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Abstract

CD36 is a type 2 scavenger receptor with multiple functions. CD36 binding to oxidized LDL triggers signaling cascades that
are required for macrophage foam cell formation, but the mechanisms by which CD36 signals remain incompletely
understood. Mass spectrometry analysis of anti-CD36 immuno-precipitates from macrophages identified the tetraspanin
CD9 as a CD36 interacting protein. Western blot showed that CD9 was precipitated from mouse macrophages by anti-CD36
monoclonal antibody and CD36 was likewise precipitated by anti-CD9, confirming the mass spectrometry results.
Macrophages from cd36 null mice were used to demonstrate specificity. Membrane associations of the two proteins on
intact cells was analyzed by confocal immunofluorescence microscopy and by a novel cross linking assay that detects
proteins in close proximity (,40 nm). Functional significance was determined by assessing lipid accumulation, foam cell
formation and JNK activation in wt, cd9 null and cd36 null macrophages exposed to oxLDL. OxLDL uptake, lipid
accumulation, foam cell formation, and JNK phosphorylation were partially impaired in cd9 null macrophages. The present
study demonstrates that CD9 associates with CD36 on the macrophage surface and may participate in macrophage
signaling in response to oxidized LDL.
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Introduction

CD36 is a member of the Type 2 scavenger receptor family. It

recognizes multiple endogenous and exogenous ligands, including

proteins containing thrombospondin type 1 structural homology

regions (TSR) [1,2]; oxidized phospholipids expressed on

oxidatively midified low-density lipoprotein (oxLDL), apoptotic

cells, and cell-derived microparticles [3,4,5]; long chain fatty acids

[6]; amyloid-b [7]; falicparum malaria-infected erythrocytes; and

specific components of microbial cell walls [8]. CD36 is expressed

on a variety of cells including platelets [9], monocytes, macro-

phages, dendritic cells, microvascular endothelial cells [10],

adipocytes, myocytes, and certain specialized epithelial cells

[11,12]. As a widely expressed receptor with multiple ligands,

CD36 is involved in a numerous biological and pathological

processes including fatty acid uptake and sensing, innate

immunity, inflammation, atherosclerosis, and angiogenesis [13].

Much of the function of CD36 depends on ligand-induced

triggering of specific intracellular signaling cascades. For example,

TSR containing proteins inhibit angiogenesis by inducing a

CD36-dependent pro-apoptotic signal in microvascular endothe-

lial cells via direct activation of Fyn, p38 MAP kinase and caspase-

3 [14], as well as up-regulation of the Fas and TNFa mediated

apoptotic pathways [15,16]. On macrophages, oxLDL induces

CD36-mediated recruitment and activation of Lyn and activation

of Vav family guanine nucleotide exchange factors and c-Jun N-

terminal kinase (JNK)-2 [17,18,19]. These pro-atherogenic

pathways are required for internalization of oxLDL, foam cell

formation, and inhibition of migration. CD36-mediated activation

of platelets shares features with the macrophage pathway in that

Lyn, JNK2, and Vav are all activated by CD36 in a ligand-

dependent manner, providing a mechanistic link between oxidant

stress, inflammation and thrombosis [20,21,22,23].

The precise mechanisms of CD36-mediated cell signaling are

incompletely understood. It has 2 very short intra-cytoplasmic

domains and no inherent intracellular enzymatic activity, but its

carboxy-terminal cytoplasmic domain has been shown to interact

with intracellular signaling proteins, including src-family kinases

and MAP kinase kinases [17]. Mutations or deletions in the

carboxy terminal domain abolish signaling responses in transfected

cells [24,25]. Several aspects of CD36 function and signaling are

known to require functional and/or physical association with other

membrane receptors, including integrins and toll-like receptors

(TLR) [26,27]. For example, uptake of apoptotic cells by dendritic

cells and uptake of shed photoreceptor outer segments by retinal

pigment epithelial cells involve both CD36 and aVb5 integrin
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[28,29]. Certain aspects of uptake and signaling by microbial cell

wall glycolipids require both CD36 and TLR-2 containing

complexes, and a CD36-TLR4-TLR6 pathway has been impli-

cated in microglial responses to oxLDL and amyloid-b [30]. The

structural mechanisms by which CD36 serves as a membrane co-

receptor are not well understood, but may relate in part to co-

localization in membrane microdomains.

