicates at low expression

levels, a stronger influence of sequencing or alignment errors, and

a sparse read coverage leading to a highly fragmented assembly.

Splice-loci with higher expression values exhibited substantially

higher overlaps, ranging from 17% (perfect overlap) to 48%

Figure 2. Examples of sequence coverage in annotated (A) and unannotated (B) regions. Graphs in the upper parts of the panels
represent the number of hits per base within the two replicates (CC1: cyan, CC2: yellow). Transcripts are drawn in the lower parts of the panels: dark
boxes represent exons, bright lines mark introns and the arrowhead depicts the direction of transcription. (A) Sequence coverage at the region
around the locus AT4G27960 (UBC9) on chromosome 4. The two transcripts represent two isoforms of AT4G27960. Clearly visible is the lack of
coverage at the introns and the non-uniformity of sequence coverage with the maxima close to the 39 end of the transcripts. (B) Sequence coverage
at a region on chromosome 5, which is not annotated as being transcribed. Hits in this region were assembled into transcripts using cufflinks [11]. For
each replicate, two transcripts with overlapping 39 ends could be assembled (CC1: cyan, CC2: yellow). Notably, the sequence coverage along these
transcripts resembles the coverage observed at annotated transcripts (A). Also visible are the unsharp transcript boundaries which vary between the
replicates.
doi:10.1371/journal.pone.0029685.g002
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(overlap of at least 10%). However, the number of splice-loci with

an overlap above a certain threshold increased substantially, when

overlaps of splice-loci with loci from transcripts not supported by

splice junctions were also considered to be valid (19% perfect

overlap, 85% with an overlap of at least 10%), likely indicating a

fragmented assembly due to a lack of gapped alignments. Given

that the assembly, especially of transcripts with low to moderate

expression levels, is strongly depending on sequencing depth [11],

we expect that an increased sequencing depth together with the

use of paired-end reads would improve the assembly and thus, the

overlap between the replicates. Taken together, we suggest that

the potentially new transcripts identified in this study with cufflinks

should be considered as preliminary, still requiring further

experimental exploration and validation. Nonetheless, we consider

cufflinks as a valuable tool to start the search for potentially new

transcripts in unannotated regions. It provides a basis to explore so

far unknown transcribed regions also by other methods such as

sequence alignment or gene prediction.

Transcriptional profiling. To get an overview of the hits

mapping to annotated transcripts, we visualized the coverage at

the transcripts (example in Figure 2A). This confirmed a 39 bias,

which was likely introduced during cDNA synthesis, within the

data [15]. The 39 bias partly counteracts the transcription length

bias discussed in [20], due to a non-uniform coverage along a

transcript. The relationship between the number of hits per

transcript and its length is therefore only linear at the 39 end of the

transcript where the coverage is still uniform. Assuming a linear

relationship over the entire length would thus lead to an

underestimation of expression values from longer transcripts (e.g.

RPKMs in the ERANGE software [21]). A possibility would be to

take only hits in a certain distance to the 39 end. However, this

would exclude a certain proportion of the data [20]. We therefore

decided to use the total number of hits mapping to the transcripts

of a locus as expression value for the locus. Hits mapping to more

than one locus (ambiguous hits) were proportionally distributed

based on the number of unambiguous hits. Loci with transcripts

having less than five hits or no hit located within the 250 bps at the

39 end were discarded, the others declared as being expressed. Of

the 33’598 annotated genes, pseudogenes, and transposable

element genes, 17’419 (51.8%) met these criteria in at least one

of the replicates (Table S2). Among these genes, 13’426 were

found within both replicates. The other 3’993 loci were specific to

one of the replicates (CC1: 1’028, CC2: 2’965). These loci had

generally low expression values in the replicate in which they were

detected (Figure 3A). It is therefore possible that a higher

sequencing depth would reduce the number of replicate-specific

loci. Beside this difference within the presumably low abundant

transcripts, the replicates were highly similar (Figure 3A).

However, the differences highlight the importance of replication

that is necessary to estimate the variability in the data, especially of

the genes with presumably low expression levels.

To compare the data generated with RNA-Seq to the one

measured with the ATH1 microarrays [3], the expression values of

the RNA-Seq data were transformed (log2(x+1)). ATH1 expres-

sion values and present calls were obtained as described in [22]

(Table S2).

We first compared the average expression values. Using only the

genes which have a corresponding probe set on the ATH1 array

(21’440), we found that the measures of transcript abundance were

well correlated (Figure 4A). Differences could be observed where

array expression values were relatively high and the expression

values from the RNA-Seq data small or zero (in agreement to [9]).

This observation may be due to probe-specific background

hybridization on the array [9].

We next compared the transcriptomes. From the 7’633 genes

which were found to be expressed in the ATH1 array data, 93%

were also detected in the RNA-Seq data (Figure 4B). The

remaining 7%, exhibited medium expression values in the array

data (Figure 4A). As mentioned before, it is possible that

expression values for some of those genes were elevated due to

probe-specific background hybridization. In addition to the 7’099

genes found in both data sets, 10’320 genes were only detected in

the RNA-Seq data. From these, 34.6% were a priori not

measurable using the ATH1 array because it lacks the corre-

sponding probesets. The other 65.4% had low expression values in

the array data. It is therefore likely that these signals could not be

separated from the background [23].

