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Abstract

Although complex diseases and traits are thought to have multifactorial genetic basis, the common methods in genome-
wide association analyses test each variant for association independent of the others. This computational simplification may
lead to reduced power to identify variants with small effect sizes and requires correcting for multiple hypothesis tests with
complex relationships. However, advances in computational methods and increase in computational resources are enabling
the computation of models that adhere more closely to the theory of multifactorial inheritance. Here, a Bayesian variable
selection and model averaging approach is formulated for searching for additive and dominant genetic effects. The
approach considers simultaneously all available variants for inclusion as predictors in a linear genotype-phenotype mapping
and averages over the uncertainty in the variable selection. This leads to naturally interpretable summary quantities on the
significances of the variants and their contribution to the genetic basis of the studied trait. We first characterize the behavior
of the approach in simulations. The results indicate a gain in the causal variant identification performance when additive
and dominant variation are simulated, with a negligible loss of power in purely additive case. An application to the analysis
of high- and low-density lipoprotein cholesterol levels in a dataset of 3895 Finns is then presented, demonstrating the
feasibility of the approach at the current scale of single-nucleotide polymorphism data. We describe a Markov chain Monte
Carlo algorithm for the computation and give suggestions on the specification of prior parameters using commonly
available prior information. An open-source software implementing the method is available at http://www.lce.hut.fi/
research/mm/bmagwa/ and https://github.com/to-mi/.
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Introduction

In recent years, numerous genome-wide association studies

(GWAS) have been successful in locating disease or trait associated

variations in the human genome (see, e.g., discussion by Lander

[1]). The analyses are usually conducted by interrogating the effect

of a single genetic variant at a time and setting a stringent

threshold for statistical significance to account for multiple

hypothesis testing. While computationally convenient with the

hundreds of thousands of variants often genotyped, the strategy is

suboptimal, leaving just below the statistical significance a ‘‘gray

area’’ of variants. The identified variants often account only for a

minor portion of the estimated heritability of complex traits [2].

Advances in approximate computation and the increasing

computational resources have facilitated the computation of

models that simultaneously consider all variants, with demonstra-

tively better performance for identifying trait associated variants at

least in simulations [3–6]. These methods adhere more closely to

the hypothesis of multiple variants affecting complex traits and

gain power from accounting for the multiple genetic effects

simultaneously. Moreover, some formulations of the problem,

specifically Bayesian variable selection and model averaging

(BMA), naturally provide estimates of the uncertainties in the

quantities of interest and allow for inferences beyond the marginal

significance of single variants. For example, Wilson et al. [5]

compute probabilities of association for regions of the genome

(e.g., genes), and Guan and Stephens [6] estimate the heritabilities

of traits (to the extent explained by the available genetic data). The

flexibility of the approach also allows for extensions to simulta-

neous analysis of multiple traits [7,8] and interactions [9,10].

Here, we study the potential of BMA in genome-wide modeling

of additive and dominant genetic variation. Although, in principle,

a simple extension of the additive genetic model, it is computa-

tionally burdensome and can lead to a reduction in the power of

identifying associated loci. We focus our analysis on a formulation

of genetic effects, where each variant can contribute either an

additive or an additive and a heterozygosity term. This

formulation allows for the modeling of (complete and incomplete)

dominance. As baseline models, we use a purely additive

formulation and a pseudo-SNP approach, where the number of
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variants is naively doubled by introducing an additional pseudo

variant with heterozygous coding for each genetic variant.

Rationale for the latter is that it allows for the modeling of

dominance and any software handling the basic additive

formulation could be used for the analysis. The behavior of these

models is studied in simulations based on real single-nucleotide

polymorphism (SNP) data and the results are compared against

conventional single-SNP analysis. An application to the analysis of

the genetic basis of variation in key lipid metabolism components

in the circulation, high-density (HDL-C) and low-density lipopro-

tein cholesterol (LDL-C), is then presented. The dataset consists of

3895 Finnish individuals with (imputed) genotypes available on

over one million SNPs.

The simultaneous identification of trait associated (causal or

correlated to causal) variants is facilitated by modeling the

genotype-phenotype mapping as a sparse multiple linear regres-

sion, where only a small proportion of the variants is expected to

have non-zero effects. Specifically, our formulation corresponds to

a type of spike-and-slab prior [11,12], which is a popular choice in

Bayesian variable selection with a large number of variables. In the

context of GWAS, this allows us to naturally incorporate prior

knowledge on the expected number of associated loci and effect

sizes or heritability, which are nowadays often available from

previous studies for common traits. To learn which of the

hundreds of thousands or millions of variants have non-zero effects

(i.e., are associated to the trait) is a great computational challenge.

To this end, such a prior structure for the linear model is assumed,

which allows analytic integration over several of its parameters.

Sampling is then utilized to identify the associated variants.

Specifically, we present a Markov chain Monte Carlo (MCMC)

algorithm, which samples from posterior distribution of the model

space by proposing additions, removals and swaps of the variants

that are allowed to have non-zero effects. The sampling effort is

focused more on variants showing some effect on the trait by

adapting the proposal distribution of additions to the marginal

association probabilities during an initial phase of the sampling.

Sampling algorithms with similar rationales have been utilized at

least by Clyde et al. [13], Guan and Stephens [6] and Nott and

Kohn [14].

An excellent general discussion on Bayesian variable selection in

GWAS is provided by Guan and Stephens [6]. Our primary

contribution here is to investigate extending this approach to

simultaneously model both additive and dominant genetic effects.

