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Abstract

Cells are regulated by networks of controllers having many targets, and targets affected by many controllers, in a ‘‘many-to-
many’’ control structure. Here we study several of these bipartite (two-layer) networks. We analyze both naturally occurring
biological networks (composed of transcription factors controlling genes, microRNAs controlling mRNA transcripts, and
protein kinases controlling protein substrates) and a drug-target network composed of kinase inhibitors and of their kinase
targets. Certain statistical properties of these biological bipartite structures seem universal across systems and species,
suggesting the existence of common control strategies in biology. The number of controllers is ,8% of targets and the
density of links is 2.5%61.2%. Links per node are predominantly exponentially distributed. We explain the conservation of
the mean number of incoming links per target using a mathematical model of control networks, which also indicates that
the ‘‘many-to-many’’ structure of biological control has properties of efficient robustness. The drug-target network has many
statistical properties similar to the biological networks and we show that drug-target networks with biomimetic features can
be obtained. These findings suggest a completely new approach to pharmacological control of biological systems.
Molecular tools, such as kinase inhibitors, are now available to test if therapeutic combinations may benefit from being
designed with biomimetic properties, such as ‘‘many-to-many’’ targeting, very wide coverage of the target set, and
redundancy of incoming links per target.
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Introduction

Control of cellular function depends on bipartite (two-layer)

networks, in which one class of nodes (the controller) acts on the

other class (the target) to regulate its function. Examples of cellular

control networks include transcription factors, microRNAs, and

protein kinases, which control genes, mRNA transcripts, and

protein substrates, respectively. In these networks, the control layer

interacts with the target layer in a combinatorial, ‘‘many-to-many’’

fashion (see Figure 1). In other words, each controller has many

targets, the targets themselves are under the influence of many

controlling molecules, and the target sets of different controllers

overlap. Moreover, the number of controllers is usually signifi-

cantly lower than the number of targets. This ‘‘many-to-many’’

structure is well recognized in biological systems [1], not only in

intracellular control but also in many other types of complex

control in biology, including the nervous system (see Text S1,

section S1.1).

The idea of a many-to-many bipartite control structure is

similar to the concept of dense overlapping regulon (DOR) [2] in

bacterial gene networks, which indicates a motif (i.e. a pattern that

recurs within a network), in which transcription factors and genes

are connected through many overlapping interactions. Here we

extend this concept to different biological structures and describe

the many-to-many property as a feature of entire control networks,

for different types of control molecules, contrasting it with the

other possible bipartite structures, such as one-to-one and one-to-

many, described in Figure 1. One important question concerns the

statistical properties of these control structures with strong overlap

and redundancy. It was shown [2] that dense overlapping regulons

deviate substantially from random networks. Here we explicitly

characterize the global statistical properties of several bipartite

control structures, and we show that the degree distribution of the

two types of nodes is well approximated by exponentials.

A key issue related to network topology is robustness. What are

the advantages of the ‘‘many-to-many’’ structure in terms of

robustness, and why, as we show here, do some parameters of the

networks seem to be universal across different control structures

and species? In order to explore the link between the network

properties and robustness we introduce a simplified Boolean

signaling model. Boolean network models of biological regulation

were first pioneered by Kaufmann [3] [4], and have been used to

model specific interactions in small, well-characterized biological

pathways [5,6,7]. The control problem – i.e. calculating the

specific input sequence required to achieve a desired output – has

also been explored within these systems [8,9]. None of these

PLoS ONE | www.plosone.org 1 January 2012 | Volume 7 | Issue 1 | e29374



models explicitly considered bipartite structures, i.e. networks with

two classes of nodes in which there are no links between nodes of

the same class. While there have been many genome-wide network

analyses [10,11,12,13,14,15], and one recent work on co-

regulation of transcription and phosphorylation networks [16],

here we focus exclusively on universal features of bipartite

networks, neglecting the fact that some of the targets might also

act in turn as controllers on other downstream biological entities

or on other targets. This simplified approach captures some

peculiar and universal properties of control in biology that may

help design biomimetic drug-target control strategies.

Results

Naturally occurring biological control networks share
statistical properties

We examine quantitative characteristics of three biological

control systems in three different species (human, yeast, and E.

coli), from the perspective of bipartite combinatorial control. First

we consider the numbers of nodes. Table 1 (upper left) shows

estimates of the number of controllers and targets from the

literature for the three types of networks in humans. Notably,

though these numbers are from three different cellular systems of

varying size, the ratios of control nodes to target nodes are similar,

approximately 8% (Table 1, upper left). We also measured the

controller/target ratio in several molecular interaction databases.