Comparing RNA-Seq and ATH1 array data from central

cells. Given the differences in the size of the transcriptomes, we

investigated a potential effect on the functional characterization of

Figure 3. Comparisons of expression values between the two RNA-Seq replicates. In each panel, the expression values (log2 of the
number of hits plus one) for each feature are plotted on the x-axis (CC2) and the y-axis (CC1). Colors indicate the point density: red and blue indicate
the highest, respectively lowest, densities. (A) refers to the approach that was based on the alignment of reads to the reference genome: given are
the expression values of the ‘‘expressed’’ genes (Pearson correlation: 0.99, Spearman correlation: 0.83). (B) refers to the approach that was based on
de novo assembly of the short reads. Reads from both replicates were pooled and assembled together. To calculate expression values, reads from
both replicates were aligned to the assembled transcriptome (Spearman correlation: 0.87).
doi:10.1371/journal.pone.0029685.g003
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the central cell transcriptome. In terms of gene functions, the

transcriptome measured with microarrays may either be a

representative subset of the transcriptome determined using

RNA-Seq or show a systematical over- or underrepresentation of

genes having certain functions. Considering that the few array-

specific genes were likely to be false positives, such systematic

overrepresentation of functional groups in the array data would

arise either from those false positives or from a sampling artifact,

which may occur if a certain functional group was very well

characterized at the time the ATH1 microarray was designed, and

thus, almost entirely represented on the array. We therefore only

tested for overrepresentation of transcripts encoding a given

combination of protein domains (InterPro, www.ebi.ac.uk/

interpro) in the RNA-Seq data compared to the array data

(Figure 5, Table S3). Enrichment in the RNA-Seq data may

originate from specific groups of genes newly detected due to

either the higher sensitivity, which increases the propability to

detect low expressed genes, or the whole-genome coverage that

allows to detect genes which are not measurable with the ATH1

microarrays due to a lack of the corresponding probeset. The latter

is a consequence of the ATH1 microarray design and would not

occur with arrays covering the whole genome. We therefore

performed two tests to separate the two effects from each other.

To test for enrichment likely caused by a higher sensitivity, we

compared the functional characterizations of the transcriptomes

determined using the array or the RNA-Seq data and excluded the

genes missing a corresponding probeset on the ATH1 microarray.

From 4’657 distinct (combinations of) protein domains found in

this set of genes, 20 were significantly enriched in the RNA-Seq

data compared to the array data (Fisher’s exact test, one-sided p-

value,0.05). Among them, (combinations of) domains which

might play important roles in cell fate determination were

identified: signal perception and transduction (Toll-like receptor),

chromatin remodeling (SNF2-related helicase), regulation of

transcription (SANT, Homeodomain-like, MYB), and RNA-

binding (Figure 5).

To estimate the effect of the whole-genome coverage on the

functional characterization, we performed a second enrichment

analysis, which included also the genes missing a corresponding

probeset on the ATH1 microarray and could identify seven

additional (combinations of) protein domains showing significant

enrichment in the RNA-Seq data. The largest group comprised

genes with an ‘‘unknown’’ domain, which included uncharacter-

ized protein-coding as well as non-protein-coding genes. The

enrichment was therefore likely due to the non-protein-coding

genes from which only few are represented on the ATH1

microarray. The other six groups contained genes encoding for

domains of unknown function (DUF784, DUF239), meprin and

tumour necrosis factor receptor associated factor homology

domains (TRAF-like), F-box and F-box associated domains, S1

self-incompatibility related proteins (SI-S1-like), and small cysteine

rich defensin-like proteins (SI-SLG-like/DEFL, Figure 5). Inter-

esting to note is that the latter were implicated as signaling

molecules required for pollen tube guidance in Zea maize and

Torenia fournieri [24,25]. In Arabidopsis thaliana they might contribute

to the role of the central cell in pollen tube guidance [3,26] or,

what remains to be examined, as well function as signaling

molecules within the mature embryo sac.

Taken together, we found that the two technologies correlate

relatively well. Most of the transcripts detected in the array data

were also detected in the RNA-Seq data (7’099). However, we

could identify additional 10320 genes which are likely to be

expressed in the central cell. A third of those could not be

measured with the ATH1 microarray due to the lack of the

corresponding probesets. This differences are therefore largely due

to the ATH1 microarray design and would not occur in

experiments using microarrays with whole-genome coverage.

Importantly, however, the other two thirds could be attributed

to the higher sensitivity of RNA-Seq compared to microarrays.