Other authors (e.g., [5,9,15]) have previously studied BMA

models, which include terms for dominance variation, but they

have not explicitly focused on this and their prior for the effect

types have been different and the scale of datasets smaller. Our

formulation seems robust with regard to the potential loss of power

in such extensions of model space, and may lead to improved

estimates of key quantities such as the heritability of a trait. These

results may be seen as demonstrations of the benefits of explicitly

accounting for the multifactorial genetic basis of complex traits

within hierarchical modeling.

Methods

Model
Let yi, i~1, . . . ,n, be measurements of a continuous phenotype

of interest for n individuals, and xi~½xi1 . . . xim�T , i~1, . . . ,n, be

vectors of the values for m (usually m&n) genetic variants (here,

the numbers of minor alleles of SNPs) for each individual. The

trait is then modeled as a linear combination of the variants and

other covariates ei:

yi~eT
i az

Xm

j~1

cj ftj
(xij)bjzEi, ð1Þ

where a and bj are the regression coefficients and Ei is the residual.

The binary variables cj indicate which effects are included in the

model. The function ftj
(xij) describes the type of the effect of SNP

j. In the case of additive genetic model, this is fA(xij)~xij .

Types of genetic effects. Let M and m be the major and

minor alleles at a SNP. The following types of genetic effects may

be considered:

N Additive (A) with 0, 1, 2 coding for the genotypes MM, Mm/

mM, mm.

N Heterozygous (or dominance deviation; H) with 0, 1, 0 coding

for MM, Mm/mM, mm.

N Dominant (with respect to the minor allele; D) with 0, 1, 1

coding for MM, Mm/mM, mm.

N Recessive (with respect to the minor allele; R) with 0, 0, 1

coding for MM, Mm/mM, mm.

The model indicator tj obtains values in f0,A,D,R,H,AHg
with the functions fA(:), fH(:), fD(:), fR(:) formed according to the

above codings and fAH(:)~½fA(:) fH(:)� (a two-element vector of

the A and H functions). The effect type 0 is fixed for cj~0, where

the coding does not matter.

The attention will be restricted to models, which allow 1)

additive effects (referred to as BMA A), 2) additive or additive and

heterozygous effects (BMA A/AH) and 3) additive effects with

pseudo variants (BMA pseudo); see Table 1. The first model is

commonly used in genome-wide association studies, but it does not

model dominance. The second model is our primary interest. Note

that the fully dominant (D) and recessive (R) effects are special

cases of AH with bAH
j ~½1 1�bD

j =2 and bAH
j ~½1 {1�bR

j =2,

respectively. The third model is handled identically to BMA A,

but the number of variants is doubled by adding a pseudo variant

with heterozygous coding per each original variant.

Table 1 lists the model space sizes. The model spaces are

enlarged by factors of (3=2)m and 2m for BMA A/AH and pseudo,

respectively, compared to BMA A.

Model space prior. The variable selection is facilitated by

placing a prior distribution on the vector c~½c1 . . . cm�, which

controls the inclusion of variants into the model. A common

choice is (with the notation for probability distributions following

Gelman et al. [16])

p(cDv)~P
j

Bernoulli(cj Dv)

Table 1. Bayesian model averaging formulations and genetic
effects.

Model Allowed effects Model space size

BMA A 0, A 2m

BMA A/AH 0, A, AH 3m

BMA pseudo 0, A 22m

Model space refers to the possible combinations of ª and t. m is the number of
variants. Pseudo refers to including a pseudo-SNP with heterozygosity coding
for each SNP.
doi:10.1371/journal.pone.0029115.t001
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p(v)~Beta(vDav,bv),

where v is the probability of including a variant in the model and

can be integrated out analytically. The prior serves a similar role to

the classical multiple hypothesis testing correction [17]. Kohn et

al. [18] give formulae for determining the hyperparameters av and

bv by considering the expected number of associated variables and

its variance. This is natural also in the present application as there

often are available some broad estimates of the number of causal

variants from previous studies.

A functionally similar prior can be used for the effect types t
given c:

p(tDw,c)~ P
j:cj~1

Categorical(tj Dw) ð2Þ

p(w)~Dirichlet(wDb(1)
w ,:::,b(k)

w ),

where w is a vector of the probabilities of the different genetic

effects. This also allows integrating w out analytically and provides

a further multiple testing adjustment. The parameters b
(i)
w can be

thought of as prior samples of the different types of effects. For

example, setting them to large equal values would effectively

correspond to giving probability
1

k
for each effect type.

Priors of the linear model. In matrix notation, the

regression model in Equation 1 can be written as

y~EazXªbªze ,

where y~½y1 ::: yn�T , E is the design matrix of fixed covariates,

Xc is the design matrix of the variants for which cj=0 formed

according to the above discussion of effect types, bc is the vector of

the corresponding regression coefficients and e~½E1 ::: En�T .

The distribution of the residual is assumed normal

p(e)~N(e D0,s2I)

and conjugate prior distributions are placed on s2, a and bc, with

b following a spike-and-slab formulation [11,12]:

p(s2)~Inv{x2(s2Dns2 ,s2

s2 )

p(al Ds2)~N(al D0,s2s2
al

)

p(bj Ds
2,t2,tj ,cj~1)~N(bj D0,s2t2

tj
)

p(bj Dcj~0)~d0,

where d0 is the Dirac delta function at zero (the inclusion of cjs in

the Equation 1 was redundant). Note that t2
tj

are allowed to be

different depending on the effect type (e.g., for BMA A/AH we

have t2~½t2
A t2

H �; here, for a variant with cj~1 and tj~AH, bj

has actually two components with prior variances s2t2
A and s2t2

H ).