These databases are sparse and therefore provide less confident

estimates than the literature, but we found a similar mean value:

8.9% (albeit with much higher variability).

Next, we use molecular interaction databases to explore

connectivity parameters of bipartite networks in nature. Networks

were extracted from publicly available databases and separated

into controller nodes (microRNA, transcription factors, protein

kinases) and target nodes (mRNA transcript, gene, protein

substrates), with directed links between controllers and targets.

We quantified properties including density of links (existing links

divided by the number of possible links), distribution of links for

each type of node, and overlap between the target sets of different

controllers. In these datasets, the percentage of targets that also act

as controllers is very small and sizeable only in the human

transcription factor network (1.6%) and in the human kinase

network (16%) (see Text S1, section S1.2 and Table S1 for more

details).

Table 1 shows that these networks share specific network-wide

properties despite wide variation in the number of nodes,

complexity of species, and type of molecular interaction. As

mentioned above, the mean controllers per target (M/N) over all

biological networks was 8.9%. Detailed analysis of Gene Ontology

(GO) enrichment of targets is described in Text S1 section S1.2,

Figure S1, and Tables S2 and S3. Analyses of the two measures of

overlap (Shared Targets per Controller and Pairwise Overlap of

Targets, see Figure S2 for an illustrative definition) are described

in Text S1 section S1.3 and Table S4.

We have observed that the networks in the databases are all

characterized by the presence of a giant connected component. In

particular, the human and yeast transcription factor, human

miRNA, and kinase inhibitors networks are completely connected.

Human and yeast kinase networks contain a few disconnected

components with two and three nodes. Only in the E. coli

transcription factor network there is a considerable fraction of

nodes (7%) outside the giant component. These nodes are grouped

in many disconnected small components of size ranging from 2 to

11.

We explored properties of the node degree distributions in the

bipartite networks. Figure 2 shows distributions of links per node k,

for incoming links per target (controllers per target, kin) and

outgoing links from controllers (targets per controller, kout).

Figure 2A depicts the empirical cumulative distribution function

(cdf) for all datasets, normalized by the average links per node

,k. and overlaid on a standard exponential cdf (solid line).

Figures 2B and 2C compare histograms of each network with

bipartite random networks of the same size (a modified Erdös-

Rényi random graph model in which edges between controllers

and targets are generated with constant probability, see Methods).

Only the human transcription factor network has a peak in its

outgoing link distribution that is compatible with the binomial

Figure 1. Possible combinatorial control strategies. There are several qualitatively different structures for control networks of M controllers
(x1,x2,…xM) and N targets (y1,y2,…yN). In the one-to-one case (left panel), M = N.
doi:10.1371/journal.pone.0029374.g001
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distribution characteristic of bipartite random graphs. The

incoming links in the kinase inhibitor network also show a possible

binomial component. Otherwise, most curves approximate an

exponential distribution, which is not consistent with a bipartite

random graph model (further analyses of curve-fitting and link

distributions are provided in Text S1 sections S1.4, S1.6, Figures

S3, S4, S5, S6, and S7, and Table S5).

Notably, the average ,kin. of targets lies within the narrow

range between 2 and 10 for all networks studied, a phenomenon

which we explore below in more detail using a mathematical

model. These global averages cannot be statistically tested against

a degree-preserving null model, however, as the randomized

networks would have exactly the same average values of incoming

and outgoing links as the test network. We instead used degree-

preserving randomization to test correlations between kout and kin

for each network (see Text S1 section S1.5 and Figure S8),

following the method described by Maslov et al. [17]. Though

these in-degree/out-degree correlation patterns were not found to

be as robustly conserved as other statistical properties, the analysis

reveals trends that may be interesting avenues for future research.

All biological networks had similar sparse link density, realizing

an average of only 2.5%61.2% of all possible controller-to-target

interactions. Link density D is related to the average links per node

by the equation [18]

D~
SkinT

M
~

SkoutT
N

, ð1Þ

where ,kin. is the average incoming links over N target nodes,

and ,kout. is the average outgoing links from M controller nodes.

Note that

SkinT
SkoutT

~
M

N
, ð2Þ

suggesting that similarities in the ratios of nodes may be related to

constraints on the average incoming and outgoing links per node.

A drug-target network with biomimetic properties can
be sampled from a large drug library

We also analyzed a drug target network composed of 38 kinase

inhibitors and of their kinase targets [19]. This network has also a

many-to-many structure and its properties have similarities but are

not identical to the biological ones (see Table 1 and Figure 2).