Interestingly, this did not only increase the estimated size of the

transcriptome, but also had an effect on the functional

characterization of the transcriptome. Given that RNA-Seq is

highly accurate [8,9,21,27], the results demonstrate the superior

performance of RNA-Seq over the array based method for the

transcriptional profiling of specific cell types. Nonetheless, at the

moment microarrays still have certain advantages. Numerous tools

were developed, tested, and used extensively for analysis of data

from a broad range of experiments, offering reliable and efficient

data analysis for almost any experiment. Compared to this, RNA-

Seq data analysis is still a relatively new field of research which,

Figure 4. Comparisons between microarray and RNA-Seq data. (A) The average number of hits (log2(x+1)) for each gene are plotted on the y-
axis and the corresponding normalized expression values from the array data are shown on the x-axis. Expression values of the genes having a
probeset on the array are well correlated between the technologies (Spearman correlation: 0.63). (B) A Venn diagram summarizing the overlap
between genes detected to be expressed in the RNA-Seq data sets and the array data.
doi:10.1371/journal.pone.0029685.g004

Transcriptional Profiling Using LAM and RNA-Seq
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however, evolves rapidly. Experience with the available tools is

therefore rather limited compared to the ones used for microarray

data analysis. Another advantage concerning the microarrays,

which are frequently used, is the vast amount of publicly available

data sets generated over the past years. For Arabidopsis thaliana, data

from more than 7000 ATH1 microarrays are currently available

on NCBI (www.ncbi.nlm.nih.gov). This offers the possibility to

relate a newly determined transcriptome to many others, as for

example presented in [3] where the transcriptomes of the cells

from the female gametophyte could be directly compared to the

ones of 59 different tissues or cell types. However, these

advantages are likely to decrease fast as it is most probably only

a matter of time until RNA-Seq will be the method of choice for

transcriptional profiling [28].

Genes specifically expressed in central cells. A frequent

application of transcriptional profiling is the analysis of differential

expression of genes between different tissues and cell types or time

points. With this approach, Wuest and coworkers [3] could

identify 431 genes (FDR,0.05) which are likely to be specifically

expressed in the mature female gametophyte as compared to 59

different tissues and cell types from Arabidopsis thaliana. Most of

them were specific to one of the three cell types (113, 163, and 144

in the central cell, egg, and synergid cells, respectively). Functional

characterization further revealed an enrichment of specific

posttranscriptional regulatory modules and metabolic pathways

in each cell type [3]. Given the higher sensitivity of RNA-Seq and

the whole-genome coverage, we expect that an analysis using

transcriptomes measured with RNA-Seq would provide an even

deeper insight to the unique nature of the transcriptome of the

mature female gametophyte. However, the small number of

publicly available RNA-Seq data from Arabidopsis thaliana and the

lack of RNA-Seq data from egg and synergid cells hamper an in-

depth analysis as performed in [3]. Nonetheless, to get preliminary

insights into the unique nature of the central cell transcriptome, we

performed a comparison of the central cell transcriptome with

transcriptomes from other tissues and cell types from Arabidopsis

thaliana, which had been analyzed by RNA-Seq. The test set

comprised data from 2–4 cell and globular stage embryos [12],

early globular embryos [29], whole plants (pool of organs) [18],

seedlings [18], unopened flower buds [19], and male meiocytes

[30], thus representing a diverse set of tissues and cell types.

Using edgeR [31] to test for differential expression, we could

identify 1’418 genes (FDR,0.05) upregulated in the central cell

compared to the other tissues and cell types (Figure 6). We could

thereby confirm 75% of the genes previously found to be specific

to the central cell [3]. We also found that 9% and 17% of the

genes previously described as enriched in the egg and the synergid

cells, respectively, showed significant enrichment in the central cell

in our comparison. Cross-contamination is however unlikely

considering that the central cell is very well separatable from the

egg and the synergids. In addition, one would rather expect

contamination from the egg cell instead of the synergids, as the egg

is closer to the central cell than the synergids. We therefore suggest

that the difference was likely an artifact due to the lack of RNA-

Seq data from the egg and synergid cells: In our comparison, genes

expressed in central cells at a level below the one in egg or synergid

cells but above the level in all other tissues were identified as

specifically enriched. However, if data from egg and synergid cells

were included, these genes would not be identified as being

enriched in central cells.

To characterize the set of genes found to be specifically enriched

in the central cell, we used the InterPro annotation (www.ebi.ac.

uk/interpro) and tested for enrichment of certain (combinations of)

protein domains as described above (Table S4). We found 118 and

Figure 5. Test for enrichment of InterPro domains in RNA-Seq
data compared to array data. The graph shows the relative
enrichment of (combinations of) InterPro domains (simplified descrip-
tion, details are given in Table S3) in the RNA-Seq data compared to the
array data, which was found to be significant. If the combination did
not occur in the array data, the enrichment value was set to the total
number of occurences of the combination in the RNA-Seq data (marked
with a). We performed two tests to separate the effect of the higher
sensitivity (yellow) from the effect caused by the whole-genome
coverage (magenta). Combinations of protein domains in the upper,
middle, and lower part of the figure were significantly enriched in both,
the first, and the second test, respectively. Abbreviations: DUF: domain
of unknown function, LRR: leucine rich repeat, PPR: pentatricopeptide
repeat, bHLH: basic helix-loop-helix, NBS: nucleotide binding site, SI-:
self-incompatibility, DEFL: defensin-like. The term ‘‘unknown’’ comprises
all transcripts without an InterPro annotation (includes also non-
protein-coding genes).
doi:10.1371/journal.pone.0029685.g005
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11 (combinations of) protein domains showing enrichment in the