The structure allows marginalizing over b and s2 analytically

given the other parameters. A popular alternative prior for bc is

the g-prior [19]. However, some of its properties seem undesirable

for application in GWAS: in particular, the assumption about the

correlation structure of the genetic effects (see [6]) and the implied

smaller shrinkage for the effects of rare variants (see [20] for a non-

GWAS specific discussion).

The prior for the variable selection coefficients are given the

semi-conjugate form

p(t2
t )~Inv{x2(t2

t Dnt2
t
,s2

t2
t
),

which allows convenient sampling of t2 given the other

parameters. Guan and Stephens [6] use an alternative formula-

tion, where the prior for t2 is indirectly induced through a prior on

heritability and depends on c. We use similar reasoning to guide

the specification of hyperparameters (see below), but do not

explicitly tie t2 and c. The question whether the parameters

should be tied in the prior relates to whether one is more confident

in specifying prior information on the effect sizes or on how much

of the phenotypic variance the available genetic data could overall

explain.

Finally, to account for missing data a categorical prior is placed

on an element of X :

p(xij DXobs)~Categorical(xij Dh0
ij ,h

1
ij ,h

2
ij),

where Xobs refers to the observed genotype data and hk
ij is the prior

probability of the genotype k. Thus, for observed data with

genotype K , hK
ij is set to one and other hk

ij to zero and for missing

data, hk
ijs are set to the marginal distribution of the genotypes for

the corresponding SNP. In general, the hk
ijs could be set, for

example, to the genotype probabilities from imputation algo-

rithms.
Elicitation of ns2 , s2

s2 , nt2 and s2
t2 . Often estimates of the

heritability of the trait are available from published genome-wide

association studies or from some other sources (of course, often the

studied data cannot be assumed to exhaustively cover all genetic

variation, but is restricted to, for example, SNPs). This prior

knowledge can be used to guide the setting of the hyperparameters

of the variance distributions in the model.

First, note that the proportion of variance explained by the

linear model

R2~
var½xb�
var½y� ~

var½y�{s2

var½y� :

Placing a distribution with density p
s2 (s2) (here Inv{x2) on s2

induces a distribution for R2, which given the population variance

var½y� has density p
R2 (R2)~p

s2 ((1{R2)var½y�)var½y�. We suggest

setting the hyperparameters ns2 and s2

s2 by inspecting the implied

prior on R2. While the prior can have mass on negative values of

R2, the likelihood of the linear model will usually be concentrated

on the positive values or around zero if there is no explanatory

power in the model. The connection to heritability estimates can

be made by assuming independent contributions of genetic

(heritability H2) and environmental (known covariates; R2
e ) effects.

Then R2~H2zR2
e and, for example, an empirical estimate of R2

e

from simple linear regression may be used. One possibility is then

to fix the mode of prior to the expected R2 and choose the other

Genome-Wide Search of Additive & Dominant Effects
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degree of freedom so that the prior is relatively flat around

plausible values of R2.

Similar derivation can be made for a single effect with

heritability contribution H2
j :

H2
j ~

var½xjbj �
var½y� ~

(E½xj �2zvar½xj �)var½bj �
var½y� ~

E½xj �2zvar½xj �
var½y� s2t2

t ~

(E½xj �2zvar½xj �)(1{R2)t2
t ,

where xj and bj are assumed independent. Now, given R2, E½xj �
and var½xj � setting a distribution for t2

t induces a distribution for

H2
j . To solve for the hyperparameters n

t2
t

and s2

t2
t

, one can consider

setting R2 to its expected value and set the expectation and variance

of H2
j according to prior knowledge (e.g., coarsely setting

E½H2
j �~H2=q with q being the expected number of causal

variants). The support of the prior may then be checked over a

range of plausible R2 values. We have used the sample estimates of

var½y�, E½xj � and var½xj � (specifically, mean over all variants and

mean of the variances of the variants) in our experiments.

Covariates e. A constant term of ones is included to account

for non-zero mean of the trait. An improper prior is placed for the

corresponding regression coefficient: p(a0)~N(a0D0,s2s2
a0

), where

s2
a0
??. While this makes the marginal likelihood of the linear

model (Text S1, step 3) tend to zero, the posterior distribution of c
and the Bayes factors required in the computation have proper

limits (see Protocol S1 in the supplementary materials of [15]). For

other fixed covariates, the variance parameters s2
al

are set to

suitable (fixed) values.

Computation
Markov chain Monte Carlo (MCMC) sampling is used to

generate samples from the posterior distribution of the model

parameters. The sampling of c and t is performed with

Metropolis-Hastings algorithm [21,22], where local updates are

proposed as explained below. Gibbs sampling [23] scheme is used

to update the parameters sequentially. The sampling consists of

iterating five steps (see Text S1 for brief derivations of the

sampling distributions):

1. Sample xij given X{ij , a, b, t2, s2, c, t, y for all missing data

from categorical distributions. Sampling of missing genotypes

in variants that are not included in the model (cj~0) can be

disregarded as they do not affect the sampling of the other

parameters. An exception is such a variant that is considered

for addition to the model in the third step.