This published drug-target dataset was a small sample, however,

compared to existing libraries of thousands of fully profiled (i.e.,

with known targets) kinase inhibitors owned by pharmaceutical or

biotech companies. Information about the size of these profiled

libraries can be found in some official documents (e.g, see Ambit

IPO S-1 SEC 2010 filing). In the absence of drug-target data from

these proprietary libraries, we therefore simulated a kinase

inhibitor library of a comparable size. We simulated the drug-

target network for a hypothetical library of 1500 compounds,

creating target profiles that gave the same target per controller and

controller per target distributions as the 38-drug network in

Table 1. Network parameters for various types of combinatorial control within cells.

Literature Network databases

Human Human Yeast E. coli Drug

Node properties TF Kinase miRNA TF Kinase miRNA TF Kinase TF KI

Controllers (M) 1,800* 518 940 389 264 153 186 88 169 38

Targets (N) 20,500N 6,150{ 11,890{ 9284 988 9448 6297 1341 1495 316

M/N (%) 8.8% 8.4% 7.9% 4.2% 26.7% 1.6% 3.0% 6.6% 11.3% 12.0%

Link properties

Outgoing links from controllers (mean kout) 181 8.9 359 229 46 20 78.8

Incoming links per target (mean kin) 7.6 2.4 5.8 6.8 3 2.3 9.48

Link density 1.9% 0.9% 3.5% 3.6% 3.5% 1.3% 25.0%

Shared targets per controller (mean) 98% 73% 95% 98% 85% 74% 100%

Pairwise overlap of targets (mean) 4.5% 7.1% 7.1% 6.3% 8.3% 1.1% 33.8%

Statistical values of selected parameters

Parameter Mean SD CV 95% lo 95% hi

M/N (literature) 8.4% 0.5% 0.054 7.5% 9.3%

Incoming links per target (kin) 4.7 2.4 0.51 0.016 9.3

Link density 2.5% 1.2% 0.50 0.041% 4.9%

Shared targets per controller 87.2% 11.6% 0.13

Pairwise overlap of targets 5.7% 2.6% 0.45 0.6% 10.8%

*Vaqueriza et al. [51] estimate 1,700–1,800 human transcription factors.
NOther estimates for the number of human genes are in the range 20,000–25,000.
{Friedman et al. [40] estimate 58% of genes are targeted by miRNA (11,890 = .58*20,500).
{Cohen et al. [52] estimate 30% of human proteins are phosphoryated (6,150 = .30*20,500).
The ratio of controllers per target drawn from the literature is similar across different types of biological network in humans, approximately 8%. Node properties differ
between the literature and network databases owing to incomplete information in the databases. Link density is the ratio of the number of actual links to the number of
possible links. Shared targets per controller and pairwise overlap are measurements of overlapping target sets described in the Text S1, section S1.3. SD = standard
deviation, CV = coefficient of variation.
doi:10.1371/journal.pone.0029374.t001
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Figure 2. Distributions of incoming and outgoing links for several types of combinatorial control networks. (A) Cumulative
distributions of links per node in each of the networks of Table 1 were normalized by the mean and plotted together on log-log axes, alongside the
discrete analog to the exponential distribution (solid line), see Methods. By contrast, a power-law, or scale-free, distribution would produce a straight
line in this log-log plot. (B) Individual histograms of targets per controller (outgoing links from controllers, kout), and (C) controllers per target
(incoming links per target, kin) plotted for each individual network. The three human networks were combined based on shared targets (top right of
each panel). Horizontal axes in (B) and (C) are normalized to the total number of target or controller nodes, respectively in each network. Each
distribution is compared with the binomial distribution expected from a bipartite random graph with identical numbers of nodes and links (dashed
curve). An exponential curve is also fitted to each dataset (solid line). Note that the kinase inhibitor network shown here is distributed over a much
wider range on the x-axis than the biological networks.
doi:10.1371/journal.pone.0029374.g002
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Karaman et al. [19]. We used the simulated network to show that,

by sampling existing drug libraries, it is possible to identify sets of

kinase inhibitors with statistical properties very similar to those of

biological controllers.

The simulated library was created using the inverse sampling

transform method, which requires the analytic inversion of the

cumulative distributions of the theoretical distributions we want to

sample [20]. This method is used both for targets and for controllers.

A link-matching procedure is then implemented to randomly match

‘‘links out’’ of kinase inhibitors with ‘‘links in’’ into kinase nodes,

creating a bipartite network with the desired link distributions. We

show in Figure S9 the outgoing links from controllers and incoming

links per target for a simulated network obtained with this procedure.