The tetraspanin family of membrane proteins has recently been

implicated in cell signaling via their ability to compartmentalize

other membrane proteins including integrins, along with intracel-

lular signaling molecules, such as small molecular weight GTP

binding proteins, in plasma membrane domains [31,32]. Tetra-

spanins are a widely expressed, highly conserved group of more

than 30 proteins that span the plasma membrane 4 times and that

contain a conserved cysteine motif in their cytoplasmic amino and

carboxy terminal domains [33]. Specific tetraspanins have been

shown to regulate cell adhesion, migration, activation and

proliferation in inflammation, immune responses, hemostasis/

thrombosis, cancer metastasis, and sperm-egg fusion. Previous

studies indicated that the tetraspanin CD9 could be co-

immunoprecipitated with CD36 from human platelets or endo-

thelial cells [34,35], but no functional significance was identified.

We therefore tested the hypothesis that CD9 on macrophages

would interact with CD36 and contribute to CD36-mediated

functional responses. Using a combination of proteomic, immuno-

localization and functional approaches we now report that

macrophage CD9 associates with CD36 on the cell surface and

participates in CD36-dependent uptake of oxLDL.

Results

Co-precipitation of macrophage CD9 and CD36 by
monoclonal antibodies

In preliminary experiments we used mass spectrometry to

identify proteins immunoprecipitated from mouse peritoneal

macrophage lysates by a monoclonal anti-CD36 IgA. The

precipitates were analyzed by SDS-PAGE and then subjected to

LC-MS. Multiple CD36 peptides were detected in the appropriate

MW region in the gels and in the lowest molecular weight region

we identified four specific peptides representing 21% amino acid

coverage of CD9. CD9 peptides were not detected in immuno-

precipitates from cd36 null macrophages, demonstrating specific-

ity. To confirm and validate these results we performed specific IPs

followed by immunoblot assays. As shown in Figure 1, CD9 was

detected in the anti-CD36 IP from wt but not cd36 null cells (Panel

A). Similarly, CD36 was detected in the anti-CD9 IP from wt cells

(Panel B). Isotype matched control antibodies were used as

controls in all studies. To further demonstrate specificity, we

performed an IP with an antibody to an irrelevant macrophage

surface protein, CD31, and found no evidence by western blot of

co-precipitated CD36. Similarly anti-CD36 IPs did not contain

detectable CD31 (not shown).

CD9 and CD36 co-localize on the macrophage cell
surface

Because of potential artifacts introduced by detergent lysis of

membrane proteins, we also examined CD9 and CD36 association

by immunofluorescence microscopy. The confocal images shown

in Figure 2A demonstrate that both CD9 and CD36 are densely

expressed on the macrophage cell plasma membrane in a ‘‘ring’’

pattern. The merged image shown in the far right panel shows

nearly complete overlap of fluorescence from the two markers. We

then used a Proximity Ligation Cross Linking Assay (OLink, Inc)

with anti-CD9 and anti-CD36 antibodies derived from 2 different

species (rabbit and mouse). In this system, species specific

secondary antibodies conjugated to unique DNA strands that

template hybridization of specific oligonucleotides are then added,

and when in close proximity (,40 nm) the oligonucleotides can be

ligated to form a circular template. The template can then be

amplified and detected using specific complementary oligonucle-

otide probes tagged with fluorescent probes. Single-molecule

protein-protein interaction events are visualized as distinct

fluorescent spots. Figure 2B, panel a shows distinct spot formation

in WT macrophages using this system with anti-CD9 and anti-

CD36 antibodies. To show specificity we demonstrated that no

spots were formed on cd36 null cells with these antibodies

(Figure 2B, panel b) and that no spots were formed when CD31

or CD40 antibodies were used instead of CD9 on WT cells (panels

c and d). To confirm these results, we also used FITC-labeled anti-

CD36 and biotin-labeled anti-CD9 mouse antibodies or biotin-

labeled anti-CD31 rat IgG as primary antibody sets to repeat the

experiment with secondary anti-FITC and anti-biotin antibodies

for detection. The results were similar (not show). These studies

thus show that CD9 and CD36 are in close proximity to each

other (within 40 nM) on the surface of macrophages.