2. Sample t2 given X , a, b, s2, c, t, y from (independent) Inv{x2

distributions.

3. Sample c, t given X , t2, y by a local Metropolis-Hastings move

(see below). Note that a, b and s2 can be integrated out

analytically at this step.

4. Sample s2 given X , t2, c, t, y from Inv{x2 distribution.

5. Sample a, b given X , t2, s2, c, t, y from multivariate normal

distribution.

Note that the steps 3–5 can be seen as a draw from a block

distribution p(c,t,s2,a,bDX,t2,y), which is decomposed into three

steps. Steps 1 and 2 sample from full conditionals. While the local

moves at step 3 require only updates of complexity O(M2) to the

Cholesky decomposition used in the regression, step 1 requires the

computation of a full Cholesky decomposition of complexity O(M3),
where M is the number of variables with cj~1. As c is of primary

interest and the local updates lead to large autocorrelations, step 3 is

repeated a number of times (here 10) before moving on.

Local updates to c, t. After proposing an update of c, t the

move is accepted or rejected according to the Metropolis-Hastings

acceptance probability u:

u~ min
p((ª,t)newDt2,y,X)

p((ª,t)oldDt2,y,X)

q((ª,t)oldD(ª,t)new)

q((ª,t)newD(ª,t)old)
,1

( )
, ð3Þ

where q is the proposal distribution, which is here decomposed

into three steps: 1) update type, 2) variant and 3) effect type.

Four types of updates are considered:

1. addition of a variant to the model,

2. removal of a variant from the model,

3. switch of two variants (combination of the two above),

4. switch of effect type for a variant,

with probabilities 0.4, 0.4, 0.1 and 0.1. For updates 2 and 4, the

variant is chosen randomly among the variants in the model

(disregarding the effect type). Update 3 is formed as a composition of

updates 1 and 2. The proposal distributions for additions and

selection of effect types are formed adaptively during an initial

sampling period as explained below, after which they are fixed.

Samples from the adaptive phase are not used for posterior inference.

The proposal distribution for additions is formed according to

the marginal association probabilities of the variants (pj ), which

are updated during an initial sampling phase. The values are

initialized to the single-SNP association probabilities and updated

according to the Rao-Blackwellized probabilities (see below;

computed every 1000th iteration). Specifically, the proposal

probability for addition of jth variant is ZpT
j , where Z normalizes

the distribution over all j and T[½0,1� is a prespecified constant,

which can be used to flatten the distribution (e.g., T~0 leads to

uniform proposals, we have used T~0:5). The proposal

distributions for the effect types are formed similarly, but the

probabilities for effect types are calculated for each variant

independently. The rationale of this proposal strategy is to guide

the sampling to those SNPs that are more likely to be significant

and thus, to increase the acceptance and convergence rates of the

sampler in cases with a very large number of variables, with most

variables expected to be insignificant.

Posterior association probabilities. Guan and Stephens

[6] propose using Rao-Blackwellized estimates of posterior

association probabilities to reduce sampling variance relative to

MCMC frequency estimates. Following their derivations, the

estimate of the marginal association probability is computed as a

mean over the MCMC samples:

pj~ Pr (cj~1Dy)~
1

Ns

XNs

s~1

Pr (cj~1Dy,h(s)
{j),

where Ns is the number of samples and h~(ª,t,b,a,t2,X) ({j

indicates the removal of parameters specific to variable j). Here,

the probabilities of effect types (t) are also tracked by computing

Pr (tj Dcj~1,y) in a similar fashion. Both of these can be computed

by computing the odds

Pr (cj~1,tj Dy,h(s)
{j)

Pr (cj~0,tj Dy,h(s)
{j)

~
Pr (cj~1,tj Dª

(s)
{j ,t

(s)
{j)

Pr (cj~0,tj Dª
(s)
{j ,t

(s)
{j)

Pr (yDcj~1,tj ,h
(s)
{j)

Pr (yDcj~0,tj ,h
(s)
{j)

Genome-Wide Search of Additive & Dominant Effects
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for each value of tj . The Bayes factors are fast to compute as they

are linear regressions of two or three variables (constant and one or

two terms for the variant) [6].

Single-SNP analysis and the Bayesian model averaging (BMA)

approach behave differently in the estimation of the marginal

significances of variants in regions with high linkage disequilibrium

(LD): while single-SNP methods report similar significances for the

variants in the region, BMA tends to dilute the posterior

probability mass among the variants, since only one of them is

needed in the model. It is then sensible to compute the posterior

probabilities for regions of the genome. Often the actual causal

variants cannot anyway be assumed to be among those genotyped.

Unfortunately, the Rao-Blackwellization approach is not feasible

for this, although summing over the association probabilities

within a region can be used as an estimate of the number of

associated variants within the region [6]. However, the association

probabilities over large regions could be expected to suffer less

from sampling variance than over single variants. Thus, frequency

estimates from the MCMC chains are used instead. With

V~fv1,:::,vrg defining the indices of the variants within the

region

pV ~ Pr (Vassociated)~
1

Ns

XNs

s~1

I(fvj[V : c(s)
vj

~1g=0=),

where I(x)~1 if x is true and 0 otherwise. Note that the prior

probability of association of V depends on the size r of the region.

For moderate sizes the prior probabilities are small. It is also

possible to compute Bayes factors comparing the hypothesis of

association of a region to no association [5]. The probabilities of

effect types for a region are computed by frequency estimates over

MCMC samples, in which at least one variant within the region is

included in the model.