Once a sample kinase inhibitor/kinase network has been

created, we have used a rejection method approach [20] to

identify a subset of inhibitors having an exponential distribution,

but a reduced average value for ,kout., more similar to our

measurements in the naturally occurring networks. The rejection

method consists in picking randomly an inhibitor node with a

kout = k, and keeping it in the set with probability p(k)~

1

kout,BM

1{
1

kout,BM

� �(k{1)

, where kout,BM is the ideal biomimetic

value. In implementations using a real drug library, biological

information about the targets can be incorporated, using a

modified alternative of the sampling algorithm (see Methods for

details).

The simulated library (see also Figure S9) is composed of 1,500

kinase inhibitors targeting all the 518 kinases in the human

genome. In this larger library the average kout was 55 and the

average kin was 159. The smaller sampled library composed of 60

kinase inhibitors targeting 486 kinases (a coverage of 93.8% of all

kinases). In this library the average kout was 43 and the average kin

was 5.3. The statistical parameters of the sampled library are

closer to the naturally occurring ones shown in Table 1.

A Boolean bipartite model shows dependence of
robustness on ,kin.

The many-to-many network structure, with parameters spanning

comparatively limited ranges, may be the result of an optimized

trade-off between efficient use of biological resources and robustness

(via redundancy) to variation in environmental and genetic inputs.

To maximize redundancy, a high average incoming link per target

value is clearly preferable. We built a model to simulate redundancy

and robustness in a bipartite signaling network. A set of

transcription factors, for example, takes on its expression state

according to upstream signaling events, and induces an output gene

expression state through its network of targets. Now consider a set of

M controller nodes, which can take on 2M binary states. Controllers

are randomly connected to N target nodes having average incoming

links ,kin., and each target node takes on a binary state according

to a Boolean rule on unweighted links (see Methods). We can then

derive the number of unique output sequences V that the network

can achieve, and the robustness R of an output state to mutations

(link deletions), given values of M, N, and ,kin..

In Figure 3, analytical solutions for V and R are plotted as a

function of ,kin. over the biological ranges of Table 1, alongside

numerical simulations (see Methods). Numerical results were

similar regardless of whether the OR, AND, or MAJORITY rules

were used, and analytical derivations for the AND and OR rule

were equivalent by symmetry. The MAJORITY rule may be

biologically relevant in some cases, but this rule is mathematically

more complex. Therefore, the MAJORITY rule was simulated

numerically but not derived analytically. Numerical simulations

were intractable for large N, preventing us from simulating

biological values of N or cases where M,,N. Numerical results

are expected to approach the analytical curves at large N,

however. Additionally, these equations are not dependent on N,

and therefore incorporate the case M,,N as well.

The number of unique output states V is a decreasing function

of ,kin., and robustness R is an increasing function of ,kin.

dependent on the mutation rate. Furthermore, R increases rapidly

with ,kin. above 1, but saturates quickly for values above 5.

Therefore, adding redundancy via ,kin. has a high marginal

benefit to robustness for low ,kin., but as ,kin. increases, the

incremental benefit to R may be outweighed by the cost to the

unique outputs achievable by the network. Marginal utility to

robustness of increasing ,kin. shrinks rapidly above ,5, while at

the same time incurring a cost on the number of feasible unique

output states. This ,kin. value is close to the naturally occurring

values shown in Table 1.

Discussion

Trade-offs between robustness and efficiency
In addition to the quantitative conclusions of the Boolean

model, other trade-offs might also be involved in determining the

values of the observed parameters. There may be an additional

evolutionary cost for attaining and storing the genetic information

required for each link, and increasing the numbers of controllers

and links may also incur a cellular cost for resources dedicated to

protein synthesis. Many-to-many configurations would therefore

be expected to emerge as a strategy for maximizing both

robustness and the efficient use of resources, and observed

network parameters reflect a balance between these opposing

influences. These considerations are consistent with the differences

in values of ,kin. among human and bacterial transcription

factor networks (Table 1). As pointed out by r/K selection theory

[21], these two organisms use very different life history strategies,

with bacteria favoring more rapid reproduction (facilitated by a

smaller genome size) and lower offspring robustness.

Biological networks and mathematical models of
robustness

Robustness is a key feature of biological systems [22] and has

been shown in different types of mathematical models of biological

networks. Among these are Boolean network models, first

pioneered by Kaufmann [3] [4]. Boolean rules have been used

to model specific interactions in small, well-characterized biolog-

ical pathways [5,6,7], and entropy-based methods have been used

to examine the robustness and flexibility of a small pathway to

achieve functional outputs [23].