central cell at a low stringency (p-value,0.05) and high stringency

(FDR,0.05) cutoff, respectively. Among the most significantly

enriched, are several domains that are underrepresented on the

ATH1 array: domains of unknown function (DUF784, DUF239),

F-box and F-box associated domains, S1 self-incompatibility

related proteins, and small cysteine rich defensin-like proteins

(DEFLs). These results indicate that genes specific to the mature

female gametophyte are generally underrepresented on the ATH1

array as observed previously [32]. However, even though

underrepresented on the ATH1 array, several of them (F-box,

DUFs, DEFLs) were already identified previously to be specifically

enriched in the mature female gametophyte [3], with the DEFL

being highly specific to the central cell, thus indicating good

agreement between the comparisons performed in this study and

[3]. A similar overlap could also be observed for several

(combinations of) protein domains which may play an important

role in cell fate determination, such as the type I MADS-box and

RWP-RK transcription factors. Examples for functional groups

not identified in [3] comprise several genes encoding for diverse

epigenetic functions including a histone methyltransferase

(AT2G24740/SUVH8), a chromomethylase (AT1G80740/CMT1),

and two DNA-methyltransferases (AT4G08990 and AT4G14140/

MET2), which may contribute to the specific epigenetic state of the

central cell [33,34].

Taken together, the enrichment analysis presented in this study

widely agrees with previously reported results [3] in terms of

functional enrichment, but extends the number of specific genes to

a large extent. However, given the few RNA-Seq data sets in the

comparison and the lack of the egg and synergid transcriptomes,

these results are preliminary, requiring additional data sets for the

comparison in order to obtain a more thorough view on the

unique nature of the transcriptome of the central cell.

Data analysis using de novo transcriptome assembly
RNA-Seq offers the possibility to investigate an organism which

lacks sequence information. To test whether the methods

presented here are suitable for such a study, we performed a de

novo assembly of short reads and briefly characterized the

transcriptome using GO terms. An in-depth analysis of the results

is, however, out of scope of this article.

De novo assembly of RNA-Seq data into transcripts is generally

challenging due to the non-uniform sequencing coverage across

transcripts, the presence of low quality reads, and the size of the

data sets [35]. In the data presented here, additional complexity is

caused by fragment shortening introduced during library prepa-

ration, which leads to a non-uniform sequence coverage within the

individual transcripts. To overcome some of the limitations, we

first corrected potential sequencing errors and then removed all

reads which were of low quality, repetitive or duplicated. The

remaining reads were assembled using velvet [36], oases, and

additional tools, which were required to handle the color space of

SOLiD reads. Expression values were obtained using the full set of

reads and bowtie [37]. To characterize the assembled transcripts,

we used Blast2GO, which is designed to annotate (protein coding)

sequences based on similarity searches and existing annotation

associations [38]. Transcripts were first mapped against NCBI’s

non-redundant protein sequence database (www.ncbi.nlm.nih.gov)

using BLAST [39] with an e-value threshold of 1e-6 and a

maximum of 20 blast hits. Gene Ontology (GO) terms [40] were

obtained and assigned using default settings.

From the initial set of reads containing reads from both

replicates, around half (44’686’342) passed the filter criteria. From

these, around 28.7% were used during the assembly, resulting in

32’567 transcripts with an average length of 307.1 bp (File S2) and

a sequence coverage resembling the results from the previous

analysis; beside the differences for replicate-specific transcripts,

sequence coverage was highly similar (Figure 3B). From the 32’567

assembled transcripts, 19’502 had one or more blast hits to the

non-redundant protein sequence database. Most (89.4%) of them

had the best blast hit to Arabidopsis thaliana or its close relative

Arabidopsis lyrata. In the latter case, the transcripts generally also

mapped to Arabidopsis thaliana sequences. The majority of the

remaining best blast hits were found among fungal pathogens

affecting plants (3.8%) and animals (1.8%). Transcripts with hits to

Figure 6. Genes enriched in the central cell compared to other
tissues of Arabidopsis thaliana. Expression values of genes preferen-
tially expressed in central cells are summarized in a heatmap (blue/red:
low/high expression values). Expression values were equalized using
edgeR [31] and log2(x+1) transformed. Samples and genes were
clustered using Spearman correlation and hierarchical agglomerative
clustering. Transcriptomes from whole plant and seedlings, unopened
flowers, early globular embryos, male meiocytes, and 2–4 cell and
globular stage embryos were obtained from [18], [19], [29], [30], and
[12], respectively.
doi:10.1371/journal.pone.0029685.g006
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fungal species originated from the first replicate (CC1) and were

not found in the second replicate (CC2), indicating some

contamination of the RNA from CC1 (replicate-specific assem-

blies, data not shown). Interestingly, reads aligning to those

sequences do generally not align to the genome of Arabidopsis

thaliana (0.0016% of all reads aligning to the genome do align to

the sequences of those fungi). It is therefore unlikely that the

contamination affected the alignment-based approach described

before.