Ethics statement
Human data was not collected primarily for this article and was

analyzed here anonymously. Primary collection has followed

appropriate ethics guidelines.

Results

Simulations
Simulations were used to characterize the behavior of the

models and to validate the approach against a single-SNP

approach implemented in the popular software PLINK (version

1.07; see Text S2 for the used analysis options) [24]. To account

for the linkage disequilibrium structure of the genome, real

genotype data of chromosome 1 from 2002 individuals was used in

the simulations. This consisted of 85,331 SNPs after imputation

and quality control. Quantitative traits were simulated according

to a linear model with the following steps: 30 causal variants were

selected randomly among the SNPs, effect types were either all set

to additive (sim A) or selected randomly from additive, dominant

or recessive (sim A/D/R). The effect sizes were generated from a

double exponential distribution and normally distributed noise was

added to achieve a preset level of heritability H2 (0.2 or 0.5). Forty

datasets were simulated with each parameter configuration.

Weakly informative prior distributions were used for the

Bayesian model averaging (BMA). Specifically, correct values

were used to set means and modes, but the distributions were

given large variances (E½q�~30, var½q�~302, where q is the

number of included variants, ns2 ~1, mode of s2 was set according

to H2, nt2~3, E½H2
i �~H2=30, bw~1). Two chains of length two

million samples were run for each dataset and model. Second

halves of the chains were thinned by taking every 100th sample

and used for posterior inference.

Causal variant identification performance. To make

BMA and PLINK better comparable, the genetic map of

chromosome 1 from HapMap (phase 2, release 22) [25] was

used to divide the SNPs into regions with boundaries at loci, where

adjacent SNPs were more than 0.01 cM apart. This resulted into

3776 regions. Similar results were obtained by using a lower

threshold (0.005 cM; 6421 regions; Figure S1) or by dividing the

SNPs into LD blocks with an algorithm in Haploview software

[26] (Figure S2). For single-SNP results, minimum of the p-values

within a region was taken. For BMA, region-wise marginal

posterior probabilities were computed as frequency estimates from

the MCMC chains.

Figure 1 shows the true positive rates as a function of the false

positive rates for the approaches, with the forty replicate

simulations combined (similar to Guan and Stephens [6]). BMA

has clearly better performance in these simulations than

conventional single-SNP analysis (PLINK and single-SNP poste-

rior probabilities gave similar results; Figure S3). The difference is

larger with the higher heritability. This is plausible as there is less

residual variation available for producing chance associations in

the multivariate linear models after the strongest associations have

been accounted for. When only additive effects (sim A) are

simulated, there is little difference between BMA A and BMA A/

AH, but BMA pseudo performs slightly worse. Single-SNP analysis

with AH model suffers a small drop in performance compared to

only A. With additive, dominant and recessive effects (sim A/D/R)

BMA A/AH shows some improvement over BMA A and pseudo.

The improvement is larger with higher heritability.

Effect type identification. Effect type identification

accuracies for causal variants were computed on the region level

weighted with posterior association probabilities pi:

accuracy~
1P
j pj

X
j

pjI(true effect type at j~

maximum a posteriori effect type at j),

ð4Þ

where I is an indicator function with value 1 if the argument is

true and 0 otherwise. Simulated D and R effects were classified as

AH. The effect type of a SNP in BMA pseudo was classified as AH

if the pseudo term was present in the model and A otherwise. The

motivation for the weighting scheme is that only the effect types of

variants with high posterior association probability are of interest.

Table 2 shows the accuracies as an average over the replicate

simulations. The results are mixed. Both BMA A/AH and pseudo

have high accuracies, when only additive effects are simulated,

especially with the higher heritability and clearly have some ability

to identify dominant and recessive effects, although the accuracies

are well below 80% even in the higher heritability simulations.

Looking more closely at the types of errors of BMA A/AH, there is

little difference in percentages of confusing A to AH and AH to A

(both are 30% with H2~0:2 and 25% with H2~0:5).

Heritability and model sizes. The Bayesian model

averaging approach facilitates inferences on heritability

(calculated as the proportion of variance explained by the

genetic effects from the MCMC samples) and the number of

causal variants. Figure 2 shows 95% central posterior intervals for

heritability in the simulated datasets. With only additive effects, all

BMA formulations cover the true value in most replicate

simulations. Lower heritability leads to longer intervals as there

is generally more uncertainty about the model parameters. With
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additive, dominant and recessive effects (sim A/D/R), BMA A is

biased to lower than true values, especially with the higher

heritability, while BMA A/AH and pseudo have good coverage of

the true values.

The model size distributions are summarized with 95% central

posterior intervals in Figure 3. Only distinct SNPs are counted in

BMA pseudo (i.e., having both A and H terms of the same SNP

count only as one). Three trends are visible. First, lower heritability

leads to larger uncertainty in the number of variants to include.

Second, the model sizes are generally biased to smaller than true

values. This may be explained by the discrepancy in the prior

(normal) and the simulation (double exponential) distributions for

the effect sizes. It is probable that many of the simulated effects are

small, falling below the implicit identification threshold, and do

not contribute much to heritability. Third, BMA pseudo produces

on average larger models than BMA A or A/AH and has wider

posterior intervals.

HDL-C and LDL-C analysis
The Bayesian model averaging (BMA) approach was then

applied to real data. BMA A (additive) and A/AH (additive or

additive and heterozygous terms) models were used.