Buldyrev et al [24] have presented a model of the vulnerability

of interdependent networks. Interestingly, nodes from the two

interdependent networks were connected among each other only

by one-to-one links, providing additional evidence for the lack of

robustness of this type of structure.

Besides structural robustness to the removal of nodes or links,

several authors have also investigated dynamical robustness. For

example, within a framework of dynamical modeling based on

attractors, Li et al [6] have shown that the cell-cycle network is

extremely stable and robust for its function. The robustness of

dynamical networks with different degree distributions has been

analyzed in terms of the presence or absence of attractor states also

by other authors [25]. The robustness is given by the tendency of

the system to return to the attractor states after perturbation.

Klemm and Bornholdt [26] have investigated the reliability of

information processing in networks of noisy switches with

Controller-Target Biological Networks
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fluctuating response times. It would be informative to investigate

in future work the behavior of the control structures and

parameters we have described in this paper within these different

dynamical models.

In contrast to previous studies, in this paper we analyze the

properties of bipartite networks in terms of the allowed

configurations that can be realized in the target nodes for all

input states. The dynamics are therefore limited to a single step.

Also in contrast to other studies, here we consider robustness in

terms of how the number of accessible states is reduced by deleting

links. We use this entropy of target states as a tool to examine the

general parameter dependence of robustness and flexibility of

Boolean control in bipartite networks of arbitrary size. Specifically

we examine the dependence of robustness and flexibility on kin,

one of the parameters shown to be conserved in our statistical

analysis of biological networks.

Enrichment of gene categories in network targets
As shown in more detail in Text S1.2, we used the three human

networks to explore whether certain categories of nodes may be

more highly targeted than others. Controller nodes appeared in

the target sets more than expected (Table S1). Highly targeted

genes in all networks shared many significantly enriched Gene

Ontology (GO) terms [27] involved in transcription, regulation,

and development (Table S2). Conversely, sparsely targeted genes

tended to be enriched in GO terms involving biological ‘‘effector’’

processes, such as metabolism, transport, and the response to

stimulus (Table S3). Additionally, human genes regulated by all

three types of controller molecule were almost always themselves

involved in regulation (Figure S1). Together these data suggest that

cells use different control network topologies depending on the

type of target genes. Control nodes themselves are under the

heaviest combinatorial control, and by more different types of

controller, while downstream effector genes are regulated by fewer

controllers. These observations might be relevant to the design of

strategies for pharmacological combinatorial control.

Implications of the existence of biomimetic drug-target
bipartite networks

Our results show that pharmacological sets with biomimetic

statistical properties can be built from kinase inhibitor libraries

available now in companies and this paper intends to provide a

Figure 3. Mathematical model of the number and robustness of output states in a bipartite control network. We explored the
dependence of these quantities on the average incoming links per target ,kin., number of controllers M, number of targets N, and mutation rate
c=N (or links deleted as a fraction of N, robustness equation only). Shown are averages of 1000 numerical simulations with M = N = 10, and c=N = 0.1.
Analytical solutions for robustness and unique output states using the OR rule were also derived and plotted (lower right), and found to be identical
or a close approximation to simulations, respectively (see Methods). Both quantities were independent of N in numerical and analytical solutions.
These results suggest that marginal utility to robustness of increasing ,kin. shrinks rapidly above ,5, while at the same time incurring a cost on the
degree of freedom of output states.
doi:10.1371/journal.pone.0029374.g003

Controller-Target Biological Networks
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theoretical justification for experiments to test the effectiveness of

this biomimetic approach to pharmacology.

The evolutionarily conservation of the many-to-many structure

and of the statistical parameters and the results of our

mathematical model suggests that pharmacological control

strategies should be designed similarly. Current efforts to develop

specific, targeted therapies follow the one-to-one approach to drug

therapy [28,29]; in other words, the ideal aim of drug discovery is

seen as having one drug for each molecular target, with no target

overlap. More traditional therapies are often less specific (one-to-

many in Figure 1) and some effective targeted therapies have also

been found to be non-specific and might fit this category [30,31].

An alternative approach would seek combinations of drugs that

control the activation state of a large proportion of a set of targets

in a many-to-many fashion, similar to combinatorial regulation of

cellular networks, rather than intervening at a single or small

number of targets. Combinatorial therapies could be found by

searching within biomimetic pharmacological sets having the same

network structure as naturally occurring biological systems.

Evolution conducts a similar search using all controller molecules

encoded in the genome, in order to find the optimal subsets to be

expressed in a particular cell type. The many-to-many approach

may be more robust to drug resistance and to genetic and

environmental variation, as suggested by our mathematical model.