CD9 participates in CD36-mediated macrophage
functions

To investigate the role of CD9 in the biological functions of

CD36, we first studied oxLDL uptake and foam cell formation

using macrophages obtained from cd9 null mice. For these studies

we used a form of oxidized LDL highly specific for CD36 (termed

NO2LDL) that is generated by incubating human LDL with a

myeloperoxidase/nitrite-based oxidizing system. In a short term

experiment using DiI-labeled NO2LDL we found that fluores-

cence uptake at 15–60 minutes was moderately decreased in cd9

deleted macrophage compared to wt macrophages (Figure 3A). To

determine the quantitative impact of this defect on foam cell

formation we incubated wt and cd9 null macrophages with

NO2LDL for 16 hours. Cells were then stained with Oil Red O

and neutral lipid content was assessed by extracting and

quantifying the dye. Figure 3B shows, as expected, that cd36 null

macrophages accumulated little or no lipid, and that the cd9 null

cells accumulated significantly less that wt, but more than the cd36

null. To confirm these results we also assayed total cholesterol

content in the cell lysates (Figure 3C) and showed a 26% decrease

in cd9 null cells compared to wt cells (p = 0.02). No differences

among the genotypes were seen in cells incubated with native

LDL. Flow cytometry assays with monoclonal anti-CD9 IgG

showed that the level of surface expression of CD9 was not

changed in cd36 null macrophages (data not shown; p = 0.8).

Previous studies from our lab revealed that phosphorylation of

the MAP kinase JNK is a proximal event in CD36 signaling in

macrophages and that JNK inhibition blocks CD36-mediated

uptake of oxidized LDL [17]. We thus tested the hypothesis that

CD9 contributes to CD36 signaling by examining the extent and

kinetics of JNK phosphorylation in cd9 null macrophages after

exposure to NO2LDL. Figure 4 shows western blots with an

antibody specific to phospho-JNK. Both JNK1 and JNK2 were

phosphorylated in wt cells, with an approximate 6 fold increase

seen at 15 minutes. Phosphorylation was still increased by more

than 4 fold at 30 minutes. Interestingly, in the cd9 null cells

NO2LDL incubation induced a similar degree of JNK activation

as in wt at 15 minutes, but by 30 minutes there was significantly

less activation in the cd9 cells, suggesting that CD9 might regulate

this pathway. As expected, minimal JNK phosphorylation was

seen in cd36 null cells.

CD9 Influences CD36 Function in Macrophages

PLoS ONE | www.plosone.org 2 December 2011 | Volume 6 | Issue 12 | e29092



Discussion

The tetraspanin CD9 (Tspan 29) is expressed on platelets,

macrophages, vascular endothelial and smooth muscle cells,

neuronal cells, fibroblasts, oocytes and some epithelial cells [33].

It is among the best studied of the tetraspanins and has been

shown to regulate several biologically important cellular functions,

including sperm-egg fusion [36], and adhesion, proliferation, and

migration of nucleated cells. It is densely expressed on platelets

where it appears to play a role in modulating and stabilizing

aggregration. The mechanisms by which CD9 and other

tetraspanins regulate cell functions remain incompletely under-

stood, but the prevailing model is that they associate with one

another and with other membrane proteins to form a ‘‘tetraspanin

web’’ that clusters specific membrane components and intracel-

lular signaling molecules into microdomains that facilitate signal

transduction [31]. Interaction of CD9 with specific ß1 and ß3

integrins has been shown to regulate fertilization [37], migration,

adhesion and platelet aggregation. In addition to integrins, CD9

also associates with the Ig superfamily adhesion molecule ICAM,

and with membrane associated growth factors.