To compare the assembled transcriptome to the transcriptome

determined in the alignment based approach, the two transcrip-

tomes were annotated and compared at the level of GO terms

using Blast2GO [38]. To avoid a bias due to the fungal

contamination, we only used the assembled transcripts with the

best blast hit to either Arabidopsis thaliana or Arabidopsis lyrata for the

comparison. From these 17’641 transcripts, 14’514 could be

annotated with 4’859 distinct GO terms. Overall, the number of

distinct GO terms per annotated transcript was lower in the

transcriptome from the de novo assembly compared to the

transcriptome determined with the alignment based approach

described before, where 14’487 of the 17’419 transcripts could be

annotated with 5’285 distinct GO terms (only one, the

representative, transcript per locus). However, the distribution of

GO terms belonging to the domain ‘‘Molecular Function’’ showed

a high similarity between the two transcriptomes: only 10 terms

showed significant enrichment in one of the transcriptomes (two-

sided Fisher’s exact test, FDR,0.05). The most specific terms

among them were: structural constituent of ribosome

(GO:0003735), transcription factor activity (GO:0003700), RNA

binding (GO:0003723), protein serine/threonine kinase activity

(GO:0004674), and translation factor activity/nucleic acid binding

(GO:0008135). All those terms displayed an enrichment in the

assembled transcriptome. For genes related to transcription factor

or protein kinase activity this was unexpected as they are often

expressed at low levels. However, it is possible that the marginal

coverage of these transcripts caused a fragmented assembly: if the

reads from one transcript were assembled into two fragments of

the transcript, from which both map to the GO term, the GO

term would be counted twice, thus leading to an overrepresenta-

tion of the respective GO term.

Taken together, the results of this test indicate that data

obtained with the methods presented here is in principle suitable

for de novo assembly of a transcriptome: sequence coverage patterns

and GO annotations largely resembled the ones found in the

alignment-based approach. However, it is likely that many of the

assembled transcripts were shorter than in vivo due to the 39 bias.

In cases where most of the assembled sequence contained mainly

untranslated regions (long 39 UTR), it probably had an effect on

the GO term annotation (which is based on similarity to known

proteins). Considering further that the annotation using GO terms

can only characterize protein-coding transcripts, we recommend

to use additional methods for the annotation and analysis of the

assembled transcripts. One possibility would be to search

databases containing all types of transcripts for similarity in the

nucleotide sequence. We expect that this would help to

characterize non-coding transcripts and improve the GO

annotation of protein-coding transcripts which could not be

annotated using the methods relying on similarity to proteins.

Conclusion
We aimed to establish a workflow that allows determining the

transcriptional profile with a high sensitivity and resolution of

specific cell types, which are very rare and difficult to access as

they are embedded in heterogenic tissue. We therefore combined

LAM with a highly sensitive, linear RNA amplification method

and the emerging RNA-Seq technology. As a model we used

central cells of Arabidopsis thaliana from which only around 50 are

formed within a flower, each of them individually enclosed by an

ovule. Using LAM, we could obtain sufficient amounts of good

quality RNA for a successful amplification and library preparation.

We compared the data generated in this study with the

transcriptome data from [3], which was measured using LAM

and the ATH1 microarray. The results showed that the two

transcriptome profiling technologies correlate well. Most of the

genes found to be expressed in the microarray data were also

present in the RNA-Seq data and the few microarray specific

genes were likely false positives caused by probe specific cross-

hybridization. However, using RNA-Seq we could detect more

than double the amount of presumably expressed genes.

Functionally, this difference was reflected in the enrichment of

genes encoding for few specific (combinations of) protein domains,

of which some may play an important role in cell fate

determination (signal perception and transduction, chromatin

remodeling, and regulation of transcription) or function of the

specific cell type (defensin-like proteins), in the RNA-Seq data

compared to the array data. In addition, we identified several

intergenic regions which are likely to be transcribed. We further

described a considerable fraction of reads aligning to introns and

regions flanking annotated loci which may represent alternative

transcript isoforms. Finally, we also performed a de novo assembly

of short reads and briefly characterized the assembled transcrip-

tome. Comparisons between the alignment- and the assembly-

based approaches revealed that the results were remarkably similar

in terms of sequence coverage pattern and Gene Ontology (GO)

annotation, indicating that the workflow presented here is also

suitable to study specific cell types from an organism lacking a

reference sequence. Taken together, we successfully established an

easy and reliable workflow that allows the transcriptional profiling

of specific cell types, which are rare and difficult to access, with

high sensitivity and resolution. The approach presented here will

provide new insights into the transcriptional state of individual cell

types not only of plants, but also other eukaryotes and, therefore,

by elucidating cell fate decisions, will contribute to the under-

standing of the molecular processes underlying the development of

multicellular organisms.

Materials and Methods

Plant material
Arabidopsis thaliana seeds, accession Landsberg erecta, were

germinated on Murashige and Skoog agar (0.56 Murashige and

Skoog salts, 0.7% phytagar). One week old seedlings were

transferred to ED73 soil (Einheitserde, Schopfheim, Germany),

and grown under 16 h light at 21 0C and 8 h darkness at 18 0C and

60% relative humidity.