There are two recent developments that make testing this

approach a realistic possibility. The first is the emergence of high-

throughput in vitro or in vivo search algorithms for efficiently

optimizing large combinations of drugs from within candidate sets

[32,33,34,35]. These algorithms are essential to overcome the

exponentially growing possibilities of the combinatorial space. It is

clearly not sufficient for pharmacological sets to have an optimal

network control structure, and these methods permit an efficient

search for the appropriate component drugs. The second is the

availability of large libraries of suitable molecular tools, the most

promising being kinase inhibitors, as shown by our results. The

518 identified protein kinases in the human genome account for

20–30% of the drug discovery programs of many companies [36]

and it is possible to characterize the target specificity of the

inhibitors using panels of kinases [37].

Limitations
One limitation of this analysis is that the bipartite model is only

a first approximation of reality, since many nodes in the target

layer are controllers themselves, interactions downstream of the

targets can feed back to the control layer, and nodes often do

interact with other nodes of the same class. Additionally, links in

our model are unweighted, whereas biological interactions can be

inhibitory or excitatory, with varying strength of action. It is not

possible to determine theoretically which is the appropriate level of

simplification for this model, which we apply both to naturally

occurring biological control and to pharmacological control. Only

the efficacy of the experimental interventions mentioned above

will allow us to determine if any usefulness is retained. It should

also be noted that these interaction datasets are incomplete, have

varying levels of confidence, and are not fully validated. The

quantitative patterns we have described are, however, common to

datasets of very different origin and therefore cannot reasonably be

explained by experimental noise or bias present in each dataset.

Conclusion
We have shown the generality of several network metrics of

biological combinatorial control. This discovery, together with our

increasing understanding of the mathematical principles underly-

ing biological control structures and their property of efficient

robustness, serve as building blocks for a new approach to

pharmacological control of biological systems. This approach

utilizes naturally occurring drug promiscuity to build sets with

biomimetic properties, such as many-to-many targeting, very wide

coverage of the target set, and redundancy of incoming links per

target. Importantly, these are quantitative properties of the

network and cannot be described by listing features of individual

drugs, such as selectivity. We therefore do not simply suggest the

use of nonselective therapeutic agents but propose testing the use

of drugs to build layers of control similar to those present within

cells. This suggestion is also consistent with a recent paper from

the Barabasi group showing that biological networks can be fully

controlled only by acting on at least 80% of the nodes [38,39].

This systems-level approach to pharmacological intervention

would mimic combinatorial strategies that are ubiquitous in

Nature.

Materials and Methods

Data and software
Predicted human microRNA-mRNA binding sites were down-

loaded from the TargetScan database [40] release 5.1 (http://www.

targetscan.org). Only conserved targets of conserved miRNA

families were used (made available in the file ‘‘Predicted_Targets_

Info.txt’’). Human transcription factor binding sites were gathered

from the TRANSFAC database [41]. The network was trimmed for

binding sites that could be mapped directly to a transcription factor

with an Entrez Gene identifier (reducing 615 DNA binding domains

to 389 known transcription factors and 13362 DNA binding sites to

9284 binding sites). Yeast transcription factor to gene regulations

were downloaded from the YeasTRACT database [42] (http://

www.yeastract.com). Human phosphorylation binding sites were

downloaded from the PhosphoPOINT database [43] (http://

kinase.bioinformatics.tw), using only sites in Category 3 (Known

Substrate) and Category 4 (Interacting Phospho-protein with

Known Substrate) [43]. Yeast phosphorylation binding sites were

extracted from the Phosphorylome database [44] website (http://

networks.gersteinlab.org/phosphorylome/). E. coli transcription

factor binding sites were downloaded from the RegulonDB

database [45] release 6.4 (http://regulondb.ccg.unam.mx). Parsing

and formatting of the data was performed in Python, when

necessary. All data analysis was performed in R. The Bioconductor

suite in R was used to perform all gene annotations (‘‘org.Hs.eg.db’’

package), and Gene Ontology enrichment analysis (‘‘GOstats

package’’).

Numerical simulations of the mathematical model were

performed in Matlab. All R and Matlab code is made available

at http://paternostrolab.org/.

Degree distribution analysis
The discrete analog to the continuous exponential distribution is

the geometric distribution

P(X~k)~p(1{p)k{1,k[ 1,2,:::f g

which has expected value

E(X )~SkT~
1

p
:

Therefore, for a distribution with known expected value SkT~m,

p~
1

m
.
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Unlike histogram approaches, the cumulative distribution

function (cdf) avoids binning effects and displays every data point.