Although Maio et al. previously showed that CD9 could be co-

immunoprecipitated with CD36 in human platelet lysates [34], and

Kazerounian et al recently reported the association of CD36 with

the tetraspanins CD9 and CD151 in endothelial cells [35], a

functional role for the interaction was not shown, nor was it shown if

CD9 and CD36 co-localize in intact cells. In this report we show

with several different experimental approaches that CD9 and CD36

co-associate on macrophage cell membranes. Immunoprecipation

with monoclonal antibodies to either protein precipitated the other,

Figure 1. Co-immunoprecipitation of CD9 and CD36 from macrophage lysates. Peritoneal macrophages from wt or cd36 null mice were
lysed in 1% CHAPS and lysates containing 750 mg protein were incubated with agarose beads conjugated to murine monoclonal anti-mouse CD36
IgA (A) or anti-CD9 IgG and control rat IgG (B) at 4uC overnight. Immunoprecipitated (IP) proteins were then analyzed by immunoblot (IB) using anti-
CD9 or anti-CD36 antibodies.
doi:10.1371/journal.pone.0029092.g001

Figure 2. Co-localization of CD9 and CD36 on macrophage plasma membrane. (A) Confocal Microscopy. Mouse peritoneal macrophages
were seeded on glass coverslips, fixed in 4% formaldehyde, and then incubated with FITC-conjugated anti-CD36 IgA (left panel; green fluorescence)
or unlabeled rabbit anti-CD9 IgG followed by Alexa-594 conjugated goat anti-rabbit IgG (middle panel; red fluorescence). Cells were also incubated
with DAPI (Blue) to detect nuclei. Confocal images were obtained at (636); insets show (66636). Right panel shows merged images. (B) Proximity
Ligation Cross-linking Assay. Macrophages from wild type (a) or cd36 null (b) mice were incubated with rat anti-CD36 monoclonal IgG and rabbit anti-
CD9 antibody and then species specific DNA-conjugated secondary antibodies. Specific oligonucleotides were then added, ligated and amplified
using complementary fluorescent probes. Fluorescent dots represent cross-linked antibodies. In panels c and d, wild type macrophages were
incubated with rabbit anti-CD36 IgG, but with anti-CD31 (c) or anti-CD40 (d) as negative controls.
doi:10.1371/journal.pone.0029092.g002

CD9 Influences CD36 Function in Macrophages

PLoS ONE | www.plosone.org 3 December 2011 | Volume 6 | Issue 12 | e29092



and immunofluorescence microscopy using a novel ‘‘proximity

ligation cross-linking assay’’ demonstrated that the two proteins are

closely associated (within 40 nM) with one another on the surface of

the cells. Most protein interactions involving tetraspanins are not

due to direct binding between specific peptide domains, with the

exception that the second extracellular domain of CD9 has been

shown to bind directly to integrins [33]. Whether CD9 and CD36

bind to each other directly remains to be determined.

Our studies also suggest that the CD36 signaling pathways

triggered by oxLDL which lead to cholesterol accumulation and

foam cell formation may be facilitated in part by its association in

tetraspanin webs. Genetic deletion of CD9 did not abolish foam

cell formation, but oxLDL uptake was modestly decreased as were

total lipid and cholesterol accumulation. Interestingly, in the

absence of CD9, CD36-mediated activation of JNK was altered,

with more rapid loss of phosphorylation and thus presumably

more rapid termination of the signal. JNK activation is a critical

step in foam cell formation and atherogenesis, as inhibition or

deletion of JNK has been shown by our group to block CD36-

mediated oxLDL uptake [17] and by others to inhibit atheroscle-

rosis in an apoe null mouse model [38]. We also showed that JNK

inhibition in platelets blocked CD36-mediated pro-thrombotic

responses [21]. Thus modulation of the dynamics of CD36-

mediated JNK activation by CD9 could account for the differences

seen in oxLDL uptake and foam cell formation in cd9 null

macrophages. The mechanisms responsible for the alteration in

JNK phosphorylation kinetics in the absence of CD9 remains to be

determined, but possibilities include changes in recruitment of src

family and/or MAP kinases to the CD36 signaling complex or

alteration of phosphatase function. Our studies showing less

cellular lipid accumulation in the absence of CD9 are also

consistent with reports that tetraspanins can traffic between the

plasma membrane and intracellular vesicular compartments and

therefore potentially regulate internalization pathways [39].

In summary, we showed that CD9 and CD36 co-associate on the

macrophage surface, suggesting that CD36 may be part of the

tetraspanin web. Loss of this association by genetic deletion of CD9

led to a modest but statistically significant decrement in CD36-

mediated signaling in response to oxLDL and a concomitant

modest decrease in lipid accumulation and foam cell formation.