Tissue embedding
Two days after emasculation, flowers containing the mature

embryo sacs were fixed in ethanol:acetic acid 3:1. Vacuum was

applied two times for 15 min at 4 0C. Afterwards the material was

kept in the fixative overnight at 4 0C and subsequently transferred

to an ASP200 embedding machine (Leica Microsystems GmbH,

Wetzlar, Germany). In the embedding machine, tissues were

dehydrated automatically in a graded series of ethanol (70% for

1 h, 3690% for 1 h, 3699.98% for 1 h, all at room temperature)

followed by xylol (261 h and 161 h 15 min, all at room

temperature). Xylol was substituted by Paraplast X-tra embedding

media (Roth AG, Arlesheim, Switzerland) at 58 0C (261 h and
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163 h). Finally, flowers were poured into paraffin blocks, cooled,

and stored at 4 0C.

Laser-assisted microdissection
For microdissection, paraffin blocks containing flowers were cut

on a RM2145 Leica microtome (Leica Microsystems GmbH,

Wetzlar, Germany) to 8mm thin sections and mounted on

nuclease-free membrane-mounted metal-frame slides using pure

methanol ([3] used water). Slides were dried overnight on a

heating table at 42 0C. Samples were deparaffinized in xylol at

room temperature (2610 min). Microdissection was performed

using a mmi CellCut Plus device (MMI Molecular Machines &

Industries AG, Glattbrugg, Switzerland). Isolated central cells were

collected using MMI isolation caps and stored at {80 0C. Four to

six cuts of whole flowers were taken from each slide after collecting

the cells of interest. Total RNA was isolated and tested for integrity

using the Agilent 2100 Bioanalyzer together with the RNA 6000

Pico Kit (Agilent Technologies Schweiz AG, Basel, Switzerland).

RNA isolation
Total RNA was isolated using the PicoPure RNA isolation kit

(Arcturus Engineering, Mountain View, USA) following the

manufacturer’s instructions with slight modification. Caps were

covered with 10ml extraction buffer and incubated at 42 0C for

30 minutes. Extracts from different caps were pooled to reach a

sufficient RNA yield. All other steps were performed according to

the manufacturer’s instructions, including the on-column DNase

treatment using the RNase-free DNase set from QIAGEN

(Valencia, USA).

RNA sequencing
The amplification and library preparation of RNA from central

cell samples were performed following the protocol described in

[14]. Libraries were sequenced using the SOLiD platform, version

3 (Life Technology, Foster City, USA). For each library one eighth

of a slide was used.

qRT-PCR
To monitor the efficiency of the library preparation we

measured the size of the cDNAs prior to shearing using Agilent’s

2100 Bioanalyzer following the instructions from the manufactur-

er. We also estimated the concentration of cDNA from selected

genes with qRT-PCR: ACT2 (AT3G18780, forward: CTTGCAC-

CAAGCAGCATGAA, reverse: CCGATCCAGACACTGTAC-

TTCCTT, [41]), ACT11 (AT3G12110, forward: AAGCTGT-

TCTTTCCCTCTACGC, reverse: GGAACAGTGTGACTCA-

CACCATC, [42]), EF{1a (AT5G60390, forward: TGAGCA-

CGCTCTTCTTGCTTTCA, reverse: GGTGGTGGCATCCA-

TCTTGTTACA, [43]) and UBC9 (AT4G27960, forward: TCA-

CAATTTCCAAGGTGCTGC, reverse: TCATCTGGGTTTG-

GATCCGT, [41]). All qRT-PCR reactions were performed in a

final volume of 10ml containing 5ml cDNA or water, 0:125ml of

each primer (5mM), 0:25ml water and 4:5ml mastermix (Power

SYBR Green PCR Master Mix, Life Technology) on the 7900 HT

Fast Real Time PCR System (Life Technology) with the following

cycling conditions: 50 0C for 2 minutes, 95 0C for 10 minutes and

45 times 95 0C for 15 seconds followed by 60 0C for 1 minute.

Amplicon length was determined using the melting curve analysis.

Data processing: reference genome
Short reads and alignments generated in this study were

deposited at NCBI Gene Expression Omnibus (www.ncbi.nlm.nih.

gov/geo) and are accessible through GEO series accession number

GSE29719. Reads (csfasta and qual files) were processed with the

SOLiD Accuracy Enhancement Tool (version 2.2 with a reflength

of 13’000’000 and the option -qvupdate; solidsoftwaretools.com/

gt/project/saet [note added in proof: SAET was moved to

solidsoftwaretools.com/gf/project/denovo/frs]) and aligned to the

reference genome (www.arabidopsis.org) using TopHat with the

options –color –quals –coverage-search -a 8 -m 1 -i 50 -I 2000 -F

0.2 -p 7 -g 10 (version 1.2; [11]). We allowed up to ten alignments

per read to avoid a potential underestimation of expression values

of transcripts with similar sequence. However, a read r with mw1
alignments would count m times, resulting in overestimation of

expression values. To avoid this, we calculated for each alignment

i of such a read the weight Hi using a ‘‘score’’ Si divided by the

sum of scores from all alignments of the read (Hi~Si=
Pm

i~1 Si). If

the total score was zero, all alignments were discarded. For

ungapped alignments, the score was equal to the sum of coverage

originating from uniquely aligned reads at the position of the

alignment and the surrounding 100 bps (‘‘allocation distance’’ of

+50 bps). For gapped alignments, the score was equal to the

number of uniquely aligned reads spanning the same gap. Thus, if

a read had both types of alignments, the ungapped ones would

have been preferred. Here we use ‘‘hit’’ as a synonym for an

alignment that has been weighted.