Data and prior parameters. Data were available from 3895

Finnish individuals from two studies. 2002 of the individuals were

from a metabolic syndrome case-control sample [27] and 1893

were controls of another study (a subgroup of FINRISK study

[28]). Data on high-density lipoprotein blood cholesterol (HDL-C)

levels was available for all individuals and on low-density

lipoprotein cholesterol (LDL-C) for 3822 individuals. LDL-C

values were estimated with the Friedewald formula [29]. The

genotype data were imputed with IMPUTE2 program using

HapMap 3 reference samples with an additional Finnish founder

population reference [30]. Maximum a posteriori genotypes were

used from the imputation, which allows for simple handling of

multiple effect types with memory-efficient implementation

(posterior mean genotypes have been recommended as an

approximation to sampling over the imputation uncertainty, see

[31]). Missing values in the genotyped SNPs were not imputed.

After imputation, 1,051,811 SNPs passed quality control

(imputation certainty w0:95, Hardy-Weinberg equilibrium

p§0:0001, minor allele frequency §0:02 and missingness

ƒ0:05; adjacent SNPs with identical genotypes were removed)

and were available for both datasets. Study indicator, metabolic

syndrome case-control indicator, age, age2, sex, body-mass index,

Figure 1. Causal variant identification performance in simulations. True positive rate as a function of false positive rate in simulations with
all forty replicate datasets combined within each configuration (i.e., each dataset has the same cutoff for calling positives and the number of true and
false positives are summed over the datasets).
doi:10.1371/journal.pone.0029115.g001

Table 2. Effect type identification accuracy in simulations
(weighted with posterior association probability).

sim. effects sim. H2 BMA A/AH BMA pseudo

sim A 0.2 86% 94%

sim A/D/R 0.2 70% 66%

sim A 0.5 98% 97%

sim A/D/R 0.5 75% 76%

doi:10.1371/journal.pone.0029115.t002
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lipid lowering medication together with coarse indicators from

questionnaires on education, physical activity and alcohol use were

included as covariates. Missing covariates were imputed with

regression models based on the other covariates using mi-package

in R [32]. Ten principal components with the largest eigenvalues

were estimated [33] from the genotyped SNPs (i.e., excluding

imputed) and included as covariates to account for population

stratification.

Location parameters of the prior distributions were specified

based on a recently published large meta-analysis investigating

blood concentrations of lipids [34]. Prior variances were set to

relatively large. For HDL-C: E½q�~47, which is the number of

identified SNPs in the meta-analysis, var½q�~402, ns2~1, mode of

s2 was set according to heritability estimate from the meta-analysis

H2~0:12 and empirical R2
e~0:29 for the covariates, nt2~4,

E½H2
i �~H2=47, bw~1. For LDL-C: E½q�~37, var½q�~302,

ns2 ~1, H2~0:12 and empirical R2
e~0:18 for the covariates,

nt2~4, E½H2
i �~H2=37, bw~1. Three MCMC chains of length six

million iterations were run for each model and dataset and thinned

by taking every 100th sample. Only the second halves were used

for posterior inference. Convergence was assessed by visually

comparing the three chains and by computing the potential scale

reduction factor [16] for shared continuous parameters. These did

not indicate any problems. Comparing the marginal posterior

association probabilities of SNPs between chains shows some

problems in mixing between correlated variants (Figure S4).

However, region-wise probabilities do not seem to suffer from this

(Figure S4).

Figure 2. BMA 95% central posterior intervals for heritability in simulations. Each of the forty replicate datasets within all configurations
are shown for BMA A, A/AH and A/D/R. The true value is indicated with a vertical line.
doi:10.1371/journal.pone.0029115.g002

Figure 3. BMA 95% central posterior intervals for the number of causal variants in simulations. Each of the forty replicate datasets
within all configurations are shown for BMA A, A/AH and A/D/R. The true value is indicated with a vertical line.
doi:10.1371/journal.pone.0029115.g003
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Posterior association probabilities. The posterior

association probabilities were computed for regions of the

genome using HapMap genetic maps (phase 2, release 22) [25].

The variants were assigned into regions with boundaries at loci,

where adjacent SNPs in the genetic map were more than 0.01 cM

apart. The posterior probabilities for the resulting 46,172 regions

are shown in Figure 4 for BMA A/AH. BMA A gives very similar

results for both traits (Figure 5) and is not shown. Ten randomly

permuted versions of the HDL-C dataset were analyzed for

reference, the results of which show no region-wise posterior

association probabilities over 0.5 (Figure S5).

For HDL-C, there are seven regions with posterior association

probability over half, five of which have been identified previously

[34]. Computing estimates for the number of associated loci in each

region indicates that the region with probability near one in

chromosome 16 harbors two associations (Figure S6). The SNPs

showing association in this region are located immediately upstream

or in the CETP gene. The two associations (one of which is in region

not reported by Teslovich [34]) in chromosome 15 are in or

upstream of LIPC gene. The previously unreported (to our

knowledge) putative association on chromosome 5 is about 14 kbp

upstream of CAST gene and is suspect to being a false positive.