Materials and Methods

Animals, antibodies and other reagents
cd36 null mice [40], and cd9 null mice [41] were described

previously. All mouse studies were approved by the Cleveland

Figure 3. CD9 null macrophages have impaired uptake of oxidized LDL. (A) Peritoneal macrophages from cd9 null (top row) or wild type
(bottom row) mice were incubated with DiI-labeled NO2LDL (10 mg/ml) for timed periods from 0–60 minutes at 37uC. Fluorescent images show that
wild type cells took up more DiI (red) than cd9 nulls. Blue fluorescence represents DAPI-stained cell nuclei. White arrows indicate the macrophages
with high number of lipid droplet formation. (B) Peritoneal macrophages from cd9 null, cd36 null, or wild type mice were incubated with NO2LDL
(50 mg/ml) for 16 hours at 37uC and then fixed and stained with oil red O for 30 minutes. After washing, the dye was extracted from the cells by
methanol and detected by absorbance at 520 nM. Each group represents the mean of 3 individual samples. (C) Macrophages were treated with
oxLDL as in B, or with native LDL, and then lysed. Total cellular cholesterol and protein were then quantified. Each group represents the mean of 3
individual samples.
doi:10.1371/journal.pone.0029092.g003

CD9 Influences CD36 Function in Macrophages
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Clinic Institutional Animal Care and Use Committee (Approval

ID is ARC08938). Peritoneal macrophages were obtained by

lavage 4 d after injection with thioglycollate and adherent cells

were maintained in culture. Cell culture reagents were purchased

from Invitrogen, CA, USA. Antibodies to phosphorylated forms of

JNK1/2 and to total JNK1/2 were from Cell Signaling, Beverly,

MA. Unlabeled or biotin-conjuncted mouse monoclonal anti-CD9

antibody was from BD Biosciences, CA, USA. Rabbit anti-CD9

monoclonal antibody was purchased from Epitomics, CA, USA.

Mouse anti-mouse CD36 IgA was prepared as previously

described [28]. Rat anti-mouse CD36 IgG was a kind gift from

Prof. Laura Helming (Munich, Germany) [42]. Rabbit anti-CD36

antibody was from Novus biologicals, CO, USA. Anti-CD31 and

anti-CD40 for Proximity Ligation Cross-linking Assay were from

BD Biosciences, CA, USA. LDL was isolated from human plasma

as previously described [17] and oxidized with a myeloperoxidase

based system as previously described [3]. In some experiments

LDL was exposed to all elements of the system except the oxidant

to create control non-oxidized LDL. All chemicals were obtained

from Sigma (St. Louis, MO, USA) unless otherwise indicated.

Co-Immunoprecipitation (Co-IP)
Mouse monoclonal anti-mouse CD36 IgA was coupled to NHS-

activated agarose beads (GE life sciences, NJ, USA) according to

manufacturer’s instruction. Peritoneal macrophages were treated

with Dithiobis-succinimidylpropionate and then lysed in 1%

CHAPS in buffer made up of 50 mM Tris-HCl (pH 7.5),

150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 2.5 mM sodium

pyrophosphate, 1 mM b-glycerophosphate, 1 mM Na3VO4, and a

broad spectrum protease inhibitor cocktail (Roche Applied

Science, IN, USA). Lysates were centrifuged at 12000 g for

10 min and the supernatants containing 750 mg protein were

incubated with antibody beads rotating overnight at 4uC. After

extensive washing, beads were boiled in SDS-PAGE loading buffer

and the bound material run on SDS-PAGE for further analysis.

Mass Spectrometry
Lanes from SDS-PAGE gels prepared as above from wt and

cd36 null macrophages were cut horizontally into 10 sections. The

gel pieces were then reduced with DTT and alkylated with

iodoacetamide before digestion with trypsin overnight. Peptides

were then extracted from the gel slices and the extracts evaporated

to ,30 ml for LC-MS analysis using a Finnegan LCQ ion trap

mass spectrometer system. The HPLC column was a self-packed

8 cm675 mM internal diameter Phenomenex Jupiter C18 reverse-

phase capillary chromatography column. Peptides were eluted

from the column by an acetonitrile/0.05 M acetic acid gradient

and introduced into the mass spectrometer on-line. The micro-

electrospray ion source was operated at 2.5 kV. Data were

analyzed using all CID spectra collected to search NCBI databases

with the search program Mascot.