In Figure 2A, empirical cumulative distribution functions for each

network had their x-axis normalized by SkT and were plotted next

to the cdf of the geometric distribution

P(X§k)~(1{
1

m
)k{1,

with the x range normalized by m. Similar curves were produced

by different m.1, converging to the curve in Figure 2A for m..1.

Bipartite random graph model
Figures 2B and 2C show binned histograms of the degree

distribution data, compared with histograms of the null distribu-

tion expected from a bipartite modification of the Erdös-Rényi

random graph model [18]. In graph theory [46], this model links

any two nodes according to a probability p. Similarly, we can

consider bipartite random networks of controllers and targets with

the same number of control nodes M and target nodes N as each

biological network, and with the probability p of a link between

any control and any target node equal to the measured link density

D. Random bipartite graphs have incoming and outgoing links

according to the binomial distribution, using D as the probability

parameter. Since the networks are large, the Poisson distribution

P(X~k)~
lke{l

k!

was used as an approximation to the binomial, with l = ,k., with

,k. = MD for targets and ,k. = ND for controllers. The dashed

curves in Figure 2B and 2C are histograms of the expected Poisson

distribution of links for the M, N, and D of each network, using the

same binning as the biological data.

Sampling algorithms
In addition to the approach described in the results section, we

also developed an alternative algorithm for sampling biomimetic

controller sets from a large bipartite network (e.g., selecting a

subset of kinase inhibitors from a pharmaceutical compound

library). The algorithm selects an arbitrarily sized subset of

controllers, given the desired monotonically decreasing distribu-

tion of incoming links for the target nodes and an ordered list of

target nodes.

First, the target list can optionally be ordered by one or many

biological criteria. In the case of the kinase inhibitor network,

kinase targets can be ranked using information such as disease

relevance, mutation status, protein expression, or phosphorylation

state.

Next, the desired continuous link distribution p(k) is discretized

to P[k] for k = [1,2,…,N], which assigns a desired integer number

of incoming links for each target node. In the case of the kinase

inhibitor network, this step assigns the highest incoming links

P[k = 1] to the top-ranked kinase target, the second highest

incoming links P[k = 2] to the second kinase in the list, and so on.

In this way, the algorithm generates an incoming link profile that

ensures that more important targets receive more incoming links

and therefore are more likely to be inhibited or regulated.

Finally, a linear programming algorithm selects the minimal set

of controllers (inhibitors) that satisfies or exceeds the incoming link

profile for the set of targets (kinase). The linear programming

problem is to minimize a binary vector x so that Ax$b, where x is

of the same length as the controller library and denotes whether a

node is selected as part of the subset, A is the adjacency matrix

describing the controller-target network links and b is the

incoming link profile for each target. Since each row of A

represents the connectivity of a single target node, the column

vector b = Ax is the sum of incoming links from the subset x for

every target in the network. Solutions to linear programming

problems may be degenerate, so multiple subset solutions may be

possible.

Mathematical model of a bipartite information
processing network

We neglect the feedback from targets to controllers. At the

molecular level, the details of biological interactions and signal

propagation are complex and idiosyncratic; therefore we used an

abstract model of signaling similar to Boolean networks. In this

model, control signals are represented by control node values of

either 1 or 0. Links are not weighted, passing input values to the

output node unaltered. Control signals reaching a target are then

computed by one of three rules, and the target’s output is a binary

value indicating its active/inactive state. The ‘‘OR’’ rule

designates that an output node is active if any of its connected

input nodes is active. The ‘‘AND’’ rule requires all inputs to be

active in order to activate the output node. The ‘‘MAJORITY’’

rule counts the number of incoming links, and activates the output

node if more than half of the inputs are active, otherwise the

output remains inactive. Bipartite networks using one of the three

rules are studied separately. Examples can be found in the

biological literature supporting the applicability of all three rules.

Standard descriptions of gene control by transcription factors state

that ‘‘each eukaryotic gene is therefore regulated by a committee

of proteins, all of which must be present to express the gene at its

proper level’’ [1]. In the same standard reference the analogy with

a microprocessor AND gate is explicitly made [1] for intracellular

signal transduction. Recent studies on multisite phosphorylation

by protein kinases describe cases where a proportion of sites above

a threshold number needs to be phosphorylated to switch on

degradation of a protein [47,48], a clear example of the

MAJORITY rule. In the cases of miRNAs many studies have

been reported describing clear effects of adding or silencing one

miRNA [49,50], which would be consistent with the OR rule. It s

clear, however, that these rules are only a very simplified

representation of actual biological control effects.