Identification of new transcripts. To find potentially new

transcripts in intergenic regions, we extracted all alignments that

were not overlapping with a known transposable element and at

least 200 bps outside of a known locus. The ‘‘intergenic’’

transcriptome was then assembled using these intergenic

alignments and cufflinks (version 0.9.3) with a maximal intron

length of 2000 [11]. To compare the genomic location of the loci

from the potentially new transcripts between the two replicates, we

calculated for each locus from each replicate the overlap with a

locus/loci (with and without the remaining loci with transcripts not

supported by splice junctions) from the other replicate (number of

shared nucleotides divided by the length of the locus) and counted

the number of loci with an overlap above a certain threshold.

Potentially new transcripts supported by at least one splice

junction were annotated using Blast2GO (version 2.4.8; [38]).

Transcriptome data. Hits were assigned to the transcripts of

the genomic features ‘‘gene’’, ‘‘pseudogene’’ and ‘‘transposable

element gene’’ (TAIR10, www.arabidopsis.org). Hits can be

divided into unambiguous (mapping to transcripts of only one

locus) and ambiguous (mapping to transcripts of more than one

locus). To avoid counting ambiguous hits multiple times, we

proportionally distributed them based on the number of

unambiguous hits. If there were no unambiguous hits, the

ambiguous hits were equally distributed. However, we assume a

case where two loci A and B overlap such that locus A is entirely

located within locus B. Locus A shall be ‘‘truly’’ expressed, locus B

not. Using a single step, all hits of locus A would be declared as

ambiguous. In case locus B has no unambiguous hit, the hits from

locus A would be equally distributed to locus A and B, leading to

an underestimation of the expression value from locus A and an

overestimation of the expression value from locus B (a false

positive). In another case where locus B has one or two

unambiguous hits due to sequencing and/or alignment errors,

all the hits from locus A would be wrongly assigned to locus B (one

false positive and one false negative). The same error would occur

if locus A has a longer transcript than the annotation would

indicate. The hits at the borders of locus A would then be

unambiguously assigned to locus B and as a consequence also all

the ambiguous hits. To avoid this scenario at least to some extent

we used a two step approach. In the first step, all hits were mapped

to all annotated transcripts. We expected that each ‘‘truly’’
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expressed transcript should have at least one hit within the 250 bps

at its 39 end because the library preparation protocol was based on

poly(A)-tail priming for cDNA synthesis and adapters for the

amplification. In addition, we set a threshold of five hits as a

minimal expression value to overcome possible sequencing and

alignment errors. Transcripts not matching these criteria were

discarded. During the second step, the hits were divided into

unambiguous and ambiguous. The unambiguous hits were

assigned first and used to distribute the ambiguous hits. The

transcripts were then filtered again using the same criteria as

before. The final expression value of a locus was calculated as the

sum of hits assigned to any of its transcripts. Expression values are

given in Table S2.

Enrichment of combinations of protein domains

(InterPro). Genes present in array data (i), RNA-Seq data (ii),

and RNA-Seq data excluding genes lacking a corresponding

probeset on the array (iii) were functionally characterized using the

InterPro annotation (www.ebi.ac.uk/interpro). Information

necessary to map the InterPro terms to the Arabidopsis thaliana

gene identifiers was extracted from the functional gene

descriptions available on www.arabidopsis.org (genes with no

annotation were annotated as ‘‘unknown’’). Some terms in the

InterPro annotation are hierarchically linked to each other. Given

this ‘‘parent to child’’ relation, a gene annotated with one term is

automatically also annotated with all the ancestors of the term. To

avoid reduction of statistical power due to this dependencies, we

only used the lowest possible terms to characterize the genes. All

terms annotating a gene were then grouped together, forming a

specific combination of protein domains. To test for enrichment of

a given combination in the RNA-Seq data, occurences were

calculated and compared using Fisher’s exact test (one-sided).

Combinations with a p-value below 0.05 were declared to be

significantly enriched (due to redundancies in the InterPro

annotation, multiple testing correction may have been to

stringent).

Genes preferentially expressed in central cells. The

transcriptome of the central cell was compared to publicly

available RNA-Seq transcriptome data from various tissues and

cell types of Arabidopsis thaliana. The data comprised 2–4 cell and

globular stage embryos [12] (GSE24198, GSE33866), early

globular embryos [29] (SRR074122), whole plants (pool of

organs) [18] (SRR018346, SRR018347, SRR019035), seedlings

[18] (SRX006704), unopened flower buds [19] (SRX002554), and

male meiocytes [30] (SRX063784). Raw data (csfasta/qual and

fastq files) were downloaded from www.ncbi.nlm.nih.gov/geo/

(GSE accession numbers) and trace.ddbj.nig.ac.jp/DRASearch/

(SRX/SRR accession numbers). Only data from untreated wild-

type plants were used in the analysis. The data was largely

processed as described above with modifications depending on the

experimental setup and without the thresholds of 5 hits and at least

one hit in the first 250 bp of a transcript. In the data sets from [12]