For LDL-C, there are five regions with posterior association

probability over half, four of which are in regions, where LDL-C

associated SNPs have been found previously in the large meta-analysis

study [34]. Closer inspection shows that the fifth association, in

chromosome 1, is located in gene PCSK9, in and near which

associations to LDL-C have also been previously reported. The

estimate for the number of associations in this region is 1.6 (Figure S6)

with some weaker signals in the near-by USP24 gene. The second

associated region in chromosome 19 has an estimated number of

associations of 1.4. This region is located around TOMM40, APOE

and APOC1 genes, variants in which have been previously found

associated to cholesterol levels (the latter two code for apolipoproteins).

Figure 4 shows regions, where the AH effect is more probable

than A with hollow circles (otherwise filled). There are no such

regions for HDL-C showing even moderate signal for association

and only few for LDL-C. The strongest region, with posterior

association probability of 0.41, is in chromosome 11. SNPs in this

region showing association are located in LDLRAD3 gene.

Figure 5 shows also a comparison of the significance values from

PLINK A and AH for HDL-C highlighting a clear qualitative

difference in the behavior of BMA and single-SNP analysis.

Moreover, only three of the seven regions with posterior

association probability over half for HDL-C reach genome-wide

significance level (here pv10{8) in the single-SNP analysis (Figure

S7). For LDL-C, all of the five regions reach this level (except for

one close call in AH analysis; Figure S7). PLINK AH indicates five

SNPs for HDL-C with borderline genome-wide significance that

are not picked up by only A model or the BMA models. These

SNPs show clear recessive association patterns, but each with only

a single observation having two minor alleles. It seems that testing

the regression coefficients for statistical significance is not a very

robust approach with additive and heterozygosity terms.
Heritability and the number of associated variants. Her-

itability samples were obtained from the MCMC as the proportion of

(all phenotypic) variance explained by the included genetic effects

(Figure 6). The median heritabilities for HDL-C were 0.08 with both

methods and for LDL-C 0.08 and 0.09 with BMA A and A/AH,

respectively. The histograms for HDL-C are nearly identical and are

Figure 4. BMA A/AH posterior association probabilities for HDL-C and LDL-C. The SNPs have been divided into 46,172 regions based on
HapMap genetic map. Regions, where AH effect has higher probability than A are shown as hollow circles, others as filled. Crosses indicate loci
identified in a large meta-analysis [34]. Two close-by regions on chromosome 15 have probabilities near one for HDL-C, but only one can be seen due
to overlapping markers.
doi:10.1371/journal.pone.0029115.g004
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much narrower than those of LDL-C. LDL-C with BMA A/AH has

slightly wider distribution and larger mean than with BMA A. Similar

observations can be made for the number of included variants in the

models: the medians [with 95% central posterior intervals] are 32

½14; 71� and 29 ½13; 66� for HDL-C with BMA A and A/AH, and 42

½15; 115� and 44 ½15; 120� for LDL-C.

Discussion

Our results demonstrate that Bayesian variable selection and

model averaging (BMA) in searching for additive and dominant

genetic effects is feasible on genome-wide scale and has several

potential benefits over single-SNP analysis. The primary interest in

genome-wide association studies (GWAS) often lies in locating

causal variants (or variants linked to them), which may provide

insight into the underlying biology of the phenotype, indicate new

therapeutic targets for diseases and enable personalized risk

analytics [1]. As complex traits are thought to involve multiple

genetic effects, it is not surprising that the simultaneous analysis of

all available variants has been found to increase the identification

accuracy (at least in simulations) [3–6]. Our simulation study

supports this (Figure 1). Our results also imply that if genetic

dominance is present, allowing heterozygosity (AH) terms in the

BMA models can provide a further increase in the accuracy.

Moreover, in the analysis of HDL-C blood concentrations in 3985

Finns, BMA highlighted regions with previously reported

associations, which did not reach genome-wide significance in

the single-SNP analysis of this dataset. Further analysis of the

implied associations is out of the scope of our article.

Notably, even if only additive effects were simulated, there was

virtually no decrease in the identification accuracy from allowing

AH terms. This behavior can (at least partly) be explained by

allowing the data to provide information on the relative numbers

of the different types of effects t through their prior (Equation 2).

The effect of the prior is also clearly visible when comparing the

results of BMA and single-SNP analysis for the HDL-C data in

Figure 5. In the current form, the model becomes more and more

conservative against other effect types as more and more variants

with a single effect type are added. In situations where this is

undesirable, the prior could be fixed to uniform over the effect

types or its strength relative to the number of included variants

could be controlled (by allowing w to depend on c). However, this

behavior is a demonstration of the key feature of ‘‘sharing of

strength’’ in hierarchical modeling, and highlights one of many

potential benefits in the simultaneous analysis of all variants.

We also compared the BMA A/AH approach to a pseudo-SNP

approach, which doubles the number of variants by introducing an

additional pseudo SNP with heterozygosity coding for each

original SNP. This allows simple modeling of dominance without

requiring any special implementation handling different effect

types. However, our simulations indicate that an explicit model for

the dominance variation may increase the performance of

identifying associations. Moreover, the prior specification of model

size and effect types are more natural when an explicit model is

used. The performance for the identification of the types of effects

had mixed results in our simulations.