For a given number of controllers M and targets N, MƒN,

links are randomly added between controllers and targets with a

probability D, defined as the network density, or the total links

divided by the number of possible links M*N. Density can also be

calculated from the relationshipD~
SkinT

M
~

SkoutT
N

, where ,kin.

and ,kout. are the average incoming links kin to the N targets and

average outgoing links kout from the M controllers, respectively.

Robustness
The robustness to link deletion is defined as follows: given a

random bipartite network defined above, and a random binary

input sequence to the controller nodes, what is the fraction of

output nodes that change in response to the deletion of c links?

This is equivalent to asking, what is the probability that a single

output node changes in response to the deleted link?

Consider a single node having a fixed number of incoming links

kin and an output according to the OR rule. Define PF (kin) as the

probability that a target node is in a ‘‘fragile’’ condition, meaning

that deletion of one specific incoming link for that node will

change the output. Deleting a link to an inactive control node will

not change the output, so the only fragile state in the OR case is to
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have (k{1) inactive, or ‘‘0’’, inputs, and a single active, or ‘‘1’’

input, out of all 2kin possible binary sequences of inputs. Therefore,

PF (kin)~
kin

1

� �
1

2kin
~

kin

2kin
:

Then, the probability Fc that an output node with kin incoming

links changes in response to c randomly deleted links in a network

containing L links is

Fc(kin)~
c

L
PF (kin):

This expression takes into account that c/L is the probability of

hitting the ‘‘fragile’’ link. The robustness of a target with kin

incoming links can then be defined as

R(kin)~1{Fc(kin):

This quantity can be averaged over the target nodes by taking

an expectation value over the degree distribution according to

SRT~
XM
k~1

R kinð ÞP kinð Þ,

where P(kin) is the degree distribution of incoming links. This is

the quantity plotted in Fig. 3.

Number of output states
We define output states V as the total number of unique binary

output sequences that our bipartite network can achieve. This

quantity has a maximum of 2M for a one-to-one network (see

Figure 1). We can estimate V for large networks by considering

first the output entropy for a single output node with kin incoming

links. The single node entropy is

S(kin)~{qkin
(0)log2qkin

(0){qkin
(1)log2qkin

(1),

where qk is the probability of occurrence of each output state. For

the ‘‘OR’’ rule, only when all inputs are zero is the output also

inactive, therefore

qkin
(0)~

1

2kin
, qkin

(1)~1{
1

2kin
:

Inserting values for qk,

S(kin)~
kin

2kin
{(1{

1

2kin
)log2(1{

1

2kin
):

Using

ln(1{x)~{
X?
g~1

xg

g
,

We obtain

S(kin)~
kin

2kin
z

1

ln2
1{

1

2kin

� �X?
g~1

1

g2gkin
:

As for the robustness, we can take an expectation value of the

entropy over the degree probability distribution

SST~
XM
k~1

S kinð ÞP kinð Þ:

The total number of states can then be estimated using V&2MSST.

In Figure 3 we use a truncation of the series for S(kin) to g= 3.

Expected values
We provide here some expressions that are useful to calculate

the expectation values of the entropy and robustness over the kin

degree distributions. These expectation values are calculated

according to the general expression

Sf T~
XM
k~1

f kinð ÞP kinð Þ,

where P(kin) is the degree distribution of incoming links and f is a

function of kin.

Note that both robustness and entropy can be expressed in

terms of the quantities S
kin

2kin
T and S

1

2gkin
T, with g integer. These

expected values can be explicitly calculated for an exponential

(geometric) distribution P(kin)~
1

SkinT
1{

1

SkinT

� �kin{1

, which

gives

S
k

2kin
T~

2SkinT

1zSkinTð Þ2
, and

S
1

2gkin
T~

1

1z 2g{1ð ÞSkinT
:

If the links are randomly distributed with kin[ 1,2,:::Mf g, as in

the bipartite random network model described above, then P(kin) is

the binomial distribution. Assuming a large network, however,

P(kin) is approximated by the Poisson distribution

P(kin)~
SkinT{1ð Þkin{1

e{(SkinT{1)

kin{1ð Þ! :

Note that we are not including kin~0 in our analysis. Using this

distribution we obtain

S
kin

2kin
T~

1

4
e

1{SkinT
2 1zSkinTð Þ,

and
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S
1

2gkin
T~2{ge2{g SkinT{1ð Þ{SkinTz1:

The resulting curves are similar for Poisson and exponential link

distributions (see Figure S7, leading to similar optimal values SkinT
that maximize both robustness and entropy.
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