(50 bps reads, SOLiD), reads with multiple alignments were

removed due to their high abundance (a consequence of the

amplification strategy using random hexamers in addition to the

poly(T)-primers for cDNA synthesis). For the remaining data sets

from [18,19,29,30] (36 bps reads, Illumina), reads could not be

corrected and the allocation distance was set to +36 bps. Genes

preferentially expressed in central cells compared to all other

tissues and cell types were then identified with edgeR [31] using

tagwise dispersion estimates and Benjamini-Hochberg multiple

testing corrections. Genes with an adjusted p-value (FDR) below

0.05 were considered to be differentially expressed. To test for

enrichment of certain (combinations of) protein domains in the

central cell transcriptome, we compared the functional

characterization of the genes significantly upregulated in central

cells with the one of the genes showing no significant differential

expression using the approach described above (Table S4).

Data processing: de novo assembly
Reads were corrected as described above. We removed all reads

which were of low quality (total quality below 200 or an

ambiguous color in the sequence), repetitive (same double color

in more than 30% of the sequence), or duplicated. Assembly was

performed on double encoded reads using velvet (version 1.0.18

[36]) and oases (version 0.1.18, www.ebi.ac.uk/*zerbino/oases)

with a k-mer length of 31, a minimal transcript length of 80, and a

minimal coverage of 1. Double encoding and decoding was done

using the pre- and postprocessor scripts (versions 2.2.1 and 1.6,

solidsoftwaretools.com/gt/project/denovotools) in conjunction

with asid_light (version 1.0, solidsoftwaretools.com/gt/project/

denovo). All reads were then mapped back to these assembled

reference transcriptomes using bowtie with the options -C -n 2 -l

25 -k 11 -m 10 –chunkmbs 1024 –best –strata -p 7 (version 0.12.7;

[37]). Ambiguous alignments were proportionally distributed using

the number of unambiguous alignments. The final expression

values were calculated as the sum of hits mapping to a transcript.

Assembled transcripts and representative gene models from the

reference annotation (www.arabidopsis.org) were annotated using

Blast2GO (version 2.4.8; [38]). For blastx against the non-

redundant protein sequences deposited at NCBI (www.ncbi.nlm.

nih.gov) an e-value threshold of 1e-6 was chosen. Parameters for

the GO annotation and analysis were left at default. To compare

the annotations, we used the tool embedded in Blast2GO

(Blast2GO version 2.4.9). GO terms with an FDR below 0.05

were defined as being significantly differentially enriched (two-

sided Fisher’s exact test).

Microarray data
Microarray data [3] were obtained from ArrayExpress (www.

ebi.ac.uk/arrayexpress, accession number E-MEXP-2227) and

processed as described in [22]. Final expression values are given in

Table S2.

Software
Unless specified, we used newly developed software. The core

package is split into several programs which are largely

independent of each other (processing of reads with multiple

alignments, filtering of genes, distribution of ambiguous hits, filter

for de novo assembly) and therefore offers flexibility to customize

and extend the analysis. Source code and linux binaries for the

transcriptome analysis are freely available upon request (schmid.

m@access.uzh.ch).

MIAME
All data are MIAME compliant. Raw data were deposited at

(RNA-Seq data: GSE29719 on GEO) and obtained from (micro-

array data: E-MEXP-2227 on ArrayExpress; RNA-Seq data:

GSE24198, GSE33866, SRR074122, SRR018346, SRR018347,

SRR019035, SRX006704, SRX002554, SRX063784 on GEO and

DRASearch) MIAME compliant databases.

Supporting Information

File S1 The file contains the results from the cDNA library

control experiments (size distribution of fragments and approxi-

mate concentration of selected genes).

(PDF)
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File S2 The rar file contains the transcript sequences from the de

novo assembly (fasta file).

(RAR)

Figure S1 The figure contains a summary of the overlaps of the

potentially new loci producing transcripts supported by splice

junctions given in Table S1 between the two replicates.

(PDF)

Table S1 The table contains the genomic coordinates and

annotations of the potentially new transcripts, which were

identified and annotated using cufflinks and Blast2GO, respec-

tively. Only transcripts supported by at least one splice junction

are presented.

(XLS)

Table S2 The table contains the RNA-Seq expression values

from all genes declared to be present in at least one of the

replicates (sheet 1) and the microarray expression values from all

the genes having a corresponding probeset on the microarray

(sheet 2).

(XLS)

Table S3 The table contains the results from tests for

enrichment of InterPro domains in the RNA-Seq data compared

to the array data. In the first test (sheet 1), the gene universe was

defined as the union of all the genes found to be expressed in any

of the data type. In the second test (sheet 2), genes, which were

present in the RNA-Seq data but are per default not detectable

with the array due to the lack of a corresponding probeset, were

excluded from the universe. The third sheet contains a table with

additional information to Figure 5.

(XLS)

Table S4 The table contains the results from tests for

enrichment of InterPro domains in the central cell transcriptome

compared to transcriptomes of other tissues. The test set contained

all genes showing significant enrichment in the central cell. The

reference set comprised all the other genes (only the ones

sequenced in at least one experiment).

(XLS)
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