The BMA approach facilitates posterior inference on heritabil-

ity based on genotype data of unrelated individuals as studied by

Guan and Stephens [6]. Here it is useful to note the difference

between narrow- and broad-sense heritability. The former is

defined as the proportion of phenotypic variance explained by

additive genetic effects, while the latter includes also non-additive

components (e.g., dominance). Hill et al. [35] argue based on

literature and theoretical considerations that the additive compo-

nent is expected to account for most of the genetic variance of

complex traits. Our simulation and real data results seem to be in

line with this (disregarding the possibility of gene-gene and gene-

environment interactions). Although in the second set of our

simulations two thirds of the effects are either dominant or

recessive, models with only additive effects, while being clearly

Figure 5. Comparison of region-wise posterior association probabilities for BMA A and A/AH. Similar plot for PLINK { log10 p{values is
included for reference (region-wise maximum values; one point with values w12 is shown with a cross).
doi:10.1371/journal.pone.0029115.g005

Figure 6. Posterior distributions of heritability for HDL-C and
LDL-C. Median values are 0.08 for all except for LDL-C BMA A/AH,
which has a median of 0.09.
doi:10.1371/journal.pone.0029115.g006
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biased downwards, seem to capture a large part of the overall

heritability (Figure 2). For HDL-C and LDL-C, a large meta-

analysis study reported that about 12% of the total variances of

each were explained by the identified SNPs, which is only around

25 to 30% of the genetic variances of the traits [34], highlighting

the general observation that associations in SNP data often

account for a small part of total heritability [2]. The cited values

are at the upper ends of our posterior distributions (Figure 6). Our

results imply no dominance component for HDL-C and a

possibility of a small dominance component for LDL-C.

A few issues regarding our modeling choices and computation

should be highlighted. First, the distribution for the effect sizes was

assumed normal for computational convenience, although a heavier

tailed distribution could be more robust and often truer to prior

assumptions in GWAS (see, e.g., Park et al. [36]). Double exponential

distribution was used to generate the effect sizes in the simulations,

which may explain the bias to small model sizes in the results

(Figure 3). Yet, the inferences on heritability seem well-calibrated

(Figure 2). However, the normal assumption may be an issue if there

are some variants with large effects and lots of variants with small

effects. Then, the strong associations will increase the variance of the

effect size distribution (via t2), which will affect the implicit threshold

in the spike-and-slab prior to include variants into the model.

Another issue concerns the computation. The local updating

scheme of variant inclusion (c) suffers from large autocorrelations

and may perform poorly if the distribution is multi-modal. Indeed,

there were indications of poor mixing between near-by SNPs, but the

calculation of region-wise posterior association probabilities did not

seem to suffer from this. A further analysis of the associated regions

would need to take the potential problems into account. We also note

that our specification of the regions based on the HapMap genetic

maps is simplistic and intended for summarization (similarly, Guan

and Stephens [6] divide the genome into regions based on basepair

positions). That the single-SNP analysis for HDL-C and LDL-C did

not indicate any significant associations not seen in the BMA results

(apart from the few probable false positives addressed in the results),

implies that there at least is no such multi-modality, which would

mask strong associations. However, if multi-modality becomes a

problem, incorporating global moves between tempered chains from

the Evolutionary Monte Carlo of Bottolo and Richardson [37] to the

current scheme could be of help, albeit with the cost of increased

computational burden. With the settings described in the Results

section, the computation of a single chain for BMA A/AH model

took approximately 96 hours for the HDL-C and LDL-C datasets

(utilizing one core of 2.6 GHz AMD Opteron 2435 CPU). Our

implementation is memory-efficient and allows running multiple

parallel chains, which share the same dataset.

Supporting Information

Text S1 Details of the sampling scheme.
(PDF)

Text S2 PLINK analysis options.
(PDF)

Figure S1 True positive rate as a function of false
positive rate in simulations with all forty replicate
datasets combined within each configuration. sB refers

to Bayesian single-SNP analysis. Regions were defined based on

HapMap genetic maps with 0.005 cM cutoff. sB A and PLINK A

may be difficult to distinguish because of overlap.

(TIF)

Figure S2 True positive rate as a function of false
positive rate in simulations with all forty replicate
datasets combined within each configuration. sB refers

to Bayesian single-SNP analysis. Regions were defined using the

default LD block algorithm in the Haploview software [26]. sB A

and PLINK A may be difficult to distinguish because of overlap.

(TIF)

Figure S3 True positive rate as a function of false
positive rate in simulations with all forty replicate
datasets combined within each configuration. sB refers

to Bayesian single-SNP analysis. Regions were defined based on

HapMap genetic maps with 0.01 cM cutoff (this figure is the same

as in the main article expect for the inclusion of the sB results). sB

A and PLINK A may be difficult to distinguish because of overlap.

(TIF)

Figure S4 Comparison of the posterior association
probabilities between BMA A/AH MCMC chains for
HDL-C and LDL-C (SNP-wise and region-wise with the
regions from HapMap genetic maps with 0.01 cM
cutoff).
(TIF)

Figure S5 Region-wise BMA A posterior association
probabilities for ten permutations of the HDL-C data.
The trait y and the rows of the matrix E were randomly permuted

(both with the same permutation), while the genotypes X were left

to the original order. The same hyperparameters and MCMC

settings were used as with the original dataset.

(TIF)

Figure S6 Estimates of the number of associated
variants in the regions (using HapMap genetic maps
with 0.01 cM cutoff) for HDL-C and LDL-C with BMA A/
AH. Calculated for each region as a sum of the Rao-Blackwellized

posterior association probabilities of the SNPs within the region

[6].

(TIF)

Figure S7 Region-wise BMA A/AH posterior association
probabilities (gray) and PLINK AH ” log10 (p”values)
(green; truncated at 12) for HDL-C and LDL-C.
(TIF)
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