Figure 4. OxLDL induced JNK phosphorylation is reduced in cd9 null macrophages. (A) Peritoneal macrophages from wild type, cd9 null
and cd36 null mice were stimulated by oxidized LDL (50 mg/ml) for timed points from 0–30 minutes. Cells were then lysed and analyzed by western
blot with antibodies to phosphor-JNK (top) or total JNK (bottom). (B) Blots from (A) were scanned and band densities quantified using NIH Image-J
software. The ratios of p-JNK/total JNK are indicated, each group represents the mean of 3 individual samples.
doi:10.1371/journal.pone.0029092.g004
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Immunoblot
For co-IP studies proteins from SDS-PAGE gels prepared as

described above were transferred to PVDF membranes (BioRad,

CA, USA) and probed with specific antibodies to CD36 and CD9

using a chemiluminescence based detection system (GE life

sciences). In some studies the IP was done with anti-CD9 beads

instead of anti-CD36. For studies of JNK activation, cells were

treated with oxidized LDL (50 mg/ml) for timed periods and then

washed twice in ice-cold PBS before lysis in 50 mM Tris-HCl

(pH 7.5), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% NP-

40, 0.5% sodium deoxycholate, 2.5 mM sodium pyrophosphate,

1 mM b-glycerophosphate, 1 mM Na3VO4, and proteinase

inhibitor cocktail. After centrifuging at 12000 g for 10 minutes,

the cleared supernatants were run on SDS-PAGE, transferred

onto PVDF membranes, and probed with antibodies to phospho-

JNK using a chemiluminescence detection system. Blots were

stripped and re-probed with antibodies to control proteins (b-actin

or JNK) to assess loading. For quantification, blots were scanned

and band densities determined using NIH Image-J software.

Immnofluorescence microscopy
Peritoneal macrophages from wt mice were seeded on coverslips

and cultured in RPMI 1640 medium supplied with 10% FCS.

Attached cells were fixed in 4% formaldehyde and then incubated

with FITC-labeled monoclonal anti-CD36 IgA (Cayman Chem-

ical, Mi, USA) and/or unlabeled anti-CD9 antibody followed by

Alexa-594 labeled Goat anti-rabbit antibody (Invitrogen, CA,

USA). Cells were then counterstained with DAPI to detect nuclei

and analyzed by laser confocal fluorescence microscopy.

Proximity Ligation Cross-linking Assay
Fixed peritoneal macrophages prepared as above were

incubated with rabbit anti-CD9 and rat anti-CD36 monoclonal

antibodies. Coverslips were then washed and incubated with

species specific secondary antibodies (DuolinkH; Olink, Inc)

conjugated to unique DNA strands that serve as templates for

hybridization of specific oligonucleotides. The oligonucleotides

were then added as per the manufacturer’s protocol along with a

ligase to form a circular template. The anchored template was

then amplified and detected using complementary fluorescently

labeled probes. Distinct spots representing single-molecule protein

interaction events were visualized using a laser confocal fluores-

cence microscope.

oxLDL uptake and foam cell formation
Peritoneal macrophages from wt, cd9 null and cd36 null mice

adherent to coverslips were incubated with DiI-labeled NO2LDL

(10 mg/ml) for timed points up to 60 minutes at 37uC. Cells were

then fixed in 4% formaldehyde and internalized fluorescence

examined by confocal microscopy. In other studies cells were

cultured in 12 well plates, incubated with 50 mg/ml unlabeled

NO2LDL for 16 hours, and then fixed with 4% formaldehyde and

stained with Oil Red O to detect neutral lipids. After washing

away non-bound dye, the internalized Oil Red O was extracted in

methanol and quantified by absorbance at 520 nm using a 96 well

plate reader (Spectra Max 190, Molecular Devices). Total cellular

cholesterol content was also assessed in parallel cultures using a

commercial kit (Cayman Chemical, MI, USA).

Statistical analysis
In vitro assays were performed in quadruplicate cultures. All

experiments were done using macrophages from at least three

mice for each group. All numerical results are expressed as mean

6 SEM. Statistical differences were determined by Student’s t test.
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